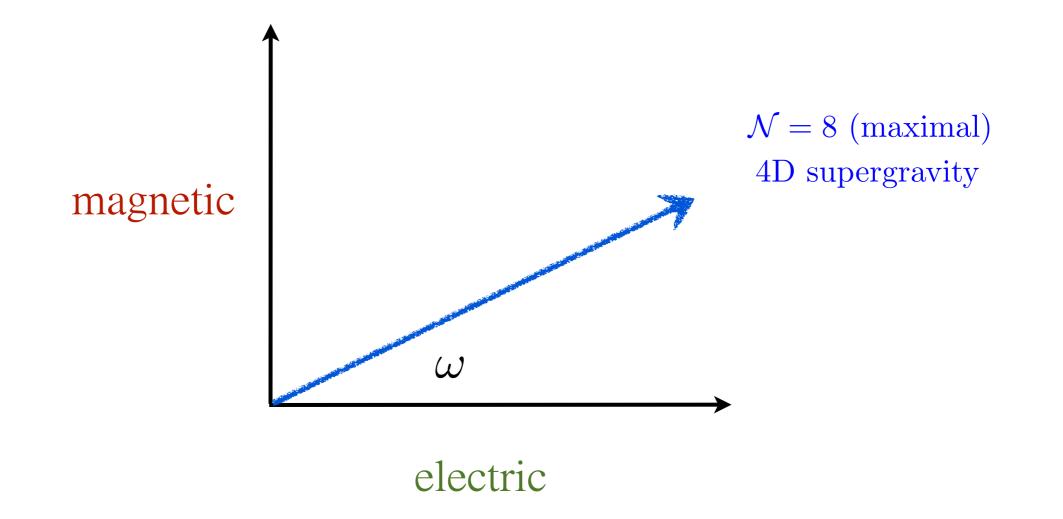


The String Theory Universe 3 September 2013, Bern

Work in collaboration with A. Borghese & D. Roest

This talk is about the consequences of U(1)-orientating a theory...

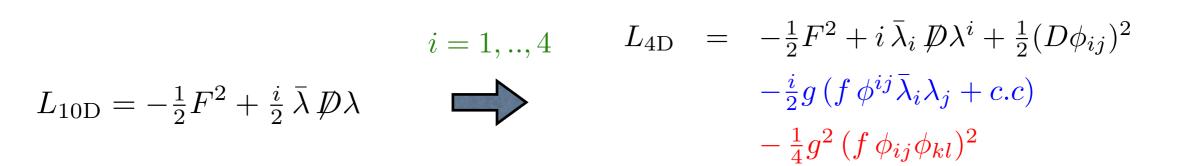


- Dimensional reduction of 10D SYM produces N=4 SYM

$$i = 1, .., 4 \qquad L_{4D} = -\frac{1}{2}F^2 + i\,\overline{\lambda}_i\,\mathcal{D}\lambda^i + \frac{1}{2}(D\phi_{ij})^2$$
$$-\frac{i}{2}g\,(f\,\phi^{ij}\overline{\lambda}_i\lambda_j + c.c) \\ -\frac{1}{4}g^2\,(f\,\phi_{ij}\phi_{kl})^2$$

reduction = fermi masses + scalar potential

- Dimensional reduction of 10D SYM produces N=4 SYM



> Reality condition on the 6 scalars :

reduction = fermi masses + scalar potential

$$\phi_{ij}^* = \phi^{ij} = \frac{1}{2} \epsilon^{ijkl} \phi_{kl}$$
 R-symmetry group is SU(4) and not U(4) !!

- Dimensional reduction of 10D SYM produces N=4 SYM

$$i = 1, .., 4 \qquad L_{4D} = -\frac{1}{2}F^2 + i\,\overline{\lambda}_i\,\mathcal{D}\lambda^i + \frac{1}{2}(D\phi_{ij})^2$$
$$-\frac{i}{2}g\,(f\,\phi^{ij}\overline{\lambda}_i\lambda_j + c.c) - \frac{1}{4}g^2\,(f\,\phi_{ij}\phi_{kl})^2$$

> Reality condition on the 6 scalars :

 $\phi_{ij}^* = \phi^{ij} = \frac{1}{2} \epsilon^{ijkl} \phi_{kl}$ R-symmetry group is SU(4) and not U(4) !!

[Cremmer & Julia '78, '79]

- Analogous results for N=8 gauged SUGRAs from M/Type II reductions with fluxes

 $[f \leftrightarrow H_3, F_p, \omega, \dots]$

> Reality condition on the 70 scalars :

$$\phi_{IJKL}^* = \phi^{IJKL} = \frac{1}{24} \epsilon^{IJKLMNPQ} \phi_{MNPQ}$$
$$I = 1, \dots, 8$$

R-symmetry group is SU(8) and not U(8) !!

An extra U(1) in N=8 gauged supergravity

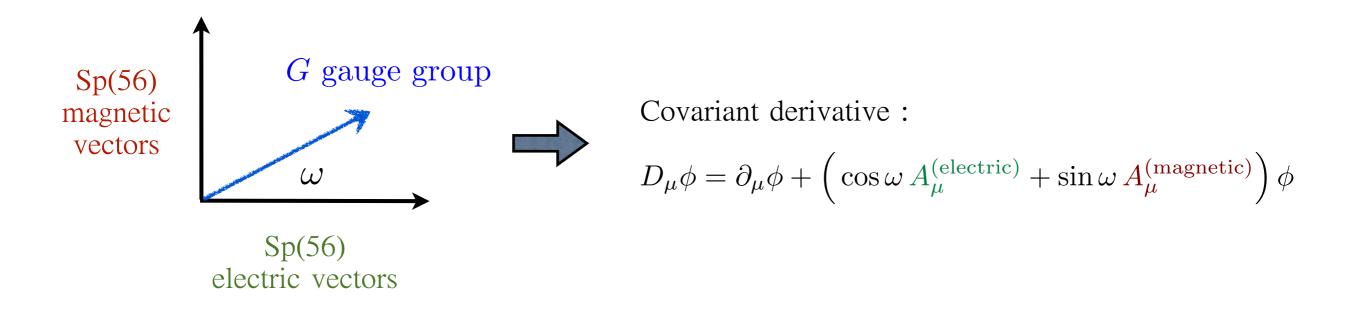
Gauge fields : The theory contains 56 = 28 (electric) + 28 (magnetic) vectors spanning a 28-dimensional gauge symmetry group $G \subset E_7$

An extra U(1) in N=8 gauged supergravity

Gauge fields : The theory contains 56 = 28 (electric) + 28 (magnetic) vectors spanning a 28-dimensional gauge symmetry group $G \subset E_7$

[Dall' Agata, Inverso & Trigiante '12]

- Recently, an extra U(1) rotation outside the R-symmetry group SU(8) has been identified and used to orientate G inside the Sp(56) group of electromagnetic transf.



