On the vacua of new $S O(8)$ gauged supergravity

Adolfo Guarino

Albert Einstein Center (ITP)
University of Bern

ÉCOLE POLYTECHNIQUE (CPHT) March $5^{\text {th }} 2013$
Based on arXiv: 1209.3003, 1301.6919 and 1302.6057
in collaboration w/ A. Borghese, G. Dibitetto, D. Roest \& O. Varela

Outlook

1) The old $S O(8)$ gauged $S U G R A$
2) The embedding tensor \& the new SO(8) gauged SUGRA
3) Invariant sectors of new SO(8) gauged SUGRA
3.2) The $S U(3)$ invariant sector
3.3) The SO(4) invariant sector
4) Collecting results \& final remarks

Outlook

1) The old $S O(8)$ gauged $S U G R A$

Top-down approach

11d supergravity on the 7-sphere : SO(8) gauged SUGRA with N=8 SUSY
Always believed to be unique !!

Top-down approach

11d supergravity on the 7-sphere : SO(8) gauged SUGRA with N=8 SUSY
Always believed to be unique !!
The theory

- Field content : metric +70 real scalars +28 electric vectors + fermions
- Global E_{7} symmetry \& local $S O(8)$ gauge symmetry
- R-symmetry group $\mathrm{SU}(8)$ rotating the 8 gravitini $\psi_{I=1, \ldots, 8}$
- The $70=35(\mathrm{SD})+\mathrm{i} 35$ (ASD) scalars $\phi_{I J K L}$ serve as coordinates in $\mathrm{E}_{7} / \mathrm{SU}(8)$ coset space
- Unique non-trivial scalar potential

The goal : Find critical points of the scalar potential and investigate the Physics associated : vacuum energy, residual symmetry, mass spectra, preserved SUSY . . .

The problem : It depends on 70 scalar fields !!

The alternatives :

I) Numerical methods to explore certain energy ranges
II) Look at simpler (smaller) \& consistent subsets of fields [truncations]

Smaller sectors

Truncation = Retain fields invariant under the action of a residual group

$$
G_{\text {res }} \subset S U(8)
$$

1) $G_{\text {res }}=\operatorname{SU}(3)$: $N=2$ description (gravity +1 vector +1 hyper)

$$
\mathcal{M}_{S K}=\frac{S L(2)}{S O(2)} \quad \text { and } \quad \mathcal{M}_{Q K}=\frac{S U(2,1)}{S U(2) \times U(1)}
$$

2) $G_{\text {res }}=S O(4): N=2$ (gravity +1 hyper) or $N=0$ descriptions
[different embeddings inside $\operatorname{SU}(8)$]

SUSY	Symmetry	Cosm. constant	Stability
$\mathcal{N}=8$	$\mathrm{SO}(8)$	$-6(\times 1)$	\checkmark
$\mathcal{N}=2$	$\mathrm{SU}(3) \times \mathrm{U}(1)$	$-\frac{9}{2} \sqrt{3}(\times 1)$	\checkmark
$\mathcal{N}=1$	G_{2}	$-\frac{216}{25} \sqrt{\frac{2}{5} \sqrt{3}}(\times 2)$	\checkmark
$\mathcal{N}=0$	$\mathrm{SO}(7)$	$-2 \sqrt{5 \sqrt{5}}(\times 1)$	\times
$\mathcal{N}=0$	$\mathrm{SU}(4)$	$-\frac{25}{8} \sqrt{5}(\times 2)$	\times

They all are consistent truncations of 11d supergravity on $\mathrm{Ads}_{4} \times \mathrm{S}^{7}$ with a round, squashed, stretched or warped 7-sphere $\left(\mathrm{SE}_{7}\right)$ and 4-form flux

SUSY	Symmetry	Cosm. constant	Stability
$\mathcal{N}=8$	$\mathrm{SO}(8)$	$-6(\times 1)$	\checkmark
$\mathcal{N}=2$	$\mathrm{SU}(3) \times \mathrm{U}(1)$	$-\frac{9}{2} \sqrt{3}(\times 1)$	\checkmark
$\mathcal{N}=1$	G_{2}	$-\frac{216}{25} \sqrt{\frac{2}{5} \sqrt{3}}(\times 2)$	\checkmark
$\mathcal{N}=0$	$\mathrm{SO}(7)$	$-2 \sqrt{5 \sqrt{5}}(\times 1)$	\times
$\mathcal{N}=0$	$\mathrm{SU}(4)$	$-\frac{25}{8} \sqrt{5}(\times 2)$	\times

Lifting to 11d
[Freund \& Rubin '80] [Englert '82]
[Corrado, Pilch \& Warner 'O1]
[de Wit, Nicolai \& Warner '85]
[Englert '82]
[de Wit Nicolai '84]
[Pope \& Warner '85]

SU(3) invariant critical points

They all are consistent truncations of 11d supergravity on $\mathrm{Ads}_{4} \times \mathrm{S}^{7}$ with a round, squashed, stretched or warped 7-sphere $\left(\mathrm{SE}_{7}\right)$ and 4-form flux

[Donos \& Gaunlett '11] [Bobev, Halmagyi, Pilch \& Warner '09] [Corrado, Pilch \& Warner '01] [Ahn \& Woo '00]
SUSY
Domain walls RG-flows

Lifting to 11d
[Freund \& Rubin '80] [Englert '82]
[Corrado, Pilch \& Warner '01]
[de Wit, Nicolai \& Warner '85]
[Englert '82]
[de Wit Nicolai '84]
[Pope \& Warner '85]

