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Linking strings to the real world
❖ String theory provides a framework where to describe General Relativity and  
    Quantum Field Theory

❖ The fundamental building blocks are tiny vibrating strings with                     cmls ⇠ 10�33

String Theory
- 10D space-time 

- Supersymmetry

4D  Expanding  Universe
⇤c.c > 0

Six extra dimensions !!

low energies
L � ls

10D Supergravity

small 
extra dimensions
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The footprint of the extra dimensions
❖ Fluctuations of the extra dimensions (size and shape) translate into a set of        
    massless 4D scalar fields known as “moduli fields”

L = R� 1
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             The footprint of the extra dimensions

➢ Fluctuations of the internal space around a fixed geometry 
translates into  massless  4d  scalar  fields  known as  ``moduli ”

Deviations
from GR !!

      massless scalars = long range interactions  (precision tests of GR)

➢ String Phenomenology             Mechanisms for moduli stabilisation !!

➢ Moduli  VEVs                     determine  4d  physics  !!

 fermi masses  
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 fermi masses

❖ String phenomenology              Mechanisms for “moduli stabilisation” 

V (�) = m2
ij �

i �j + ...

❖ The moduli VEVs                    determine the 4D cosmological constant !!h�ii = �i
0
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⇤c.c ⌘ V (�0)

[ sign = expansion (dS) vs collapse (AdS)]
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Extra dimensions…

… will be non empty !!

  

Extra  dimensions . . .

… will be non empty !!
➢ D-branes

➢ funny geometries

➢ magnetic fluxes

 . . .   

Extra  dimensions . . .

… will be non empty !!
➢ D-branes

➢ funny geometries

➢ magnetic fluxes

 . . . 

V (�) = V
brane

+ V
flux

+ V
geom
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The problem  =  finding 
❖ Model building :

  

                                 The problem

 … but where is de Sitter within the string landscape ??

➢ Model building :     

branes  +  fluxes  +  geometries  +  …  =  parameters

… but where is de Sitter  
                       within the string landscape?

branes  +  fluxes  +  geometries  + … =  parameters

⇤c.c ⌘ V (�0) > 0
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Willem de Sitter 
(1872 – 1934)

      [Blumemhagen, Cámara, de Carlos, Dall’Agata, Derendinger,  
DeWolfe,  Giryavets,  Graña, Ibáñez, Kachru, Kounnas,  Kors, 
Lüst, Minasian, Petrini, Petropoulos, Reffert, Schulz, Schulgin, 
Stieberger,  Taylor,  Tomasiello,  Trigiante,  Tripathy,  Trivedi  , 
Villadoro, Zwirner, …  2002 - 2006 ] 

[Giddings, Kachru, Polchinski ’01] 
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No-go theorems forbid perturbative dS vacua !!

A way out: 

- Are there stable dS vacua in these non-geometric 4D scenarios (useful at all)? 

- Is there a 4D effective field theory where to describe such exotic fluxes systematically? 

- Do they have a higher-dimensional (string) origin?

Challenges in string theory !!
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To introduce mysterious non-geometric fluxes

Questions:

4D objects conjectured to exist based on string dualities  (different regimes of strings)

Motivation:  what are non-geometric fluxes?

[Hertzberg, Kachru, Taylor, Tegmark ’07]

[Shelton, Taylor, Wecht ’05, ’06]

[ strong-weak coupling,  winding-momentum states, …  ]

 

 

 

[Hull, Townsend ’94]

Questions to be addressed today :

[Dabholkar, Hull ’05]
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From 

non-geometric fluxes (2004-2006) 

to 

extended field theories (2014-2016)

( a personal trip)
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❖ Non-geometric fluxes were introduced for the first time in the context of effective  N=1  
     supergravities in order to restore the stringy T-duality at the 4D level

(2005-2006)

Hmnp ! !mn
p ! Qm

np ! Rmnp

❖ Starting from the field strength  H=dB  of the B-field (2-form gauge potential) of string  
     theory and applying a chain of  T-dualities , one finds 

gauge flux metric flux ?? ??

GEOMETRIC NON-GEOMETRIC

❖ SO(6,6) T-duality symmetry of string theory becomes manifest at the 4D level !!