> Therefore : $\omega = 0$ (electric) , $\omega = \frac{\pi}{2}$ (magnetic) and $0 < \omega < \frac{\pi}{2}$ (dyonic)

1) Use the embedding-tensor formalism to compute the ω -dependent scalar potential and analyse its critical points

[de Wit, Samtleben & Trigiante '07] [Dall'Agata, Inverso & Trigiante '12] [Borghese, A.G , & Roest '13]

2) Compute fermion masses in order to... (the answer in 8 min)

[Borghese, A.G, & Roest '12, '13]

Gaugings, embedding tensor & scalar potential

Gauging procedure : Part of the global E₇ symmetry group is promoted to a local symmetry group G (gauging)

Gaugings, embedding tensor & scalar potential

Gauging procedure : Part of the global E₇ symmetry group is promoted to a local symmetry group G (gauging)

Embedding tensor : It is a "selector" specifying which generators of E₇ become gauge symmetries G and then will have an associated gauge field

$$A^{M}_{\mu} = \Theta^{M}{}_{\alpha} t^{\alpha} \quad \Longrightarrow \quad [A^{M}, A^{N}] = X^{MN}{}_{P} A^{P} \quad \text{with} \quad X^{MN}{}_{P} = \Theta^{M}{}_{\alpha} [t^{\alpha}]^{N}{}_{P}$$
$$[M = 1, \dots, 56]$$
$$[\alpha = 1, \dots, 133]$$

Gaugings, embedding tensor & scalar potential

Gauging procedure : Part of the global E₇ symmetry group is promoted to a local symmetry group G (gauging)

Embedding tensor : It is a "selector" specifying which generators of E₇ become gauge symmetries G and then will have an associated gauge field

$$A^{M}_{\mu} = \Theta^{M}_{\alpha} t^{\alpha} \quad \Longrightarrow \quad [A^{M}, A^{N}] = X^{MN}_{P} A^{P} \quad \text{with} \quad X^{MN}_{P} = \Theta^{M}_{\alpha} [t^{\alpha}]^{N}_{P}$$
$$[M = 1, \dots, 56]$$
$$[\alpha = 1, \dots, 133]$$

Scalar potential : Straightforward once the embbeding tensor $\Theta^{M}{}_{\alpha}(\omega)$ is known

$$V = \frac{1}{672} X_{MNP} X_{QRS} \left(M^{MQ} M^{NR} M^{PS} + 7 M^{MQ} \Omega^{NR} \Omega^{PS} \right)$$

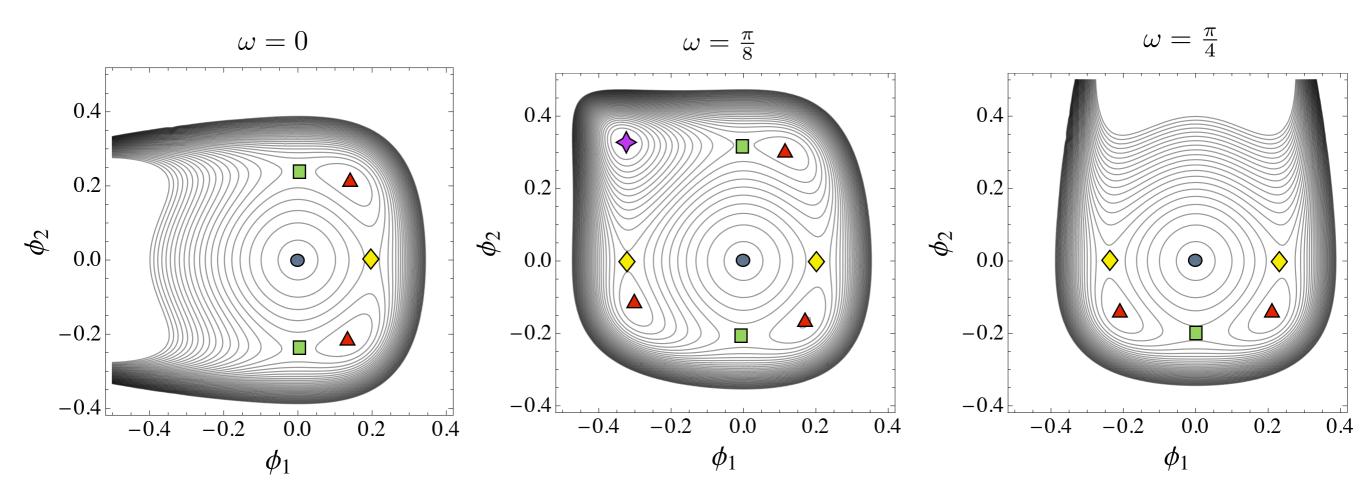
where $M(\phi) \in \frac{E_7}{SU(8)}$ contains the 70 scalar fields of the theory

Example 1 : G_2 -invariant sector of G = SO(8)

- Truncate most of the 70 scalars and look for critical points of $V(\phi)$ with large residual symmetry groups $G_0 \subset G$

Example 1 : G_2 -invariant sector of G = SO(8)

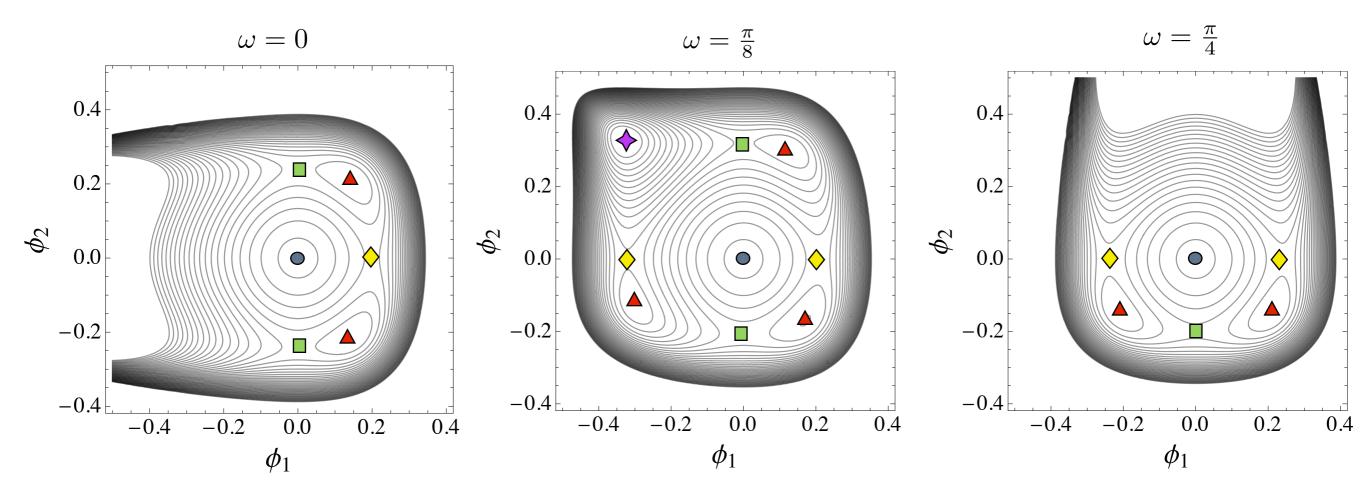
- Truncate most of the 70 scalars and look for critical points of $V(\phi)$ with large residual symmetry groups $G_0 \subset G$



critical point	residual sym G_0	SUSY	Stability
•	SO(8)	$\mathcal{N}=8$	\checkmark
	$SO(7)_{-}$	$\mathcal{N} = 0$	×
♦	$SO(7)_+$	$\mathcal{N} = 0$	×
	G_2	$\mathcal{N} = 1$	\checkmark
♦	G_2	$\mathcal{N} = 0$	\checkmark

Example 1 : G_2 -invariant sector of G = SO(8)

- Truncate most of the 70 scalars and look for critical points of $V(\phi)$ with large residual symmetry groups $G_0 \subset G$



- > Mass spectra insensitive to ω
- $> \frac{\pi}{4}$ -periodicity with transmutation of $SO(7)_{\pm}$
- > Runaway of points at $\omega = n \frac{\pi}{4}$

critical point	residual sym G_0	SUSY	Stability
•	SO(8)	$\mathcal{N}=8$	\checkmark
	$SO(7)_{-}$	$\mathcal{N} = 0$	×
♦	$SO(7)_+$	$\mathcal{N} = 0$	×
	G_2	$\mathcal{N} = 1$	\checkmark
♦	G_2	$\mathcal{N} = 0$	\checkmark