SU(3) invariant critical points

They all are consistent truncations of 11d supergravity on $\mathrm{Ads}_{4} \times \mathrm{S}^{7}$ with a round, squashed, stretched or warped 7-sphere $\left(\mathrm{SE}_{7}\right)$ and 4-form flux
[Jafferis, Klebanov, Pufu \& Safdi '11]

[Donos \& Gaunlett '11]	SUSY	Symmetry	Cosm. constant	Stability
[Corrado, Pilch \& Warner '01]	$\mathcal{N}=8$	$\mathrm{SO}(8)$	$-6(\times 1)$	\checkmark
-	$\mathcal{N}=2$	$\mathrm{SU}(3) \times \mathrm{U}(1)$	$-\frac{9}{2} \sqrt{3}(\times 1)$	\checkmark
Domain walls \&	$\mathcal{N}=1$	G_{2}	$-\frac{216}{25} \sqrt{\frac{2}{5} \sqrt{3}}(\times 2)$	\checkmark
RG-flows	$\mathcal{N}=0$	$\mathrm{SO}(7)$	$\begin{array}{r} -2 \sqrt{5 \sqrt{5}}(\times 1) \\ -\frac{25}{8} \sqrt{5}(\times 2) \end{array}$	\times \times
-	$\mathcal{N}=0$	SU(4)	$-8(\times 1)$	\times

Lifting to 11d
[Freund \& Rubin '80] [Englert '82]
[Corrado, Pilch \& Warner '01]
[de Wit, Nicolai \& Warner '85]
[Englert '82]
[de Wit Nicolai '84]

Pope \& Warner '85]

AdS/CMT applications : Holographic superconductivity
[R-symmetry group] $\quad S U(8)$ (8)
[Gauge group] $\quad S O(8)$ (8)
(8) $\quad S O(7) \quad(1+7)$

SO(4) invariant critical points

SUSY	Symmetry	Cosm. constant	Stability
$\mathcal{N}=8$	$\mathrm{SO}(8)$	$-6(\times 1)$	\checkmark
$\mathcal{N}=0$	$\mathrm{SO}(7)$	$-2 \sqrt{5 \sqrt{5}}(\times 1)$	\times
$\mathcal{N}=0$	$\mathrm{SU}(4)$	$-\frac{25}{8} \sqrt{5}(\times 2)$	\times
$\mathcal{N}=0$	$\mathrm{SO}(4)$	$-8(\times 1)$	\times

[Freund \& Rubin '80]
[Englert '82]
[Englert '82]
[de Wit Nicolai '84]
[Pope \& Warner '85]
[Warner '84]
[Fischbacher, Pilch \& Warner, '10]

SO(4) invariant critical points

They are also consistent truncations of $11 d$ supergravity on $\mathrm{Ads}_{4} \times \mathrm{S}^{7}$ with a deformed 7-sphere and 4-form flux
[Nicolai \& Pilch '12]

SUSY	Symmetry	Cosm. constant	Stability
$\mathcal{N}=8$	$\mathrm{SO}(8)$	$-6(\times 1)$	\checkmark
$\mathcal{N}=0$	$\mathrm{SO}(7)$	$-2 \sqrt{5 \sqrt{5}}(\times 1)$	\times
		$-\frac{25}{8} \sqrt{5}(\times 2)$	\times
$\mathcal{N}=0$	$\mathrm{SU}(4)$	$-8(\times 1)$	\times
$\mathcal{N}=0$	$\mathrm{SO}(4)$	$-14(\times 2)$	\checkmark
		$-2 \sqrt{9+6 \sqrt{3}}(\times 2)$	\times

[Freund \& Rubin '80]
[Englert '82]
[Englert '82]
[de Wit Nicolai '84]
[Pope \& Warner '85]
[Warner '84]
[Fischbacher, Pilch \& Warner, '10]

SO(4) invariant critical points

They are also consistent truncations of $11 d$ supergravity on $\mathrm{Ads}_{4} \times \mathrm{S}^{7}$ with a deformed 7-sphere and 4-form flux
[Nicolai \& Pilch '12]

[Distler \& Zamora '98] [Ahn \& Woo 'OO]	SUSY	Symmetry	Cosm. constant	Stability	[Freund \& Rubin '80] [Englert '82]
	$\mathcal{N}=8$	SO(8)	-6 ($\times 1$)	\checkmark	
Domain walls \&	$\mathcal{N}=0$	$\mathrm{SO}(7)$	$\begin{array}{r} -2 \sqrt{5 \sqrt{5}}(\times 1) \\ -\frac{25}{8} \sqrt{5}(\times 2) \end{array}$	$\begin{aligned} & \times \\ & \times \end{aligned}$	[Englert '82] [de Wit Nicolai '84]
	$\mathcal{N}=0$	SU(4)	$-8(\times 1)$	\times	[Pope \& Warner '85]
	$\mathcal{N}=0$	$\mathrm{SO}(4)$	$\begin{array}{r} -14(\times 2) \\ -2 \sqrt{9+6 \sqrt{3}}(\times 2) \end{array}$	\checkmark \times	[Warner '84] [Fischbacher, Pilch \& Warner, '10

SO(4) invariant critical points

They are also consistent truncations of $11 d$ supergravity on $\mathrm{Ads}_{4} \times \mathrm{S}^{7}$ with a deformed 7-sphere and 4-form flux
[Nicolai \& Pilch '12]

