Cosmologícal and Holographical Applications of String Dualities

1

Based on various collaborations with

Borghese, Casas, Cícerí, Danielsson, de Carlos, Derendínger, Díbítetto, F-Melgarejo, Font, Inverso, Jafferís, Moreno, Roest, Tarrío, Varela & Weatherill

Linking strings to the real world

- String theory provides a framework where to describe General Relativity and Quantum Field Theory
- * The fundamental building blocks are tiny vibrating strings with $l_s \sim 10^{-33}$ cm

The footprint of the extra dimensions

 Fluctuations of the extra dimensions (size and shape) translate into a set of massless 4D scalar fields known as "moduli fields"

$$\mathcal{L} = R - \frac{1}{2} \partial_{\mu} \phi_i \partial^{\mu} \phi^i$$

massless scalars = long range interactions (precision tests of GR)

$$V(\phi) \,=\, m_{ij}^2 \, \phi^i \, \phi^j \,+\, \dots$$

* The moduli VEVs $\langle \phi^i \rangle = \phi_0^i$ determine the 4D cosmological constant !!

$$\Lambda_{c.c} \equiv V(\phi_0)$$

[sign = expansion (dS) vs collapse (AdS)]

Extra dímensíons...

D-branes

. . .

- > magnetic fluxes
- > funny geometries

$$V(\phi) = V_{brane} + V_{flux} + V_{geom}$$

The problem = finding

Model building :

Willem de Sitter (1872 – 1934)

branes + fluxes + geometries + \dots = parameters

[Giddings, Kachru, Polchinski '01]

[Blumemhagen, Cámara, de Carlos, Dall'Agata, Derendinger, DeWolfe, Giryavets, Graña, Ibáñez, Kachru, Kounnas, Kors, Lüst, Minasian, Petrini, Petropoulos, Reffert, Schulz, Schulgin, Stieberger, Taylor, Tomasiello, Trigiante, Tripathy, Trivedi, Villadoro, Zwirner, ... 2002 - 2006]

$$\Lambda_{c.c} \equiv V(\phi_0) > 0$$

... but where is de Sitter within the string landscape?

No-go theorems forbid perturbative dS vacua !!

[Hertzberg, Kachru, Taylor, Tegmark '07]

A way out:

To introduce mysterious non-geometric fluxes

Motivation: what are non-geometric fluxes?

[Dabholkar, Hull '05] [Shelton, Taylor, Wecht '05, '06]

4D objects conjectured to exist based on string dualities (different regimes of strings)

[strong-weak coupling, winding-momentum states, ...] [Hull, Townsend '94]

Questions to be addressed today :

- Are there stable dS vacua in these non-geometric 4D scenarios (useful at all)?
- Is there a 4D effective field theory where to describe such exotic fluxes systematically?
- Do they have a higher-dimensional (string) origin?

Challenges in string theory !!

From

non-geometric fluxes (2004-2006)

to

extended field theories (2014-2016)

(a personal trip)

(2004 - 2006)

- Non-geometric fluxes were introduced for the first time in the context of effective N=1 supergravities in order to restore the *stringy* T-duality at the 4D level
- * Starting from the field strength H=dB of the *B*-field (2-form gauge potential) of string theory and applying a chain of T-dualities, one finds

[Kaloper, Myers '99]

- * SO(6,6) T-duality symmetry of string theory becomes manifest at the 4D level !!
- * Generalisation to other *stringy* SL(2) S-duality and E₇ U-duality : *P*-fluxes, etc...

(2007 - 2009)

[Hull, Reid-Edwards '07] [Reid-Edwards '09]
[Dall'Agata, Prezas, Samtleben, Trigiante '07]
[Graña, Minasian, Petrini, Waldram '08]
[Font, AG, Moreno '08] [AG, Weatherill '08]

* Soon after their appearance, novel algebraic structures underlying the zoo of non-geometric fluxes started being uncovered. Making use of these algebraic structures, the first examples of *non-geometric stable dS vacua* were found!!