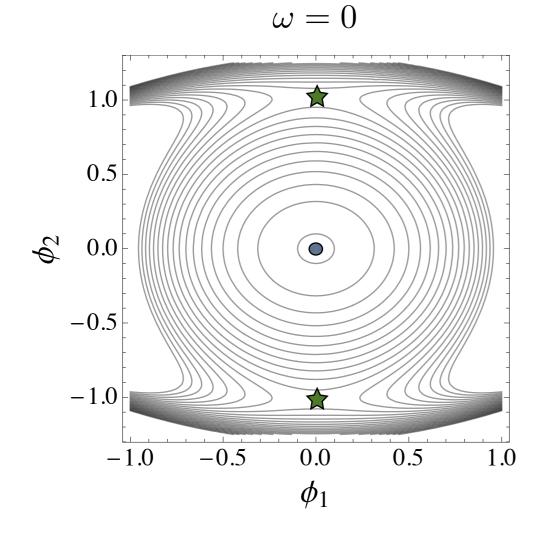
Example 2 : SO(4) invariant sectors of G = SO(8)

- Three embeddings $SO(4)_{v,s,c}$ related by Triality :

Example 2 : SO(4) invariant sectors of G = SO(8)

- Three embeddings $SO(4)_{v,s,c}$ related by Triality :

i) the vectorial embedding : $8_v = (1,1) + (3,1) + (1,1) + (1,3)$

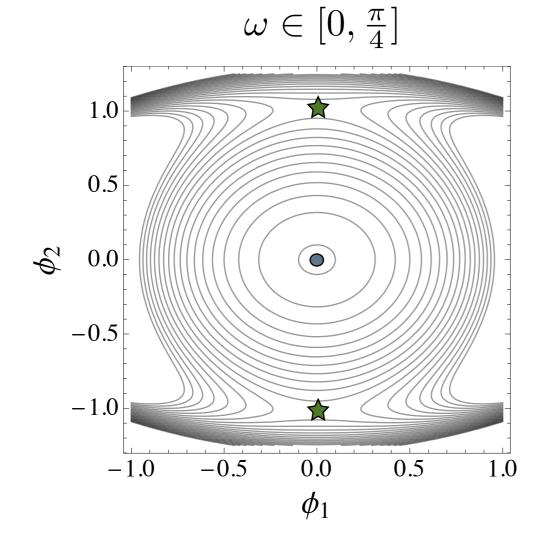


critical pointresidual sym G_0 SUSYStability•SO(8) $\mathcal{N} = 8$ \checkmark \bigstar $SO(4)_v$ $\mathcal{N} = 0$ \checkmark

Example 2 : SO(4) invariant sectors of G = SO(8)

- Three embeddings $SO(4)_{v,s,c}$ related by Triality :

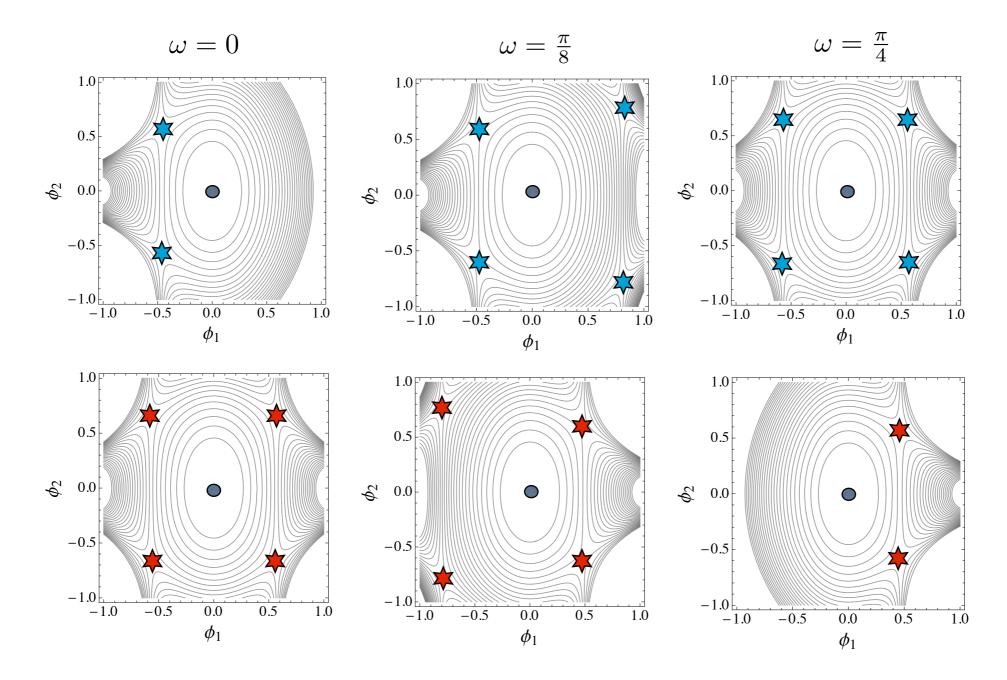
i) the vectorial embedding : $8_v = (1,1) + (3,1) + (1,1) + (1,3)$



critical point	residual sym G_0	SUSY	Stability
•	SO(8)	$\mathcal{N}=8$	\checkmark
*	$SO(4)_v$	$\mathcal{N} = 0$	\checkmark

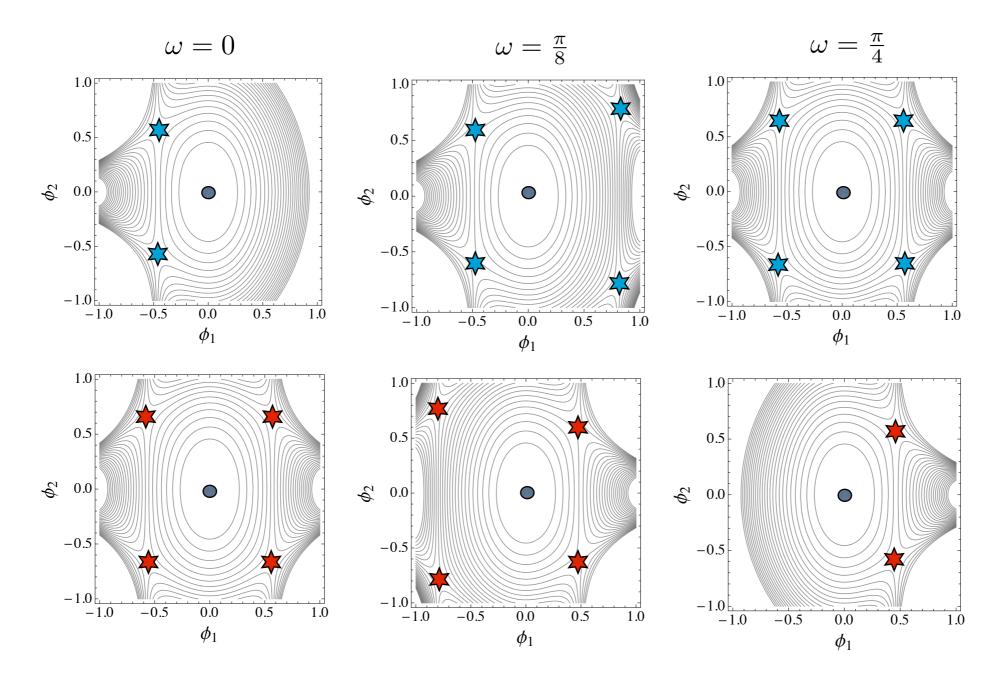
> NO ω -dependence at all !!