[Distler \& Zamora '98] [Ahn \& Woo '00]	SUSY	Symmetry	Cosm. constant	Stability	[Freund \& Rubin '80] [Englert '82]
	$\mathcal{N}=8$	$\mathrm{SO}(8)$	$-6(\times 1)$	\checkmark	
Domain walls \& RG-flows	$\mathcal{N}=0$	$\mathrm{SO}(7)$	$\begin{array}{r} -2 \sqrt{5 \sqrt{5}}(\times 1) \\ -\frac{25}{8} \sqrt{5}(\times 2) \end{array}$	\times \times	[Englert '82] [de Wit Nicolai '84]
	$\mathcal{N}=0$	$\mathrm{SU}(4)$	$-8(\times 1)$	\times	[Pope \& Warner '85]
	$\mathcal{N}=0$	$\mathrm{SO}(4)$	$\begin{array}{r} -14(\times 2) \\ -2 \sqrt{9+6 \sqrt{3}}(\times 2) \end{array}$	\checkmark \times	[Warner '84] [Fischbacher, Pilch \& Warner, '10]

AdS/CMT applications : Holographic superconductivity

Outlook

1) The old $S O(8)$ gauged $S U G R A$
2) The embedding tensor \& the new SO(8) gauged SUGRA

The embedding tensor

Most general SUGRA with N=8 SUSY in 4D : Embedding Tensor (ET) Formalism

Gauging $=$ Promote part of the E_{7} global symmetry to a local gauge symmetry

Indices:

$$
\begin{gathered}
M=1, \ldots, 56 \quad \text { [fundamental index of } E_{7} \text { with } \underbrace{56=28+28^{\prime}}_{\begin{array}{c}
\text { elec\&mag } \\
S p(56)
\end{array}} \text {] }
\end{gathered}
$$

Supersymmetry imposes linear constraints (LC) ==> ET lives in the 912 of E_{7}

Gauge algebra \& scalar potential

Gauge algebra: Building the charges $X_{M N}{ }^{P}=\Theta_{M}{ }^{\alpha}\left[t_{\alpha}\right]_{N}{ }^{P}$, the gauge algebra is given by

$$
\left[A_{M}, A_{N}\right]=-X_{M N}{ }^{P} A_{P}
$$

Closure imposes quadratic constrains $(Q C)==>$ Only 28 independent vectors

$$
\Omega^{M N} \Theta_{M}^{\alpha} \Theta_{M}^{\beta}=0
$$

Scalar potential : The charges also induce a non-trivial scalar potential for the 70 scalars in the theory

$$
V=\frac{g^{2}}{672} X_{M N P} X_{Q R S}\left(M^{M Q} M^{N R} M^{P S}+7 M^{M Q} \Omega^{N R} \Omega^{P S}\right)
$$

where $M=L L^{t}$ and $L=\exp [\vec{\phi} \vec{t}]$ is an $E_{7} / S U(8)$ element

The new SO(8) gauged SUGRA

- Group theory

ET decomp: $\quad 912=2 \times\left(1+35_{v}+35_{s}+35_{c}+350\right) \quad$ [under $\mathrm{SO}(8)$]
ω-parameter family of new SO(8) gauged SUGRA's !!

The new SO(8) gauged SUGRA

- Group theory

$$
\begin{gathered}
\text { ET decomp : } \quad 912=2 \times\left(1+35_{v}+35_{s}+35_{c}+350\right) \quad[\text { under } S O(8)] \\
\omega \text {-parameter family of new SO(8) gauged SUGRA's !! }
\end{gathered}
$$

- ω-parameter : Electric (28) vs magnetic (28') vectors spanning the SO(8)

$$
\begin{aligned}
& \Theta_{\text {elec }}{ }^{\alpha} \propto \cos (\omega) \\
& \Theta_{\mathrm{mag}}^{\alpha} \propto \sin (\omega)
\end{aligned} \quad V(\Theta, \phi)=V(\omega, \phi) \quad \begin{gathered}
\omega \text {-dependent } \\
\text { scalar potential !! }
\end{gathered}
$$

This is a $U(1)$ outside E_{7} but inside $\operatorname{Sp}(56)$

- phase set to $\omega=0$
- phase set to $\omega=\mathrm{Pi} / 2$
- phase set to $0<\omega<\mathrm{Pi} / 2$
purely electric vectors
purely magnetic vectors
dyonic combination of vectors

The new electromagnetic phase raises some questions...

I) Do the known critical points of the standard SO(8) gauged SUGRA evolve with the new phase? If so, how?

II) Do Physics (CC, mass spectra, SUSY) depends on the new phase?
III) Are there genuine critical points associated to non-vanishing values of the electromagnetic phase?

IV) Is the periodicity of the electromagnetic rotations $\mathrm{Pi} / 2$ or smaller?
V) Is there an embedding of the ω-phase into string/M-theory?