... although their higher-dimensional origin remained unclear [de Carlos, AG, Moreno '09]

Higher-dimensional supergravities

Embedding Tensor framework

[3D : Nicolai, Samtleben '00 '01] [de Wit, Samtleben, Trigiante '05 '07] [Schön, Weidner '06]

Parallel to these developments, an effective field theory framework where to describe *all* the N=8 and N=4 supergravities irrespective of their origin enters the scene :

the *embedding tensor* framework

 The ET formalism implements all the stringy dualities in a 4D effective Lagrangian, namely, the interactions are determined by the symmetries of string theory

couplings in the potential (fluxes) = *embedding tensor* (reps. of duality group)

Program : Precise correspondence between embedding tensor and fluxes (geometric and non-geometric) so that a systematic study of the latter can be achieved !!

Previous results :

[de Wit, Samtleben, Trigiante '03] [Angelantonj, Ferrara, Trigiante '03 '04] [Derendinger, Kounnas, Petropoulos & Zwirner '04 '05 '06] [Villadoro, Zwirner '05] [Aldazabal, Cámara, Font, Ibáñez '06] **11**

Embedding Tensor / Flux correspondence

[Dall'Agata, Villadoro, Zwirner '09] [Dibitetto, AG, Roest '11 '12 '14]

couplings	SO(6,6)	
1	$-f_{+\bar{a}\bar{b}\bar{c}}$	
U	$f_{+ar{a}ar{b}ar{k}}$	
U^2	$-f_{+\bar{a}\bar{j}\bar{k}}$	
U^3	$f_{+\overline{i}\overline{j}}\overline{k}$	
S	$-f_{-\bar{a}\bar{b}\bar{c}}$	
S U	$f_{-ar{a}ar{b}ar{k}}$	
$S U^2$	$-f_{-\bar{a}\bar{j}\bar{k}}$	
$S U^3$	$f_{-\overline{i}\overline{j}}\overline{k}$	
Т	$f_{+\bar{a}\bar{b}k}$	
T U	$f_{+\bar{a}\bar{j}k} = f_{+\bar{i}\bar{b}k} \ , \ f_{+a\bar{b}\bar{c}}$	
$T U^2$	$f_{+\bar{i}\bar{b}c} = f_{+\bar{a}\bar{j}c} \ , \ f_{+\bar{i}\bar{j}k}$	
$T U^3$	f_{+ijc}	
S T	$f_{-\bar{a}\bar{b}k}$	
STU	$f_{-\bar{a}\bar{j}k} = f_{-\bar{i}\bar{b}k} \ , \ f_{-a\bar{b}\bar{c}}$	
$S T U^2$	$f_{-\bar{i}\bar{b}c} = f_{-\bar{a}\bar{j}c} \ , \ f_{-\bar{i}\bar{j}k}$	
$S T U^3$	$f_{-\overline{ijc}}$	

Type IIB	Type IIA	
F _{ijk}	F _{aibjck}	
F _{ijc}	F_{aibj}	
F_{ibc}	F_{ai}	
F_{abc}	F_0	
H_{ijk}	H_{ijk}	
H_{ijc}	ω_{ij}^c	
H _{ibc}	Q_i^{bc}	
H_{abc}	R^{abc}	
Q_k^{ab}	H_{abk}	
$Q_k^{aj} = Q_k^{ib} \ , \ Q_a^{bc}$	$\omega_{ka}^{j} = \omega_{bk}^{i} \ , \ \omega_{bc}^{a}$	
$Q_c^{ib} = Q_c^{aj} \ , \ Q_k^{ij}$	$Q_b^{ci} = Q_a^{jc} \ , \ Q_k^{ij}$	
Q_c^{ij}	R^{ijc}	
P_k^{ab}		
$P_k^{aj} = P_k^{ib} \ , \ P_a^{bc}$		
$P_c^{ib} = P_c^{aj} \ , \ P_k^{ij}$		
P_c^{ij}		