ii) spinorial (upper) & conjugate (lower) embeddings : $8_{s/c} = (1,1) + (3,1) + (1,1) + (1,3)$



critical point	residual sym G_0	SUSY	Stability
•	SO(8)	$\mathcal{N}=8$	\checkmark
*	$SO(4)_s$	$\mathcal{N} = 0$	×
*	$SO(4)_c$	$\mathcal{N} = 0$	×

ii) spinorial (upper) & conjugate (lower) embeddings : $8_{s/c} = (1,1) + (3,1) + (1,1) + (1,3)$



> Mass spectra sensitive to ω

- > $\frac{\pi}{4}$ -periodicity restored by Triality
- > Runaway of points at $\omega = n \frac{\pi}{4}$

critical point	residual sym G_0	SUSY	Stability
•	SO(8)	$\mathcal{N}=8$	\checkmark
*	$SO(4)_s$	$\mathcal{N} = 0$	×
*	$SO(4)_c$	$\mathcal{N} = 0$	×

Limitation : If looking at the scalar potential, then the critical points are prisoners of the theory (gauging)

Limitation : If looking at the scalar potential, then the critical points are prisoners of the theory (gauging)

Hope : "Sit on top" of a critical point and travel with it to see what happens

Limitation : If looking at the scalar potential, then the critical points are prisoners of the theory (gauging)

Hope : "Sit on top" of a critical point and travel with it to see what happens...

Answer : It wants to migrate to a different theory (gauging) \longrightarrow the fermion masses can be used to monitoring its story !!

[Borghese, A.G & Roest '12, '13]

Tracking solutions using fermion masses

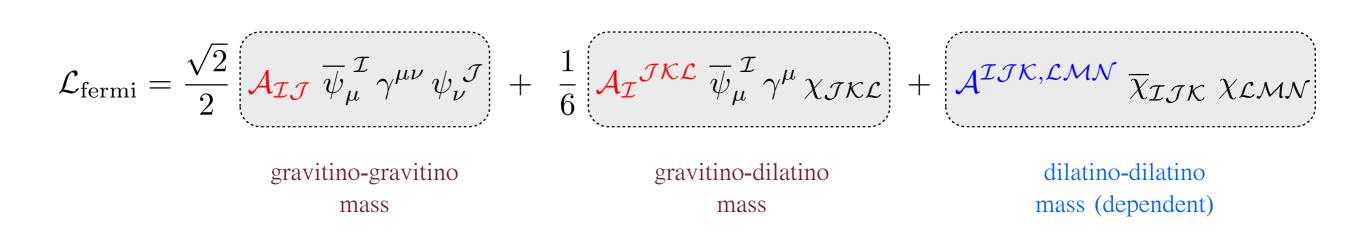
Going to the origin : If a critical point is found at $\phi = \phi_0$ with a residual symmetry G_0 , it can always be brought to $\phi_0 = 0$ via an E₇-transformation

[Dibitetto, A.G & Roest'11] [Dall'Agata & Inverso '11]

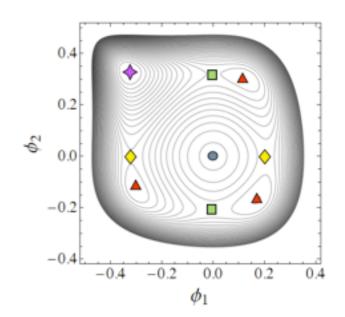
[Kodama & Nozawa '12]

Applicability : After going to the origin, the quantities in the theory, e.g. fermi masses, will adopt a form compatible with G_0

[Borghese, A.G & Roest '12, '13]



Example 1 : Critical point preserving $G_0 = G_2$ (\diamondsuit)



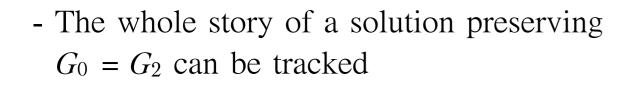
Example 1 : Critical point preserving $G_0 = G_2$ (\diamondsuit) 0.40.2 ϕ^2 0.0 - Pattern of fermi masses : -0.2-0.4 $I = 1 \oplus m$ -0.2 0.0 0.2 0.4 -0.4 ϕ_1 i) gravitino-gravitino mass $\mathcal{A}^{IJ}(\phi_0) \longrightarrow \mathcal{A}^{11} = \alpha_1$, $\mathcal{A}^{mn} = \alpha_2 \, \delta^{mn}$ ii) gravitino-dilatino mass $\mathcal{A}_I^{JKL}(\phi_0) \longrightarrow \mathcal{A}_1^{mnp} = \beta_1 \kappa^{mnp}$, $\mathcal{A}_m^{1np} = \beta_2 \kappa_m^{np}$

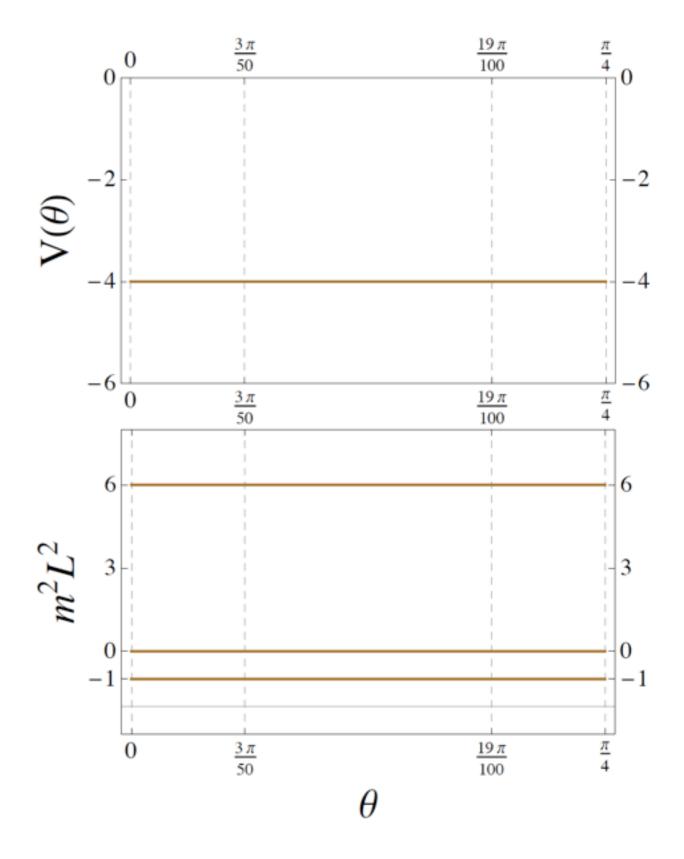
> Four parameters $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{C}$

Example 1 : Critical point preserving $G_0 = G_2$ (\blacklozenge) 0.2 ϕ^{5} - Pattern of fermi masses : -0.2 $I = 1 \oplus m$ 0.0 -0.2 0.2 0.4 -0.4 ϕ_1 i) gravitino-gravitino mass $\mathcal{A}^{IJ}(\phi_0) \longrightarrow \mathcal{A}^{11} = \alpha_1$, $\mathcal{A}^{mn} = \alpha_2 \, \delta^{mn}$ ii) gravitino-dilatino mass $\mathcal{A}_I^{JKL}(\phi_0) \implies \mathcal{A}_1^{mnp} = \beta_1 \kappa^{mnp}$, $\mathcal{A}_m^{1np} = \beta_2 \kappa_m^{np}$ > Four parameters $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{C}$