❖ Generalisation to other stringy SL(2) S-duality and E7  U-duality :  P-fluxes, etc…
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[Shelton, Taylor, Wecht ’05, ’06]

[Aldazabal, Cámara, Font, Ibáñez ’06]

[Kaloper, Myers ’99]

[ T-folds : Hull ’04 ][ Torus ] [ Twisted torus ] [ ?? ]
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8

[Shelton, Taylor, Wecht ’05, ’06]

[Aldazabal, Cámara, Font, Ibáñez ’06]

[Kaloper, Myers ’99]

(2004 - 2006) [Dabholkar, Hull ’05]
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❖ Soon after their appearance, novel algebraic structures underlying the zoo of non-geometric  
    fluxes started being uncovered. Making use of these algebraic structures,  the first examples  
    of non-geometric stable dS vacua were found!!

(2007-2009)

… although their higher-dimensional origin remained unclear

4.6 Comparison with type IIA scenarios 143

the parameter space under consideration.

The set of Minkowski solutions for this model is shown in figure 4.8, where a narrow

region within the parameter space, that of the DE & D’E’ lines, was found to contain sta-

ble vacua. At these stable vacua, V! < 0 and V
(1)
loc < 0 , while the rest of the contributions

to the scalar potential are positive. Then, these stable vacua need type 1 O6-planes and

type 2 D6-branes to exist. As long as we flow between the points D and E in figure 4.8,

the main contributions to |⇠|2
|�|3 |✏|m4

p

VIIA change from being of order O(10�2) around the

point D, to become of order O(1) around the point E. An intermediate point in the DE

line is shown in figure 4.13.
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Figure 4.13: IIA dual contributions to the scalar potential at a stable Mkw vacuum for

the supergravity models based on the so(3, 1) B-field reduction. They are computed at

the circle ✓✏ = 49⇡
100 which belongs to the DE piece of the parameter space and implies

✓⇠ = 0.10821⇡ , together with the moduli VEVs of Z0 = 0.45089+ 0.46042i , |✏||⇠|�1S0 =

�1.07734 + 1.28783i and |⇠|�1T0 = 1.15629 + 0.60267i.

For these supergravity models, the contributions to the potential energy coming from

localised sources are still given by (4.107). By inspection of figure 4.8, we conclude that

there are unstable Mkw solutions having V
(2)
loc ? 0. Even more, there is a particularly in-

teresting solution with V
(2)
loc = 0. It is located at the point (✓✏, ✓⇠) = (0.40904⇡, 0) within

the parameter space, and its profile of the contributions to VIIA is shown in figure 4.14.

Naturally, its image point under the transformation � ! ��⇤ of (4.88) is also a

solution with V
(2)
loc = 0. These unstable Mkw solutions are the only ones that would

also exist in the Z2 orbifold compactification of refs [7, 8, 95], that does not allow type

2 O6/D6 sources. We will see in chapter 5 that, in the absence of such sources, these

unstable solutions could presumably be lifted to solutions of a N = 4 gauged supergrav-

ity [84,155,176,178,180,186] built from an SL(2,Z)S electric-magnetic gauging.
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[de Carlos, A.G, Moreno '09]

[Font, A.G, Moreno '08]
[A.G, Weatherill '08]

[de Carlos, AG, Moreno ’09]

[Hull, Reid-Edwards ’07] [Reid-Edwards ’09]
[Dall’Agata, Prezas, Samtleben, Trigiante ’07]

[Graña, Minasian, Petrini, Waldram ’08]
[Font, AG, Moreno ’08] [AG, Weatherill ’08]

9

(2007 - 2009)
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Type IIA Type IIB 11D sugra HeteroticType I

geometric non-geometric 
???

4D supergravities 
(ET framework)

Higher-dimensional supergravities
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❖ The ET formalism implements  all the stringy dualities in a 4D effective Lagrangian,  
     namely,  the interactions are determined by the symmetries of string theory 

❖ Parallel to these developments,  an effective field theory framework where to describe  
     all the N=8 and N=4 supergravities irrespective of their origin enters the scene :  

the embedding tensor framework

couplings in the potential (fluxes)         embedding tensor (reps. of duality group) =

Program :  Precise correspondence between embedding tensor and fluxes (geometric and  
                  non-geometric) so that a systematic study of the latter can be achieved !!