12

(2009 - 2016)

- New AdS and dS vacua (systematically) found using the ET/flux correspondence
- ET framework relevant for holography and cosmology [A biased choice of applications]

AdS vacua: applications in holography

Dyonic gaugings and dual CFT₃
 [Dall'Agata, Inverso, Trigiante '12] [AG, Jafferis, Varela '15]

New holographic RG flows from (M2)D2-branes and AdS₄/CFT₃

[AG & Tarrío, Varela '13] [Pang, Rong '15] [AG, Tarrío, Varela '16]

Consistent reductions of *massive* IIA /M-theory

[Dall'Agata, Villadoro, Zwirner '09] [Godazgar's, Nicolai '13][Derendinger, AG '14] [Danielsson, Dibitetto, AG '14][Baron, Dall'Agata '14] [AG, Varela '15]

• Non-geometric superpotentials and BPS solutions

[AG, '13 '15] [Danielsson, Dibitetto '15]

dS vacua: applications in cosmology

• dS in extended supergravity [Roest, Rosseel '09] [Borghese, Roest '10] [Dibitetto, AG, Roest '12]

charting the landscape of flux vacua

[Dall'Agata, Inverso '11] [Damian, Loaiza-Brito '13] [Danielsson, Haque, Shiu, van Riet & Koerber '10 '11] [Aldazabal, Marques, Nuñez, Rosabal '11] [Kodama, Nozawa '12] [Dibitetto, AG, Roest '11 '12 '14]

• inflationary models (slow-roll)

[de Carlos, AG, Moreno '09] [Hassler, Lüst, Massi '14] [Kodama, Nozawa '15] [Blumenhagen et al '15]

• open/closed string interplay (alternative to anti-branes)

[Blåbäk, Roest, Zavala & Danielsson, Dibitetto '13] [Kallosh, Linde, Vercnocke, Wrase '14] [AG, Inverso '15]

$Holography: a new AdS_{4}/CFT_{3} duality$

• New *dyonic* maximal supergravities constructed using the ET framework

[Dall'Agata, Inverso, Trigiante & Marrani '12, '14] [Borghese, Dibitetto, AG, Roest, Varela '12] [Borghese, AG, Roest '12,'13]

Example: One-parameter family of SO(8)-gauged supergravities !!

[de Wit, Nicolai '82]

- AdS₄ x S⁷ backgrounds of 11D supergravity (M2-brane) ? $D = \partial - g \left(A^{\text{elec}} - c \tilde{A}_{\text{mag}} \right)$
- AdS₄/CFT₃ duality (ABJM or ABJ)?

[Aharony, Bergman, Jafferis, Maldacena '08]

... no conclusíve answer yet

Example: One-parameter family of ISO(7)-gauged supergravities

 $\omega = \operatorname{Arg}(1 + ic)$

[Dall'Agata, Inverso, Marrani '14]

- AdS₄ x S⁶ background of massive IIA supergravity (D2-brane) $D = \partial - g A_{SO(7)}^{\text{elec}} - g (A_{\mathbb{R}^7}^{\text{elec}} - c A_{\mathbb{R}^7 \text{ mag}})$
- AdS₄/CFT₃ duality : Chern-Simons-SYM theories with simple gauge group SU(N) and level k given by Romans mass [Schwarz '04]
- Matching of the free energies in supergravity and field theory sides (localisation)
- Further checks of the duality have been performed afterwords [Araujo, Nastase '16]

A new 10D/4D/3d correspondence

massive IIA on S^6 « ISO(7)_c-gauged sugra » SU(N)_k CS-SYM theory

Well-established and independent dualities :

Type IIB on $S^5/N=4$ SYM — M-theory on $S^7/ABJM$ — mIIA on $S^6/CS-SYM$

mIIA on S⁶/CS-SYM correspondence & holographic RG flows

[AG, Tarrío, Varela '16]

 RG flows from SYM (dotted lines) and between CFT's (solid lines) dual to BPS domain-wall solutions of the dyonic ISO(7)-gauged supergravity

Back to a long-standing question

What is the higher-dimensional origin of non-geometric fluxes and, more generally, of the various supergravities obtained using the lower-dimensional and duality covariant ET framework ?