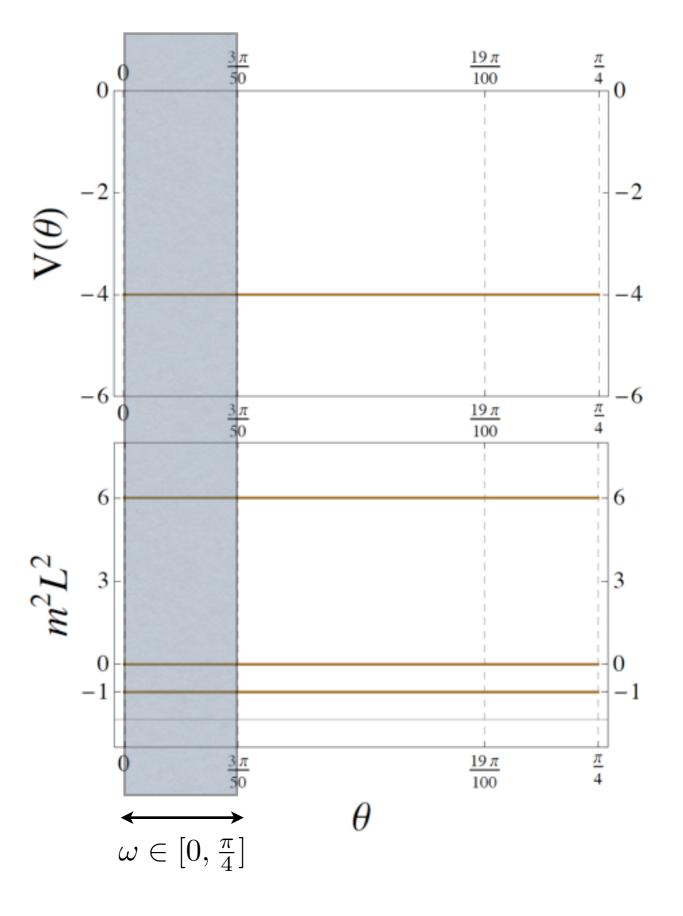
Solving QC & EOM : One-parameter family of theories compatible with $G_0 = G_2$

 $\alpha_1(\theta), \alpha_2(\theta), \beta_1(\theta), \beta_2(\theta)$





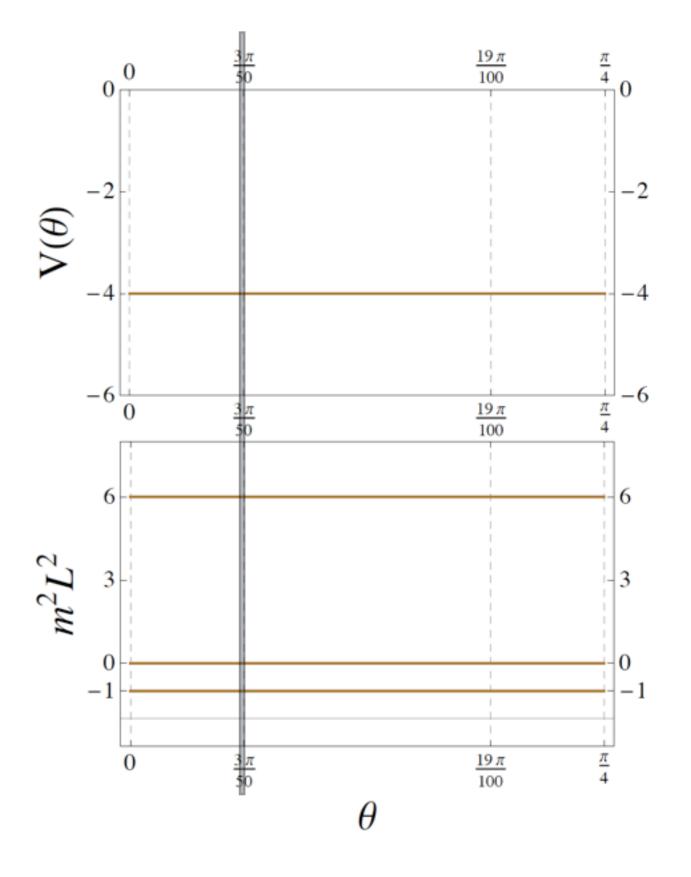
- The whole story of a solution preserving $G_0 = G_2$ can be tracked
 - i) $0 \le \theta < \frac{3\pi}{50} \rightarrow G = SO(8)$ [stable AdS₄ solutions]



- The whole story of a solution preserving $G_0 = G_2$ can be tracked

$$ii) \quad \theta = \frac{3\pi}{50} \rightarrow G = ISO(7)$$

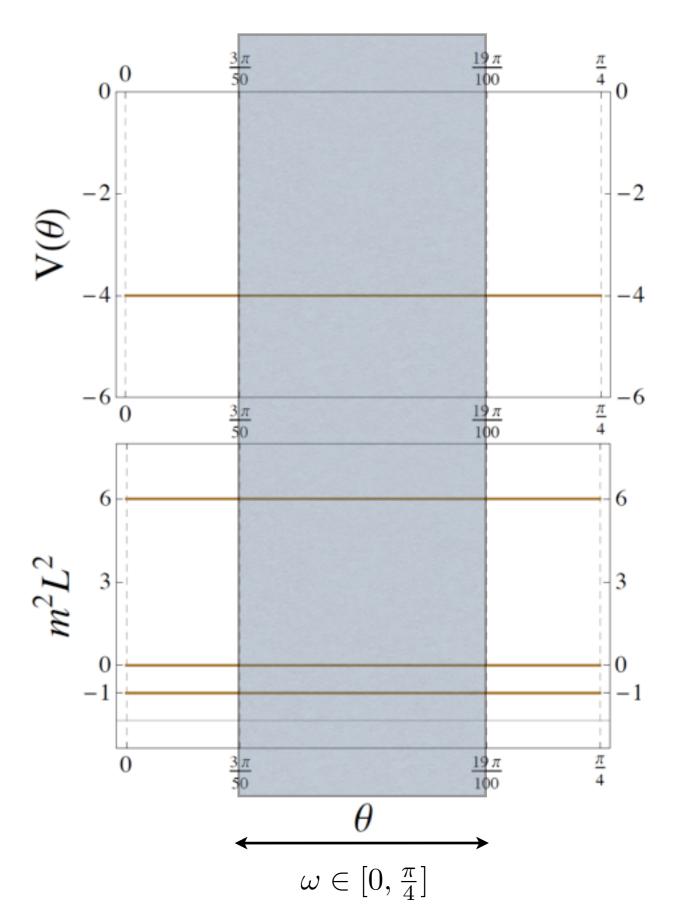
[stable AdS₄ solutions]