Outlook

1) The old $S O(8)$ gauged $S U G R A$
2) The embedding tensor \& the new SO(8) gauged SUGRA
3) Invariant sectors of new SO(8) gauged SUGRA :
3.2) The $\operatorname{SU}(3)$ invariant sector

The $\operatorname{SU}(3)$ group theoretical truncation

- Embedding of SU(3) inside the global \& R-symmetry groups

$$
\begin{aligned}
& E_{7} \Rightarrow S L(2) \times F_{4} \Rightarrow S L(2) \times S U(2,1) \times S U(3) \\
& S U(8) \Rightarrow S U(4) \times S U(4) \Rightarrow S U(3) \times S U(3) \Rightarrow=>S U(3)
\end{aligned}
$$

- SU(3) invariant fields
- gravitini : $8==>1+3+1+3==>\quad N=2$ SUSY
- scalars: $2[\mathrm{SK}]+4[$ QK $]$ real scalars $==>z+\left(\zeta_{1}, \zeta_{2}\right) \in \mathbb{C}$
- vectors: 4 vectors (2 elec \& 2 mag) in the fundam. of $\mathrm{Sp}(4)=\Rightarrow\left(A^{0,1}, A_{0,1}\right)$
- $\mathrm{N}=2$ theory with 1 vector +1 hyper : $\quad \mathcal{M}_{S K}=\frac{S L(2)}{S O(2)} \quad \mathcal{M}_{Q K}=\frac{S U(2,1)}{S U(2) \times U(1)}$ $U(1)_{1} \times U(1)_{2}$ gauging along $Q K$ isometries

The $\mathrm{N}=2$ canonical formulation

- The scalar potential with a dyonic gauging in the hypermultiplet sector

$$
V=\underbrace{\Theta_{M}{ }^{a} \Theta_{N}{ }^{b}}_{\text {emb tens }}[4 \underbrace{4 e^{\mathcal{K}} X^{M} \bar{X}^{N}}_{\mathrm{SK}} \underbrace{h_{u v} k^{u}{ }_{a} \bar{k}^{v}{ }_{b}}_{\mathrm{QK}}+\underbrace{P_{a}^{x} P_{b}^{x}}_{\mathrm{QK}}(\underbrace{g^{i \bar{j}} f_{i}^{M} \bar{f}_{\bar{j}}^{N}-3 e^{\mathcal{K}} X^{M} \bar{X}^{N}}_{\mathrm{SK}})]
$$

SK : data associated to the SK manifold $==>\omega$-independent
QK : data associated to the QK manifold $\Rightarrow=>$-independent
[$N=8$ truncation] emb tens: ω-dependent vectors gauging the $U(1)_{1} \times U(1)_{2}$ isometries dyonically

- Gauge covariant derivatives

$$
D q^{u}=d q^{u}-\left(\left(A^{0} \cos \omega-A_{0} \sin \omega\right) k_{1}^{u}+\left(A^{1} \cos \omega-A_{1} \sin \omega\right) k_{2}^{u}\right)
$$

involving electric $(\omega=0)$, magnetic $(\omega=\mathrm{Pi} / 2)$ or dyonic $(0<\omega<\mathrm{Pi} / 2)$ vectors

- The scalar potential depends on the neutral fields z and $\zeta_{12}=\frac{\left|\zeta_{1}\right|+i\left|\zeta_{2}\right|}{1+\sqrt{1-\left|\zeta_{1}\right|^{2}-\left|\zeta_{2}\right|^{2}}}$

The superpotential formulation

- The same scalar potential can be obtained as

$$
V=2\left[\frac{4}{3}\left(1-|z|^{2}\right)^{2}\left|\frac{\partial \mathcal{W}}{\partial z}\right|^{2}+\left(1-\left|\zeta_{12}\right|^{2}\right)^{2}\left|\frac{\partial \mathcal{W}}{\partial \zeta_{12}}\right|^{2}-3 \mathcal{W}^{2}\right]
$$

from any of the two ω-dependent superpotentials

$$
\begin{aligned}
& \mathcal{W}_{+}=\left(1-|z|^{2}\right)^{-3 / 2}\left(1-\left|\zeta_{12}\right|^{2}\right)^{-2}\left[\left(e^{2 i \omega}+z^{3}\right)\left(1+\zeta_{12}^{4}\right)+6 z\left(1+e^{2 i \omega} z\right) \zeta_{12}^{2}\right] \\
& \mathcal{W}_{-}=\left(1-|z|^{2}\right)^{-3 / 2}\left(1-\left|\zeta_{12}\right|^{2}\right)^{-2}\left[\left(e^{2 i \omega}+z^{3}\right)\left(1+\bar{\zeta}_{12}^{4}\right)+6 z\left(1+e^{2 i \omega} z\right) \bar{\zeta}_{12}^{2}\right]
\end{aligned}
$$

- Setting $\omega=0$ boils down to the standard $\operatorname{SU}(3)$ invariant superpotentials
- Supersymmetric critical points can be extrema of only one or both superpotentials corresponding to $N=1,2$ respectively

Recalling the $\operatorname{SU}(3)$ invariant critical points at $\omega=0$

SUSY	Symmetry	Cosm. constant	Stability
$\mathcal{N}=8$	$\mathrm{SO}(8)$	$-6(\times 1)$	\checkmark
$\mathcal{N}=2$	$\mathrm{SU}(3) \times \mathrm{U}(1)$	$-\frac{9}{2} \sqrt{3}(\times 1)$	\checkmark
$\mathcal{N}=1$	G_{2}	$-\frac{216}{25} \sqrt{\frac{2}{5} \sqrt{3}}(\times 2)$	\checkmark
$\mathcal{N}=0$	$\mathrm{SO}(7)$	$-2 \sqrt{5 \sqrt{5}}(\times 1)$	\times
		$-\frac{25}{8} \sqrt{5}(\times 2)$	\times
$\mathcal{N}=0$	$\mathrm{SU}(4)$	$-8(\times 1)$	\times

. . . what happens when turning on ω ?