(2013 - 2016) : string dualities in higher-dimensions

- Different strings related by dualities: IIA/IIB T-duality, IIB S-duality, ...

- String dualities realised as global symmetries in lower-dimensional SUGRA

Iower-dimensional phenomenonvshigher-dimensional phenomenonembedding tensor, non-geometric fluxes...β-supergravity , γ-supergravity...

[Andriot, Betz '13] [Lee, Rey, Sakatani '16]

New approach : Extended Field Theories [extend internal coords to transform under duality]

- Double Field Theory (DFT) \Rightarrow Orthogonal groups O(d,d) [half-max SUGRA (T-duality)]
- Exceptional Field Theory (EFT) \rightarrow Exceptional groups $E_{d+1(d+1)}$ [max SUGRA (U-duality)]

[Siegel '93] [Hull, Zwiebach & Hohm '09 '10] [Hohm, Samtleben '13]

[Siegel '93] [Hull, Zwiebach & Hohm '09 '10]

- T-duality covariant framework to describe momentum + winding modes
- The theory lives in *D* (external) + 2*d* (internal) coordinates y^M , with D + d = 10, and has an $\mathbb{R}^+ \times O(d, d)$ symmetry linearly realised

$$S_{\rm DFT} = \int d^4x \, d^{12}y \, e \, e^{-2\phi} \left[\hat{R}(e) + 4 \, \mathcal{D}^{\mu}\phi \, \mathcal{D}_{\mu}\phi + \frac{1}{8} \, \mathcal{D}^{\mu}M^{MN} \, \mathcal{D}_{\mu}M_{MN} \right. \\ \left. - \frac{1}{12} \, H_{\mu\nu\rho} \, H^{\mu\nu\rho} - \frac{1}{4} \, M_{MN} \, \mathcal{F}_{\mu\nu}{}^M \, \mathcal{F}^{\mu\nu\,N} - V_{\rm DFT}(\phi, M_{MN}, g) \right]$$

Example : D = 4, d = 6 & M = 1, ..., 12

- Consistency requires a section constraint: $\eta^{MN} \partial_M \otimes \partial_N = 0 \rightarrow ($ N=1 sugra in 10D
- $M_{MN} \in O(6,6)/O(6)^2$ generalised metric : metric + B-field
- Generalised geometries (beyond Riemann) & non-geometry (T-folds)

[Coimbra, Strickland-Constable, Waldram '11]

[asymmetric orbifolds]

[Dabholkar, Hull '03] [Hull '04 '06]

Exceptional Field Theory (EFT)

[Hohm, Samtleben '13]

- U-duality covariant framework to describe momentum + winding + brane modes
- The theory lives in D (external) + R[E_{d(d)}] (internal) coordinates $y^{\mathcal{M}}$, with D + d = 11, 0 and has an $E_{d(d)}$ symmetry linearly realised

$$S_{\mathrm{E}_{7(7)}\text{-}\mathrm{EFT}} = \int d^4x \, d^{56}y \, e \left[\hat{R} + \frac{1}{48} \, g^{\mu\nu} \, \mathcal{D}_{\mu} M^{\mathcal{M}\mathcal{N}} \, \mathcal{D}_{\nu} M_{\mathcal{M}\mathcal{N}} - \frac{1}{8} \, M_{\mathcal{M}\mathcal{N}} \, \mathcal{F}^{\mu\nu\mathcal{M}} \mathcal{F}_{\mu\nu}^{\mathcal{N}} \right. \\ \left. + e^{-1} \, \mathcal{L}_{\mathrm{top}} - V_{\mathrm{E}_{7(7)}\text{-}\mathrm{EFT}}(M_{\mathcal{M}\mathcal{N}}, g) \right]$$