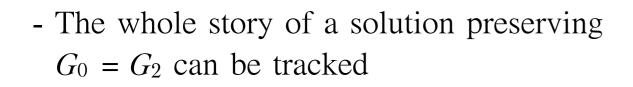


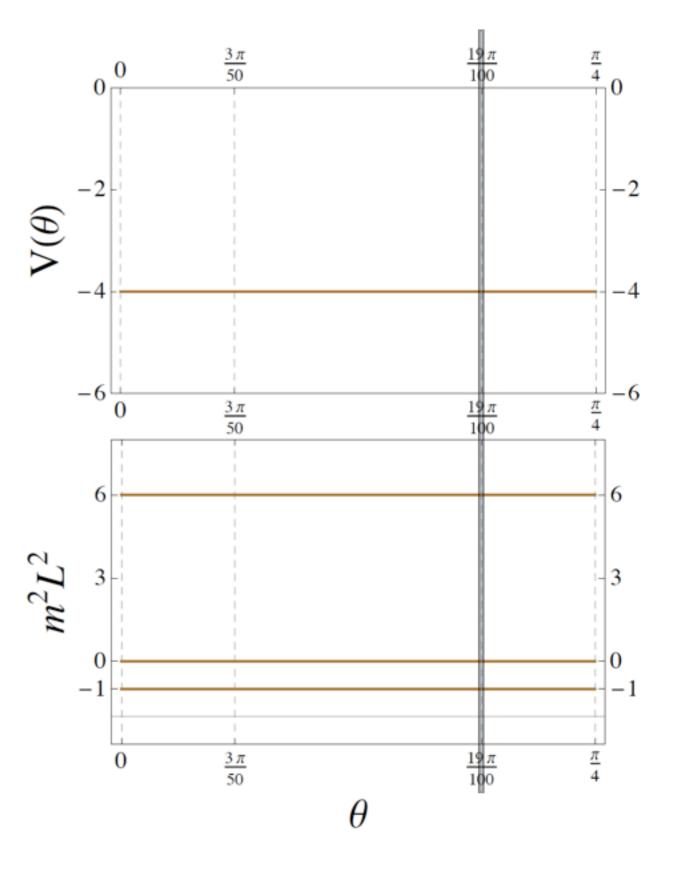
- The whole story of a solution preserving $G_0 = G_2$ can be tracked

iii)
$$\frac{3\pi}{50} < \theta < \frac{19\pi}{100} \rightarrow G = SO(7,1)$$

[stable AdS₄ solutions]

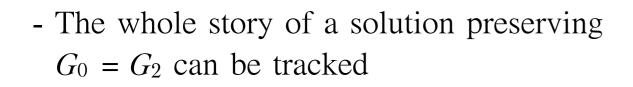


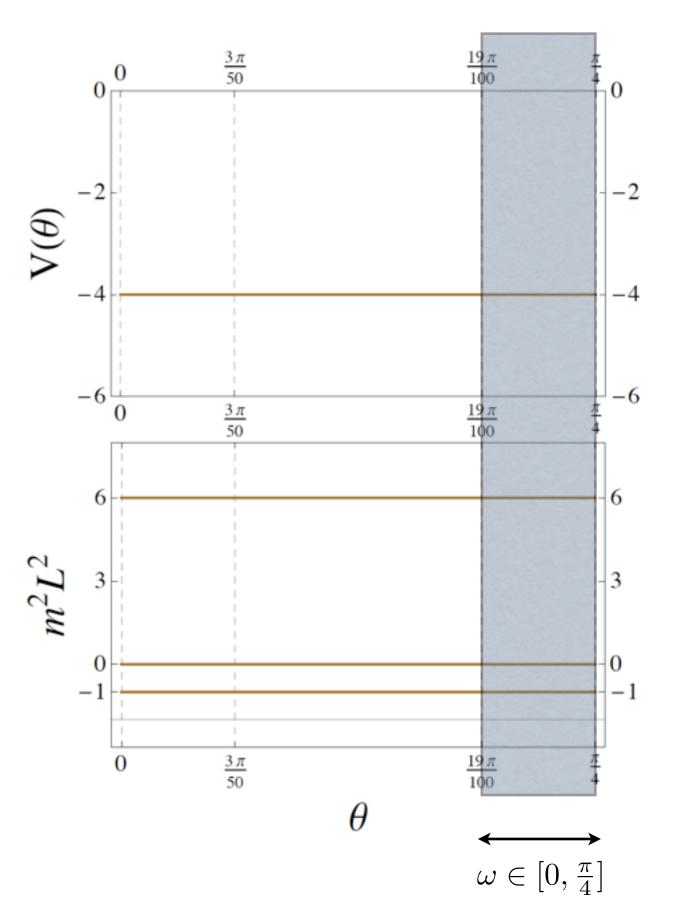




iv)
$$\theta = \frac{19\pi}{100} \rightarrow G = ISO(7)$$

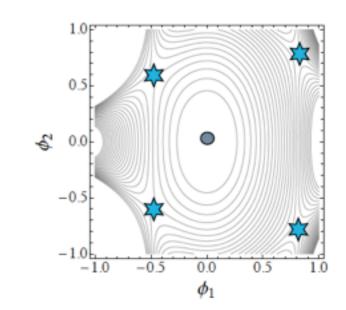
[stable AdS₄ solutions]



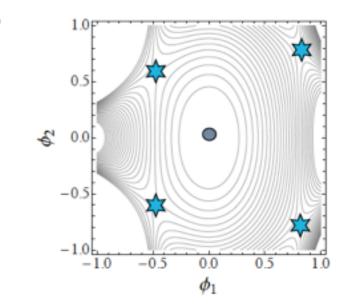


$$v) \quad \frac{19\pi}{100} < \theta \le \frac{\pi}{4} \rightarrow G = SO(8)$$
[stable AdS₄ solutions]

Example 2 : Critical point preserving $G_0 = SO(4)_s$ (\$\$)



Example 2 : Critical point preserving $G_0 = SO(4)_s$ (*)



- Pattern of fermi masses :

 $[I \to i \oplus \hat{i}]$

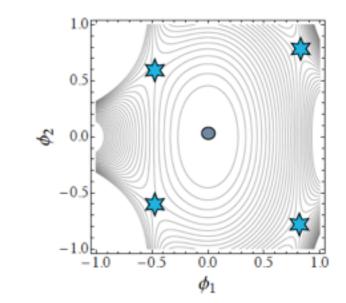
i) gravitino-gravitino mass $\mathcal{A}^{IJ}(\phi_0) \implies \mathcal{A}^{ij} = \alpha \ \delta^{ij}$, $\mathcal{A}^{\hat{i}\hat{j}} = \alpha \ \delta^{\hat{i}\hat{j}}$

ii) gravitino-dilatino mass $\mathcal{A}_I^{JKL}(\phi_0)$

$$\begin{aligned} \mathcal{A}_{i}{}^{jkl} &= \beta \ \epsilon_{i}{}^{jkl} \ , \ \mathcal{A}_{i}{}^{\hat{j}\hat{k}l} &= \delta \ \epsilon_{i}{}^{\hat{j}\hat{k}l} + \gamma \ \delta_{i}{}^{[\hat{j}}\delta^{\hat{k}]l} \\ \mathcal{A}_{\hat{i}}{}^{\hat{j}\hat{k}\hat{l}} &= -\beta \ \epsilon_{\hat{i}}{}^{\hat{j}\hat{k}\hat{l}} \ , \ \mathcal{A}_{\hat{i}}{}^{jk\hat{l}} &= -\delta \ \epsilon_{\hat{i}}{}^{jk\hat{l}} + \gamma \ \delta_{\hat{i}}{}^{[j}\delta^{k]\hat{l}} \end{aligned}$$

> Four parameters $\alpha, \beta, \gamma, \delta \in \mathbb{C}$

Example 2 : Critical point preserving $G_0 = SO(4)_s$ (*)



- Pattern of fermi masses :

 $[I \to i \oplus \hat{i}]$

i) gravitino-gravitino mass $\mathcal{A}^{IJ}(\phi_0) \quad \Longrightarrow \quad \mathcal{A}^{ij} = \alpha \ \delta^{ij} \quad , \quad \mathcal{A}^{\hat{i}\hat{j}} = \alpha \ \delta^{\hat{i}\hat{j}}$