The ω-story of the old critical points
EXAMPLE : the $N=8 \mathrm{SO}(8)$ \& $N=2 \mathrm{SU}(3) \times U(1)$ critical points

- The normalised mass spectra are insensitive to the ω-phase $==>$ is $G_{\text {res }}$ crucial ?
- There are new solutions which move to the field-boundary at $\omega=\mathrm{n} \mathrm{pi} / 4$
- Analogous ω-stories : $N=1$ G2-inv , $N=0$ SO(7)-inv, $N=0$ SU(4)-inv

Genuine new critical points

EXAMPLE : novel $N=1 \mathrm{SU}(3)$-invariant critical points

- These are genuine solutions which move to the boundary at $\omega=\mathrm{n} \mathrm{pi} / 4$
- Analogous ω-stories : novel $\mathrm{N}=0 \mathrm{G} 2-\mathrm{inv}$ [stable] and $\mathrm{N}=0 \mathrm{SU}(3)-\mathrm{inv}$ [stable]
- Mass spectra of the $N=0 \operatorname{SU}(3)-i n v$ sols sensitive to the ω-phase $==G_{\text {res }}$ is not all !!

A comment on the $\mathrm{Pi} / 4$ periodicity of the ω-phase

- Argument based on the quartic E_{7}-invariant $\Rightarrow=>$ the period cannot be less than $\mathrm{Pi} / 4$

EXAMPLE : Transmutation of $S O(7)_{+}[x 1]$ and $S O(7)$ _ [xe] critical points

- Scalars : $70=35$ (SD) +i 35 (ASD) with $S D \Leftrightarrow=>$ ASD under $S O(8)$ triality
- What is the interrelation between ω-periodicity and triality ?

Outlook

1) The old $S O(8)$ gauged $S U G R A$
2) The embedding tensor \& the new SO(8) gauged SUGRA
3) Invariant sectors of new SO(8) gauged SUGRA
3.2) The $\operatorname{SU}(3)$ invariant sector
3.3) The SO(4) invariant sector

Recalling the $S O(4)$ invariant critical points at $\omega=0$

SUSY	Symmetry	Cosm. constant	Stability
$\mathcal{N}=8$	$\mathrm{SO}(8)$	$-6(\times 1)$	\checkmark
$\mathcal{N}=0$	$\mathrm{SO}(7)$	$-2 \sqrt{5 \sqrt{5}}(\times 1)$	\times
		$-\frac{25}{8} \sqrt{5}(\times 2)$	\times
$\mathcal{N}=0$	$\mathrm{SU}(4)$	$-8(\times 1)$	\times
$\mathcal{N}=0$	$\mathrm{SO}(4)$	$-14(\times 2)$	\checkmark
		$-2 \sqrt{9+6 \sqrt{3}}(\times 2)$	\times

Triality and the three embeddings $\mathrm{SO}(4)_{\mathrm{v}, \mathrm{s}, \mathrm{c}}$

- Let us take (without loss of generality) the 8 gravitini of the theory to transform as $8=8 \mathrm{v}$ of $\mathrm{SO}(8)$. Then, the 70 scalars will transform as

$$
70=35_{s}(S D)+i 35_{c}(A S D)
$$

- There are three triality-related embeddings of $\mathrm{SO}(4)=\mathrm{SO}(3)_{1} \times \mathrm{SO}(3)_{2}$

- $3=1+2$ splitting of the SO(4) invariant sectors of SO(8) gauged SUGRA

The vectorial $S O(4)_{v}$ embedding $\left[8_{v}=1+3_{1}+1+3_{2}\right]$
(1)
(a)
(1̂)

- 2 [SD] +2 [ASD] invariant scalars

$$
\begin{aligned}
& \phi_{1 a b c}=\left(\phi_{\hat{1} \hat{a} \hat{b} \hat{c}}\right)^{*}=\rho_{1} e^{i \alpha_{1}} \epsilon_{a b c} \\
& \phi_{\hat{1} a b c}=-\left(\phi_{1 \hat{a} \hat{b} \hat{c}}\right)^{*}=\rho_{2} e^{i \alpha_{2}} \epsilon_{a b c}
\end{aligned}
$$

- Scalar potential is ω-independent !!

$$
\begin{aligned}
V^{v} & =-\frac{1}{8 \rho^{4}}\left(32 \rho_{1}^{4}+61 \rho_{1}^{2} \rho_{2}^{2}+32 \rho_{2}^{4}\right. \\
& +4 \cosh (2 \rho)\left(4 \rho_{1}^{4}+9 \rho_{1}^{2} \rho_{2}^{2}+4 \rho_{2}^{4}\right) \\
& \left.-\rho_{1}^{2} \rho_{2}^{2}\left(\cosh (4 \rho)-8 \cos (2 \alpha) \sinh ^{4}(\rho)\right)\right)
\end{aligned}
$$

- Stable critical points at $\alpha= \pm \frac{\pi}{2}$ and $\rho_{1}=\rho_{2}=\frac{1}{\sqrt{2}} \cosh ^{-1}(\sqrt{5})$ with $V=-14$
- The $\mathrm{SO}(4)_{\mathrm{v}}$ solutions are not affected by the ω-phase !!