Example : D = 4, d = 7 & $\mathcal{M} = 1, ..., 56$

[Massive IIA : Ciceri, AG, Inverso '16]

Consistency requires a section constraint : $Y^{MN}{}_{PQ} \partial_M \otimes \partial_N = 0 \rightarrow$ Type IIB or 11D supergravity ullet

- $M_{\mathcal{MN}} \in E_{7(7)}/SU(8)$ generalised metric : metric + type IIB or A₍₃₎ potentials
- Exceptional generalised geometries (beyond Riemann) & non-geometry (U-folds) [Coimbra, Strickland-Constable, Waldram '11 '12]

Dualities in SUGRA and Extended Field Theory

D	Maximal sugra / EFT	Half-maximal sugra	DFT
9	$\mathbb{R}^+ \times \mathrm{SL}(2)$	$\mathbb{R}^+ \times \mathcal{O}(1, 1+n)$	$\mathbb{R}^+ \times \mathcal{O}(1, 1+n)$
8	$\mathrm{SL}(2) \times \mathrm{SL}(3)$	$\mathbb{R}^+ \times \mathcal{O}(2, 2+n)$	$\mathbb{R}^+ \times \mathcal{O}(2, 2+n)$
7	SL(5)	$\mathbb{R}^+ \times \mathcal{O}(3, 3+n)$	$\mathbb{R}^+ \times \mathcal{O}(3, 3+n)$
6	$\mathrm{SO}(5,5)$	$\mathbb{R}^+ \times \mathcal{O}(4, 4+n)$	$\mathbb{R}^+ \times \mathcal{O}(4, 4+n)$
5	$E_{6(6)}$	$\mathbb{R}^+ \times \mathcal{O}(5, 5+n)$	$\mathbb{R}^+ \times \mathcal{O}(5, 5+n)$
4	$E_{7(7)}$	$SL(2) \times O(6, 6+n)$	$\mathbb{R}^+ \times \mathcal{O}(6, 6+n)$
3	$E_{8(8)}$	O(8, 8+n)	$\mathbb{R}^+ \times \mathcal{O}(7, 7+n)$

Duality groups of half-maximal SUGRA and DFT differ for $\ \mathbf{D} \leq 4$

* n = additional vector multiplets

... so there is a theory in between EFT and DFT in D = 4

SL(2) - Double Field Theory

• $SL(2) \times O(6, 6)$ covariant framework [n = 0]

• The theory lives in *D* (external) + 2 x 12 (internal) coordinates $y^{\alpha M} = (y^{+M}, y^{-M})$, and has an SL(2) x O(6, 6) symmetry linearly realised

$$S_{\rm SL(2)-DFT} = \int d^4x \, d^{24}y \, e \left[\hat{R} + \frac{1}{4} g^{\mu\nu} \, \mathcal{D}_{\mu} M^{\alpha\beta} \, \mathcal{D}_{\nu} M_{\alpha\beta} + \frac{1}{8} g^{\mu\nu} \, \mathcal{D}_{\mu} M^{MN} \, \mathcal{D}_{\nu} M_{MN} \right. \\ \left. - \frac{1}{8} M_{\alpha\beta} \, M_{MN} \, \mathcal{F}^{\mu\nu\,\alpha M} \, \mathcal{F}_{\mu\nu}^{\beta N} + e^{-1} \, \mathcal{L}_{\rm top} - V_{\rm SL(2)-DFT}(M,g) \right]$$

Example : D = 4, d = 6 & $\alpha = +, -, M = 1, ..., 12$

- $M_{\alpha\beta} \in SL(2)/SO(2)$ generalised dilaton : dilaton + axion
- $M_{MN} \in SO(6,6)/SO(6)^2$ generalised metric : metric + B-field
- DFT corresponds to SL(2)+ -DFT

... but what for ?