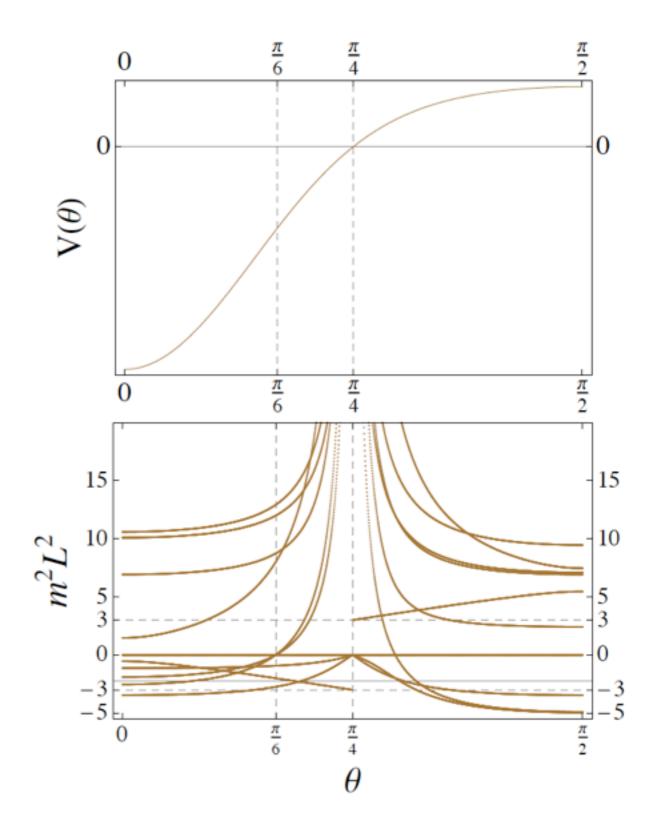
ii) gravitino-dilatino mass $\mathcal{A}_{I}^{JKL}(\phi_{0}) \implies \mathcal{A}_{i}^{jkl} = \beta \epsilon_{i}^{jkl} , \ \mathcal{A}_{i}^{\hat{j}\hat{k}\hat{l}} = -\delta \epsilon_{i}^{\hat{j}\hat{k}\hat{l}} + \gamma \delta_{i}^{[\hat{j}}\delta^{\hat{k}]l}$ $\mathcal{A}_{\hat{i}}^{\hat{j}\hat{k}\hat{l}} = -\beta \epsilon_{\hat{i}}^{\hat{j}\hat{k}\hat{l}} , \ \mathcal{A}_{\hat{i}}^{jk\hat{l}} = -\delta \epsilon_{\hat{i}}^{jk\hat{l}} + \gamma \delta_{\hat{i}}^{[\hat{j}}\delta^{k]\hat{l}}$

> Four parameters $\alpha, \beta, \gamma, \delta \in \mathbb{C}$

Solving QC & EOM : One-parameter family of theories compatible with $G_0 = SO(4)_s$

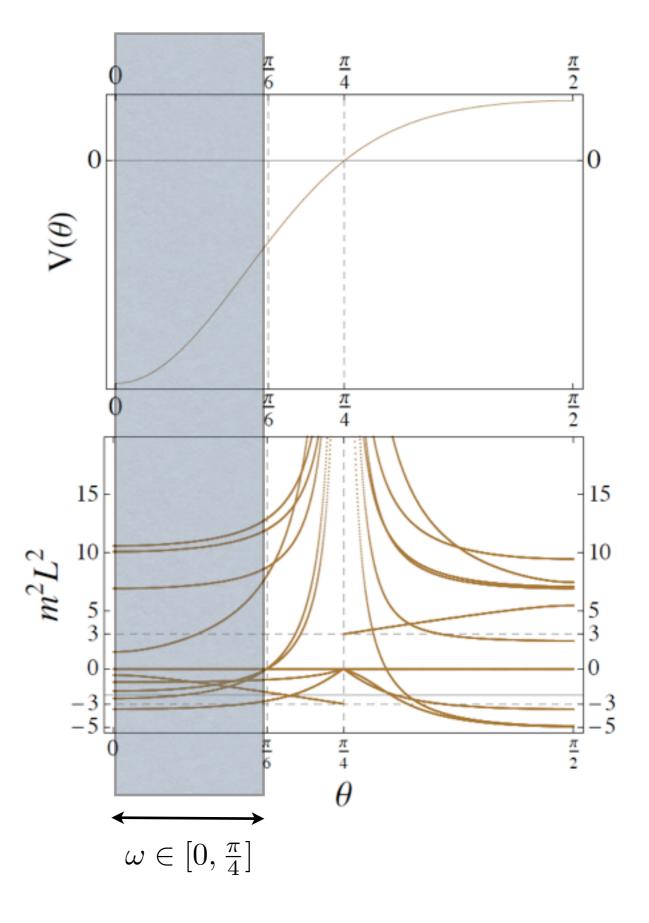
 $\alpha(\theta), \, \beta(\theta), \, \gamma(\theta), \, \delta(\theta)$

- The whole story of a solution preserving $G_0 = SO(4)_s$ can be tracked



- The whole story of a solution preserving $G_0 = SO(4)_s$ can be tracked
 - $i) \quad 0 \le \theta < \frac{\pi}{6} \quad \to \quad G = SO(8)$

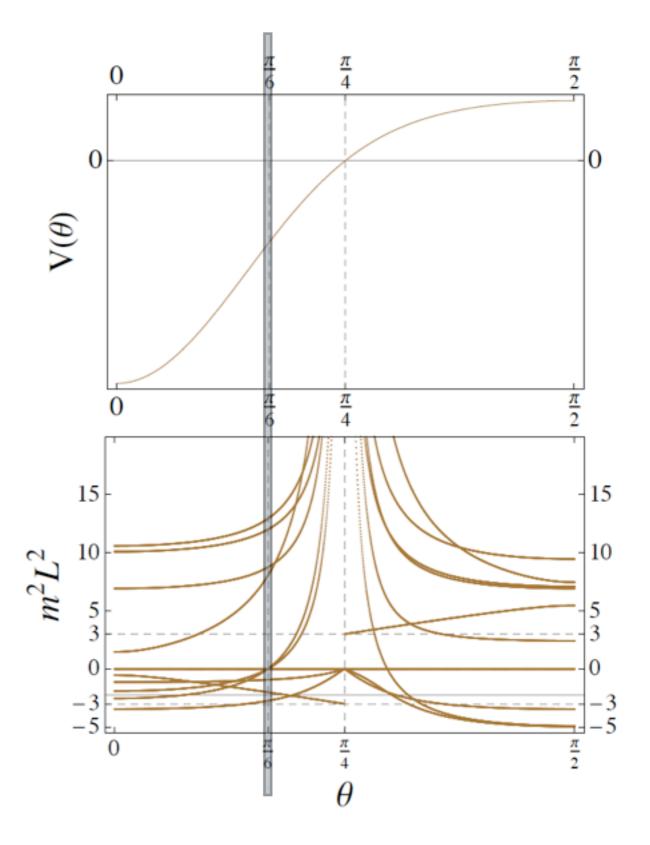
[unstable AdS₄ solutions]



- The whole story of a solution preserving $G_0 = SO(4)_s$ can be tracked

$$ii) \quad \theta = \frac{\pi}{6} \quad \rightarrow \quad G = SO(2) \times SO(6) \ltimes T^{12}$$