The spinorial $\mathrm{SO}(4)_{\mathrm{s}}$ embedding $[8 \mathrm{v}=4+4]$

- 4 [SD] +2 [ASD] invariant scalars

$$
\begin{aligned}
\phi_{i j k l} & =\left(\phi_{\hat{i} \hat{j} \hat{k} l}\right)^{*}=\left(x_{1}+i y_{1}\right) \epsilon_{i j k l} \\
\phi_{\hat{i} j k l} & =-\left(\phi_{i \hat{j} \hat{l}}\right)^{*}=\frac{1}{2}\left(x_{2}+i y_{2}\right) \epsilon_{\hat{i} j k l} \\
\phi_{i \hat{j} k \hat{l}} & =x_{3} \epsilon_{i \hat{j} k \hat{l}}+x_{4} \delta_{[i \hat{j}} \delta_{k \hat{l}]}
\end{aligned}
$$

- Scalar potential [modding out by a discrete D_{4}]

$$
V^{s}=\cos ^{2}(\omega) V_{0}^{s}\left(x_{4}, y_{1}\right)+\sin ^{2}(\omega) V_{0}^{s}\left(-x_{4}, y_{1}\right)
$$

with the $\omega=0$ potential

$$
\begin{aligned}
V_{0}^{s} & =\frac{1}{2} \sinh ^{2}\left(y_{1}\right)\left(\cosh \left(6 x_{4}\right)-4 \sinh ^{3}\left(2 x_{4}\right)\right) \\
& -\frac{3}{4} \cosh \left(2 x_{4}\right)\left(3 \cosh \left(2 y_{1}\right)+5\right) .
\end{aligned}
$$

i) $\omega=0 \Rightarrow 2$ unstable sols with $V=-2 \sqrt{9+6 \sqrt{3}}$
ii) $\omega=\mathrm{Pi} / 4==>4$ unstable sols with $V=-6 \sqrt{3}$

- $\mathrm{Pi} / 4$ periodicity is broken unless a new $\mathrm{SO}(4)$ sector comes to the rescue

The new SO(4) ${ }_{c}$ embedding $[8 v=4+4]$

- 2 [SD] +4 [ASD] invariant scalars

$$
\begin{aligned}
\phi_{i j k l} & =\left(\phi_{\hat{i} \hat{j} \hat{k} \hat{l}}\right)^{*}=\left(x_{1}+i y_{1}\right) \epsilon_{i j k l} \\
\phi_{\hat{i} j k l} & =-\left(\phi_{i \hat{j} \hat{k} \hat{l}}\right)^{*}=\frac{1}{2}\left(x_{2}+i y_{2}\right) \epsilon_{\hat{i} j k l} \\
\phi_{i \hat{j} k \hat{l}} & =i y_{3} \epsilon_{i \hat{j} k \hat{l}}+i y_{4} \delta_{[i \hat{j}} \delta_{k \hat{l}]}
\end{aligned}
$$

- Scalar potential [modding out by a discrete D_{4}]

$$
V^{c}=V_{0}^{c}+4 \sin \omega \cos \omega \sinh ^{2}\left(x_{1}\right) \sinh ^{3}\left(2 y_{4}\right)
$$

with the $\omega=0$ potential

$$
\begin{aligned}
V_{0}^{c} & =\frac{1}{2} \sinh ^{2}\left(x_{1}\right) \cosh \left(6 y_{4}\right) \\
& -\frac{3}{4} \cosh \left(2 y_{4}\right)\left(3 \cosh \left(2 x_{1}\right)+5\right)
\end{aligned}
$$

i) $\omega=0 \Rightarrow 4$ unstable sols with $V=-6 \sqrt{3}$
ii) $\omega=\mathrm{Pi} / 4==2$ unstable sols with $V=-2 \sqrt{9+6 \sqrt{3}}$

- The combination of the $\mathrm{SO}(4)_{\mathrm{s}} \& \mathrm{SO}(4)_{c}$ sectors restores $\mathrm{Pi} / 4$ periodicity !!

Singular limits in the $\mathrm{SO}(4)_{\mathrm{s}}$ sector [analogous for $\mathrm{SO}(4)_{c}$]

- One pair of solutions runs away when ω approaches 0 and $\mathrm{Pi} / 2$

$\omega=0$

$\omega=\mathrm{Pi} / 8$

$\omega=\mathrm{Pi} / 4$

$\omega=3 \mathrm{Pi} / 8$

$\omega=\mathrm{Pi} / 2$
- What happens to these solutions? Do they abandon the SO(8) theory and that's why we see them disappearing? If so, where do they go to?
- Fortunately, there is a way of sitting on top of a solution and travel with it along the different theories (gaugings) which are compatible with it . . .
. . . the so-called "Go To The Origin" (GTTO) approach

The GTTO approach

Idea: Looking for the theories (gaugings) compatible with a given critical point instead of looking for the critical points compatible with a given theory

The GTTO approach

Idea: Looking for the theories (gaugings) compatible with a given critical point instead of looking for the critical points compatible with a given theory

Going To The Origin: If a critical point is found at $\phi=\phi_{0}$ with a residual symmetry $G_{r e s}$, it can always be brought to $\phi=0$ via an E_{7} transformation. After this, the quantities in the theory (e.g. fermion mass terms) will adopt a form compatible with $G_{\text {res }}$
[$\mathrm{E}_{7} / \mathrm{SU}(8)$ is an homogeneous space]

The GTTO approach

Idea: Looking for the theories (gaugings) compatible with a given critical point instead of looking for the critical points compatible with a given theory