• Scherk-Schwarz (SS) reductions with SL(2) x O(6,6) twist matrices $U_{\alpha M}{}^{\beta N} = e^{\lambda} e_{\alpha}{}^{\beta} U_{M}{}^{N}$ yield N = 4, D = 4 gaugings [Schön, Weidner '06]

$$f_{\alpha MNP} = -3 e^{-\lambda} e_{\alpha}{}^{\beta} \eta_{Q[M} U_{N}{}^{R} U_{P]}{}^{S} \partial_{\beta R} U_{S}{}^{Q}$$
$$\xi_{\alpha M} = 2 U_{M}{}^{N} \partial_{\beta N} (e^{-\lambda} e_{\alpha}{}^{\beta})$$

[de Roo, Wagemans '85]

• Moduli stabilisation **requires** gaugings $G = G_1 \times G_2$ at **relative** SL(2) angles

Dependence on both type + & type - coordinates [not possible in DFT]

Example: $SO(4) \times SO(4)$ -gauged sugra and non-geometry

- SS with $U(y^{\alpha M}) \in O(6,6)$: Half of the coords of type + & half of type -
- SL(2)-superposition of **two chains** of **non-geometric** fluxes $(H, \omega, Q, R)_{\pm}$

$$f_{+} \qquad f_{+mnp} = H^{+}{}_{mnp} \quad , \quad f_{+mn\bar{p}} = \omega^{+}{}_{mn}{}^{p} \quad , \quad f_{+\bar{m}\bar{n}p} = Q^{+mn}{}_{p} \quad , \quad f_{+\bar{m}\bar{n}\bar{p}} = R^{+mnp}$$

$$f_{-} \qquad f_{-mnp} = H^{-}{}_{mnp} \quad , \quad f_{-mn\bar{p}} = \omega^{-}{}_{mn}{}^{p} \quad , \quad f_{-\bar{m}\bar{n}p} = Q^{-mn}{}_{p} \quad , \quad f_{-\bar{m}\bar{n}\bar{p}} = R^{-mnp}$$

Most general family (8 params) of SO(4) x SO(4)-gauged N=4 sugra

- SO(4) x SO(4) SUGRA: AdS₄ & dS₄ vacua (sphere/hyperboloid reductions) [de Roo, Westra, Panda, Trigiante '03] [Dibitetto, AG, Roest '12]
- ``Hybrid ±" sources to cancel flux-induced tadpoles : **SL(2)-dual NS-NS branes** ??

[exotic branes : de Boer, Shigemori '10]

Summary & Future directions (2017 - ...)

- Understanding the string dynamics beyond the standard 10D/11D supergravity regime is a key step towards linking strings to cosmological data, *e.g.* de Sitter from strings
- String dualities connect different regimes of the string dynamics, thus motivating the search for duality covariant frameworks :
 - Lower-dimensional (Embed. Tensor)

Cosmology : non-geometry & de Sitter vacua charting the string landscape

 ${\color{blue} Holography: new \,AdS_4/CFT_3\,duality}$

mIIA on S⁶/CS-SYM

• Higher-dimensional (Ext. Field Theories)

Exotic branes & BH microstates counting

Unification of 10D/11D supergravities Generalised geometries (T/S/U-folds) Consistent reductions (AdS₅ x S⁵ , ...) Non-geometry vs section constraint New generalised *stringy* geometries, exotic dual branes, black hole microstates, inflationary models, new de sitter vacua , AdS_4/CFT_3 , holographic RG flows and much more to be explored in the near future!!