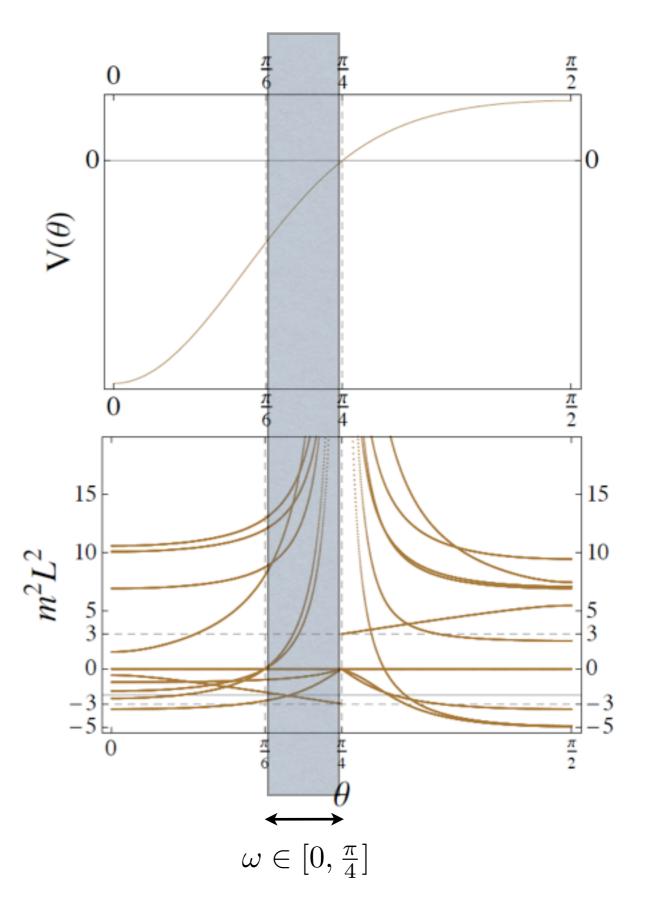
[unstable AdS₄ solution]



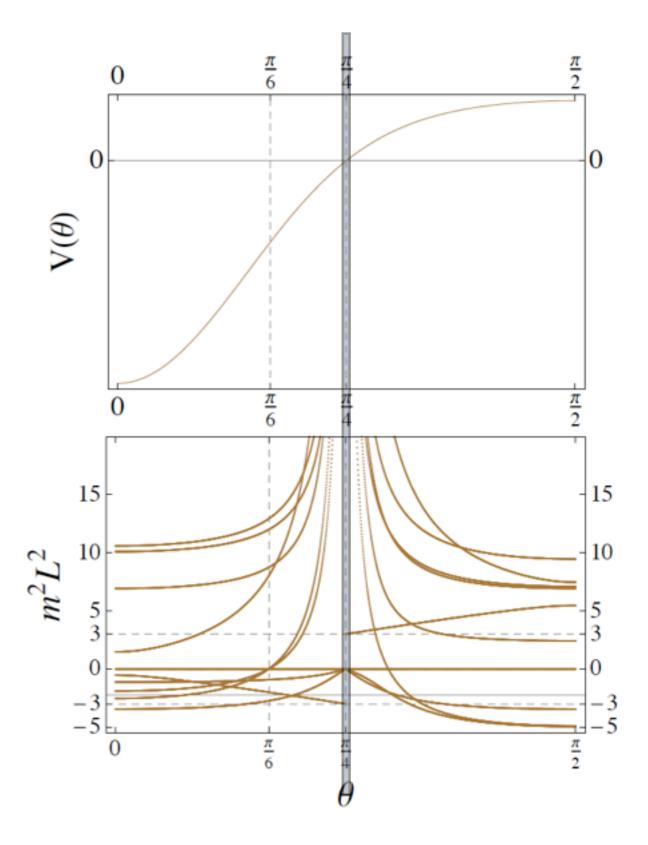
- The whole story of a solution preserving $G_0 = SO(4)_s$ can be tracked

iii)
$$\frac{\pi}{6} < \theta < \frac{\pi}{4} \rightarrow G = SO(6,2)$$

[unstable AdS₄ solutions]



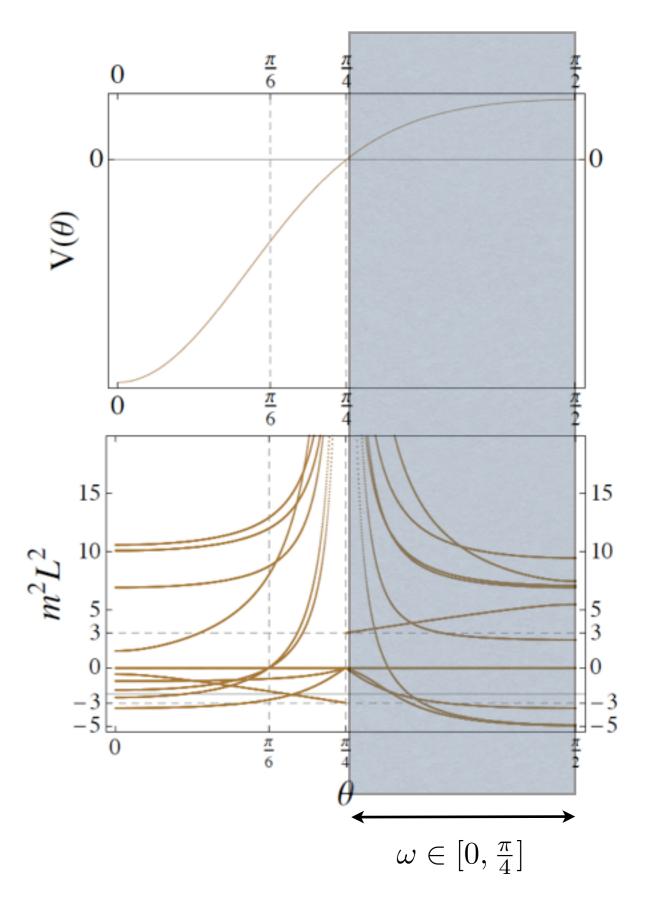
- The whole story of a solution preserving $G_0 = SO(4)_s$ can be tracked



iv)
$$\theta = \frac{\pi}{4} \rightarrow G = SO(3,1)^2 \ltimes T^{16}$$

[Mkw solution with flat directions]

- The whole story of a solution preserving $G_0 = SO(4)_s$ can be tracked



$$v) \quad \frac{\pi}{4} < \theta \le \frac{\pi}{2} \quad \to \quad G = SO(4,4)$$

[dS₄ solutions with tachyon dilution]

[Dall'Agata & Inverso '12]

Final remarks

- Electromagnetic U(1) rotations pick up a physically relevant direction in the space of the embedding tensor deformations and provide new vacua of $\mathcal{N} = 8$ supergravity with interesting properties : increase of critical points, partial $\mathcal{N} = 2 \rightarrow \mathcal{N} = 1$ breaking, stability without SUSY, ...

- Small residual symmetry groups like SU(3) & SO(4) show ω -dependent mass spectra. Triality restores $\frac{\pi}{4}$ -periodicity. [Borghese, Dibitetto, A.G, Roest & Varela '13]

- Critical points running away at $\omega = n \frac{\pi}{4}$ in one theory, show up in another. The entire story of a solution can be tracked by computing fermi masses in the GTTO approach

- Tachyon dilution around AdS/Mkw/dS transitions.

- All these solutions can be obtained as $Z_2 \times Z_2$ Type IIB orientifolds with non-geometric fluxes (both electric and magnetic). Lifting to M-theory including vectors from A₃ and A₆? And oxidation to DFT ?

[de wit & Nicolai 15]

[Blumenhagen, Gao, Herschmann & Shukla '13]

Thanks for your attention !!