Going To The Origin: If a critical point is found at $\phi=\phi_{0}$ with a residual symmetry $G_{r e s}$, it can always be brought to $\phi=0$ via an E_{7} transformation. After this, the quantities in the theory (e.g. fermion mass terms) will adopt a form compatible with $G_{\text {res }}$ [$\mathrm{E}_{7} / \mathrm{SU}(8)$ is an homogeneous space]

Applicability: Ansatz for the fermion masses compatible with $G_{\text {res }}=S O(4)_{s} \times D_{4}$

- gravitino-gravitino mass terms: $\mathcal{A}^{i j}=\alpha \delta^{i j} \quad, \quad \mathcal{A}^{\hat{i} \hat{j}}=\alpha \delta^{i \hat{j}}$

$$
\mathcal{A}_{i}{ }^{j k l}=\beta \epsilon_{i}^{j k l}, \mathcal{A}_{i}^{\hat{j} \hat{k} l}=-\delta \epsilon_{i}{ }^{\hat{\beta} \hat{k} l}+\gamma \delta_{i}^{[\hat{j}} \delta^{\hat{k}] l}
$$

- gravitino-dilatino mass terms :

$$
\mathcal{A}_{\hat{i}}^{\hat{j} \hat{k} \hat{l}}=-\beta \epsilon_{\hat{i}}^{\hat{\beta} \hat{k} \hat{l}}, \mathcal{A}_{\hat{i}}^{j k \hat{l}}=\delta \epsilon_{\hat{i}}^{j k \hat{l}}+\gamma \delta_{\hat{i}}^{[j} \delta^{k] \hat{l}}
$$

It allows for four free parameters $\alpha, \beta, \delta, \gamma \in \mathbb{C}$

Fermion masses for $G_{r e s}=S O(4)_{s} \times D_{4}$

- Solve the QC \& EOM in order to find all the theories compatible with a critical point preserving $G_{\text {res }}=S O(4)_{s} \times D_{4}==>$ There is a one-parameter family of theories !!
- gravitino-gravitino mass terms :

$$
\begin{aligned}
& \operatorname{Re}[\alpha(\theta)]=A \sin (\theta)\left(2 \sqrt{2} \cos ^{2}(\theta)+B\right) \\
& \operatorname{Im}[\alpha(\theta)]=A \cos (\theta)\left(2 \sqrt{2} \sin ^{2}(\theta)-B\right) \\
& \operatorname{Re}[\beta(\theta)]=\cos (\theta)\left(1-\cos (2 \theta)-\frac{B}{\sqrt{2}}\right) \\
& \operatorname{Im}[\beta(\theta)]=\sin (\theta)\left(1+\cos (2 \theta)+\frac{B}{\sqrt{2}}\right) \\
& \delta(\theta)=e^{i \theta} \quad \gamma(\theta)=-i 2 \sqrt{2} A e^{-i \theta}
\end{aligned}
$$

with $A=\frac{1}{2}(\sqrt{2} \cos (2 \theta) B+\cos (4 \theta)+3)^{1 / 2} \quad$ and $\quad B=(\cos (4 \theta)+5)^{1 / 2}$

- The scalar potential interpolates between AdS and dS solutions for $\theta=[0, \mathrm{Pi} / 2]$

$$
V(\theta)=-6(1+\cos (4 \theta)+\sqrt{2} \cos (2 \theta) B)
$$

Gauge group \& AdS/Mkw/dS transitions

- The whole story of the solution preserving $G_{\text {res }}=S O(4)_{s} \times D_{4}$ can be tracked

Gauge group \& AdS/Mkw/dS transitions

- The whole story of the solution preserving $G_{\text {res }}=S O(4)_{s} \times D_{4}$ can be tracked
i) $\theta=[0, \mathrm{Pi} / 6)=\Rightarrow \mathrm{SO}(8)$ gauging
[unstable AdS solutions]

ω-phase
SO(8) theory

Gauge group \& AdS/Mkw/dS transitions

- The whole story of the solution preserving $G_{\text {res }}=S O(4)_{s} \times D_{4}$ can be tracked
ii) $\theta=\mathrm{Pi} / 6 \Rightarrow \mathrm{SO}(2) \times \mathrm{SO}(6) \mathrm{x}_{\mathrm{s}} \mathrm{T}^{12}$ gauging [unstable AdS solution]

Gauge group \& AdS/Mkw/dS transitions

- The whole story of the solution preserving $G_{\text {res }}=S O(4)_{s} \times D_{4}$ can be tracked
iii) $\theta=(\mathrm{Pi} / 6, \mathrm{Pi} / 4)==\mathrm{SO}(6,2)$ gauging
[unstable AdS solutions]

Gauge group \& AdS/Mkw/dS transitions

- The whole story of the solution preserving $G_{\text {res }}=S O(4)_{s} \times D_{4}$ can be tracked
iv) $\theta=\mathrm{Pi} / 4 \Rightarrow \mathrm{SO}(3,1)^{2} \mathrm{X}_{\mathrm{s}} \mathrm{T}^{16}$ gauging [Mkw solution without tachyons]

Gauge group \& AdS/Mkw/dS transitions

- The whole story of the solution preserving $G_{\text {res }}=S O(4)_{s} \times D_{4}$ can be tracked
v) $\theta=(\mathrm{Pi} / 4, \mathrm{Pi} / 2]==>\mathrm{SO}(4,4)$ gauging [unstable dS solutions]