Thanks

Extra material

A family of exotic branes

[Sakatani '15]

Deformations of EFT (XFT)

- Generalised Lie derivative

[no density term]

$$\mathbb{L}_{\Lambda}U^{\mathcal{M}} = \Lambda^{\mathcal{N}}\partial_{\mathcal{N}}U^{\mathcal{M}} - U^{\mathcal{N}}\partial_{\mathcal{N}}\Lambda^{\mathcal{M}} + Y^{\mathcal{M}\mathcal{N}}{}_{\mathcal{P}\mathcal{Q}}\partial_{\mathcal{N}}\Lambda^{\mathcal{P}}U^{\mathcal{Q}}$$

in terms of an E_{n(n)}-invariant structure Y-tensor. Closure requires sec. constraint

- **Deformed** generalised Lie derivative

$$\widetilde{\mathbb{L}}_{\Lambda}U^{\mathcal{M}} = \Lambda^{\mathcal{N}}\partial_{\mathcal{N}}U^{\mathcal{M}} - U^{\mathcal{N}}\partial_{\mathcal{N}}\Lambda^{\mathcal{M}} + Y^{\mathcal{M}\mathcal{N}}{}_{\mathcal{P}\mathcal{Q}}\partial_{\mathcal{N}}\Lambda^{\mathcal{P}}U^{\mathcal{Q}} - X_{\mathcal{N}\mathcal{P}}{}^{\mathcal{M}}\Lambda^{N}U^{\mathcal{P}}$$

in terms of an X deformation which is $E_{n(n)}$ -algebra valued

non-derivative

- Closure & triviality of the Jacobiator require (together with sec. constraint)

 $X_{\mathcal{MN}}{}^{\mathcal{P}}\partial_{\mathcal{P}}=0$ X constraint

$$X_{\mathcal{MP}}^{\mathcal{Q}} X_{\mathcal{NQ}}^{\mathcal{R}} - X_{\mathcal{NP}}^{\mathcal{Q}} X_{\mathcal{MQ}}^{\mathcal{R}} + X_{\mathcal{MN}}^{\mathcal{Q}} X_{\mathcal{QP}}^{\mathcal{R}} = 0$$

Quadratic constraint (gauged max. supergravity)

X deformation : background fluxes & Romans mass

Massive Type IIA described in a purely geometric manner !!

[QC = flux-induced tadpoles]

New massive Type IIA (n-1 coords)

- SL(n-1) orbit
- *p*-form fluxes compatible with SL(n-1)
- dilaton flux
- Romans mass parameter (kills the M-theory coord)

E₇₍₇₎-XFT action

- $E_{7(7)}$ -XFT action [$\mathcal{D}_{\mu} = \partial_{\mu} - \widetilde{\mathbb{L}}_{A_{\mu}}$] [$y^{\mathcal{M}}$ coords in the **56** of $E_{7(7)}$]

$$S_{\rm XFT} = \int d^4x \, d^{56}y \, e \left[\hat{R} + \frac{1}{48} \, g^{\mu\nu} \, \mathcal{D}_{\mu} \mathcal{M}^{\mathcal{M}\mathcal{N}} \, \mathcal{D}_{\nu} \mathcal{M}_{\mathcal{M}\mathcal{N}} - \frac{1}{8} \, \mathcal{M}_{\mathcal{M}\mathcal{N}} \, \mathcal{F}^{\mu\nu\mathcal{M}} \mathcal{F}_{\mu\nu}^{\mathcal{N}} \right. \\ \left. + e^{-1} \, \mathcal{L}_{\rm top} - V_{\rm XFT}(\mathcal{M}, g) \, \right]$$

with field strengths & potential given by

(deformed tensor hierarchy)

$$\mathcal{F}_{\mu\nu}{}^{\mathcal{M}} = 2 \partial_{[\mu}A_{\nu]}{}^{\mathcal{M}} + X_{[\mathcal{PQ}]}{}^{\mathcal{M}}A_{\mu}{}^{\mathcal{P}}A_{\nu}{}^{\mathcal{Q}} - [A_{\mu}, A_{\nu}]_{\mathrm{E}}{}^{\mathcal{M}} + \text{two-form terms}$$