Outlook

1) The old $S O(8)$ gauged $S U G R A$
2) The embedding tensor \& the new SO(8) gauged SUGRA
3) Invariant sectors of new SO(8) gauged SUGRA :
3.2) The $\operatorname{SU}(3)$ invariant sector
3.3) The SO(4) invariant sector
4) Collecting results \& final remarks

SU(3) \& SO(4) invariant critical points of new SO(8) gauged SUGRA

SUSY	Symmetry	CC $(\omega=0)$	Stability	CC $(\omega=\pi / 8)$	Stability	ω-dep masses
$\mathcal{N}=8$	$\mathrm{SO}(8)$	$-6(\times 1)$	\checkmark	$-6(\times 1)$	\checkmark	\times
$\mathcal{N}=2$	$\mathrm{SU}(3) \times \mathrm{U}(1)$	$-7.794(\times 1)$	\checkmark	$-8.354(\times 2)$	\checkmark	\times
$\mathcal{N}=1$	G_{2}	$-7.192(\times 2)$	\checkmark	$-7.943(\times 2)$	\checkmark	\times
		-	-	$-7.040(\times 1)$	\checkmark	\times
$\mathcal{N}=1$	$\mathrm{SU}(3)$	-	-	$-10.392(\times 1)$	\checkmark	\times
$\mathcal{N}=0$	$\mathrm{SO}(7)$	$-6.687(\times 1)$	\times	$-6.748(\times 2)$	\times	\times
$\mathcal{N}=0$	$\mathrm{SU}(4)$	$-6.988(\times 2)$	\times	$-7.771(\times 2)$	\times	\times
$\mathcal{N}=0$	G_{2}	$-8(\times 1)$	\times	$-8.581(\times 2)$	\times	\times
$\mathcal{N}=0$	$\mathrm{SU}(3)$	-	-	$-10.170(\times 1)$	\checkmark	\times
$\mathcal{N}=0$		$-14(\times 2)$	\checkmark	$-10.237(\times 2)$	\checkmark	\checkmark
		$\mathrm{SO}(4)$	$-8.807(\times 2)$	\times	$-9.110(\times 2)$	\times

SU(3) \& SO(4) invariant critical points of new SO(8) gauged SUGRA

SU(3) \& SO(4) invariant critical points of new SO(8) gauged SUGRA

SU(3) \& SO(4) invariant critical points of new SO(8) gauged SUGRA

SUSY	Symmetry	$\mathrm{CC}(\omega=0)$	Stability	$\mathrm{CC}(\omega=\pi / 8)$	Stability	ω-dep masses
$\mathcal{N}=8$	$\mathrm{SO}(8)$	$-6(\times 1)$	\checkmark	$-6(\times 1)$	\checkmark	\times
$\mathcal{N}=2$	$\mathrm{SU}(3) \times \mathrm{U}(1)$	$-7.794(\times 1)$	\checkmark	$-8.354(\times 2)$	\checkmark	\times
$\mathcal{N}=1$	G_{2}	$-7.192(\times 2)$	\checkmark	$\begin{aligned} & \hline-7.943(\times 2) \\ & -7.040(\times 1) \end{aligned}$	\checkmark	$\begin{aligned} & \times \\ & \times \end{aligned}$
$\mathcal{N}=1$	SU(3)	-	-	$-10.392(\times 1)$	\checkmark	\times
$\mathcal{N}=0$	$\mathrm{SO}(7)$	$\begin{aligned} & \hline-6.687(\times 1) \\ & -6.988(\times 2) \end{aligned}$	$\begin{gathered} \times \\ \times \end{gathered}$	$\begin{aligned} & \hline-6.748(\times 2) \\ & -7.771(\times 2) \end{aligned}$	$\begin{aligned} & \times \\ & \times \end{aligned}$	$\begin{aligned} & \times \\ & \times \end{aligned}$
$\mathcal{N}=0$	SU(4)	$-8(\times 1)$	\times	$-8.581(\times 2)$	\times	\times
$\mathcal{N}=0$	G_{2}	-	-	$-10.170(\times 1)$	\checkmark	\times
$\mathcal{N}=0$	SU(3)	-	-	$-10.237(\times 2)$	\checkmark	\checkmark
$\mathcal{N}=0$	$\mathrm{SO}(4)$ [standard]	$-14(\times 2)$ $-8.807(\times 2)$ $-10.392(\times 4)$	\checkmark \times \times	$\begin{array}{r} -14(\times 2) \\ -9.110(\times 2) \\ -15.599(\times 2) \\ -15.599(\times 2) \\ -9.110(\times 2) \\ \hline \end{array}$	\checkmark \times \times \times \times	\times \checkmark \checkmark \checkmark

Final remarks

Mass spectra

- One has to go to small $\operatorname{SU}(3) \& S O(4)$ residual groups to start seeing ω-dependent mass spectra ==> The residual symmetry does not uniquely determine masses !!

Periodicity

- Triality enters the game to restore $\mathrm{Pi} / 4$ periodicity

Tachyon amelioration

- Tachyons can get diluted around AdS/Mkw/dS transitions $\Rightarrow=>$ stable dS in $N=8$?

Domain-walls and RG flows

- ω-dependent $N=2$ superpotential for the $S U(3)-i n v$ sector $==>$ New domain-wall solutions at $\omega \neq 0 \Rightarrow$ Prediction of the free energy $F_{I R} / F_{U V}$
[rely on M-theory embedding]
Lifting to 11d SUGRA?
- It seems to require vectors from dimensional reduction of A_{3} and A_{6}, so ...

... thank you all !!