 $V_{\rm XFT}(\mathcal{M},g,X) = V_{\rm EFT}(\mathcal{M},g) + \frac{1}{12} \mathcal{M}^{MN} \mathcal{M}^{KL} X_{MK}{}^P \partial_N \mathcal{M}_{PL} + V_{\rm SUGRA}(\mathcal{M},X)$ cross term gauged max. sugra

- Two-One-Zero-derivative potential : gauged 4D max. sugra when $\Phi(x,y) = \Phi(x)$

Extended (super) Poincaré superalgebra

- Central charges (internal symmetries) $\mathcal{Z}_{IJ} = (a^a_{IJ}) T^a$
- The algebra :

$$[P_{\mu}, P_{\nu}] = 0 \qquad [M_{\mu\nu}, M_{\rho\sigma}] = i \left(\eta_{\nu\rho} M_{\mu\sigma} - \eta_{\nu\sigma} M_{\mu\rho} - \eta_{\mu\rho} M_{\nu\sigma} + \eta_{\mu\sigma} M_{\nu\rho} \right)$$
$$[P_{\mu}, M_{\rho\sigma}] = i \left(\eta_{\mu\rho} P_{\sigma} - \eta_{\mu\sigma} P_{\rho} \right)$$
$$[T^{a}, T^{b}] = i f^{ab}_{\ c} T^{c} \qquad [T^{a}, P_{\mu}] = [T^{a}, M_{\mu\nu}] = 0$$

$$\begin{bmatrix} \mathcal{Q}_{\alpha}^{\prime}, P_{\mu} \end{bmatrix} = \begin{bmatrix} \bar{\mathcal{Q}}_{\dot{\alpha}}^{\prime}, P_{\mu} \end{bmatrix} = 0 \qquad \begin{bmatrix} \mathcal{Q}_{\alpha}^{\prime}, T^{a} \end{bmatrix} = (b_{a})^{\prime}{}_{J} \mathcal{Q}_{\alpha}^{J} \qquad \begin{bmatrix} \bar{\mathcal{Q}}_{\dot{\alpha}}^{\prime}, T^{a} \end{bmatrix} = -\bar{\mathcal{Q}}_{\dot{\alpha}}^{J} (b_{a})_{J}{}^{\prime} \\ \begin{bmatrix} \mathcal{Q}_{\alpha}^{\prime}, M_{\mu\nu} \end{bmatrix} = \frac{1}{2} (\sigma_{\mu\nu})_{\alpha}^{\beta} \mathcal{Q}_{\beta}^{\prime} \qquad \begin{bmatrix} \bar{\mathcal{Q}}_{\dot{\alpha}}^{\prime}, M_{\mu\nu} \end{bmatrix} = -\frac{1}{2} \bar{\mathcal{Q}}_{\dot{\beta}}^{\prime} (\bar{\sigma}_{\mu\nu})_{\dot{\alpha}}^{\dot{\beta}} \\ \end{bmatrix}$$

$$\left\{\bar{\mathcal{Q}}_{\dot{\alpha}}^{\prime},\bar{\mathcal{Q}}_{\dot{\beta}}^{J}\right\} = -2\epsilon_{\dot{\alpha}\dot{\beta}} \mathcal{Z}^{IJ\dagger} \qquad \left\{\mathcal{Q}_{\alpha}^{\prime},\mathcal{Q}_{\beta}^{J}\right\} = 2\epsilon_{\alpha\beta} \mathcal{Z}^{IJ} \qquad \left\{\mathcal{Q}_{\alpha}^{\prime},\bar{\mathcal{Q}}_{\dot{\beta}}^{J}\right\} = 2\delta^{IJ} \left(\sigma^{\mu}\right)_{\alpha\dot{\beta}} P_{\mu}$$