10

[de Wit, Samtleben, Trigiante ’03 , ’07]
[Schon, Weidner ’06]

[de Wit, Samtleben, Trigiante ’03] 

[Angelantonj, Ferrara, Trigiante ’03 ’04]

Embedding Tensor framework

11

[3D : Nicolai, Samtleben ’00 ’01]
[de Wit, Samtleben, Trigiante ’05 ’07]

[Schön, Weidner ’06]

Previous results :

[de Wit, Samtleben, Trigiante ’03] [Angelantonj, Ferrara, Trigiante ‘03 ‘04]
[Derendinger, Kounnas, Petropoulos & Zwirner ’04 ’05 ’06]
[Villadoro, Zwirner ’05] [Aldazabal, Cámara, Font, Ibáñez ’06]
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Embedding Tensor  /  Flux  correspondence

tensor components and fluxes entering the superpotential in (2.30) reads

f+mnp = F̃ 0
mnp , f+mn

p = Q0
mn

p , f mn
+ p = Qmn

p , f mnp
+ = F̃mnp ,

f�mnp = H̃ 0
mnp , f�mn

p = P 0
mn

p , f mn
� p = P mn

p , f mnp
� = H̃mnp ,

(2.29)

where, for instance, F̃mnp ⌘ 1

3!
✏mnpm0n0p0 Fm0n0p0 . The correspondence between SO(6, 6) and

SO(2, 2) embedding tensor components with known/conjectured flux objects in both type

IIA and type IIB orientifold compactifications is presented in tables 1 and 2.

couplings SO(6, 6) SO(2, 2) Type IIB Type IIA fluxes

1 �f+āb̄c̄ �⇤+333 Fijk Faibjck a0

U f+āb̄k̄ ⇤+334 Fijc Faibj a1

U2 �f+āj̄k̄ �⇤+344 Fibc Fai a2

U3 f+īj̄k̄ ⇤+444 Fabc F0 a3

S �f�āb̄c̄ �⇤�333 Hijk Hijk b0

S U f�āb̄k̄ ⇤�334 Hijc !c
ij b1

S U2 �f�āj̄k̄ �⇤�344 Hibc Qbc
i b2

S U3 f�īj̄k̄ ⇤�444 Habc Rabc b3

T f+āb̄k ⇤+233 Qab
k Habk c0

T U f+āj̄k = f+īb̄k , f+ab̄c̄ ⇤+234 , ⇤+133 Qaj
k = Qib

k , Qbc
a !j

ka = !i
bk , !a

bc c1 , c̃1

T U2 f+īb̄c = f+āj̄c , f+īj̄k ⇤+134 , ⇤+244 Qib
c = Qaj

c , Qij
k Qci

b = Qjc
a , Qij

k c2 , c̃2

T U3 f+īj̄c ⇤+144 Qij
c Rijc c3

S T f�āb̄k ⇤�233 P ab
k d0

S T U f�āj̄k = f�īb̄k , f�ab̄c̄ ⇤�234 , ⇤�133 P aj
k = P ib

k , P bc
a d1 , d̃1

S T U2 f�īb̄c = f�āj̄c , f�īj̄k ⇤�134 , ⇤�244 P ib
c = P aj

c , P ij
k d2 , d̃2

S T U3 f�īj̄c ⇤�144 P ij
c d3

Table 1: Mapping between unprimed fluxes, embedding tensor components and couplings in

the superpotential.

Irrespective of the particular string theory realisation, we have explicitly checked that the

scalar potential (2.10) induced by the gaugings in the SO(3) truncated theory is correctly

reproduced, up to N = 4 quadratic constraints, from the following flux-induced superpo-

tential

WSO(3) = (PF � PH S) + 3T (PQ � PP S) + 3T 2 (PQ0 � PP 0 S) + T 3 (PF 0 � PH0 S) , (2.30)

11

Full embedding tensor/flux correspondence :

11

[Dibitetto, A.G, Roest ’11, ’12, ’14]
[Aldazabal, Cámara, Font, Ibáñez ’06]
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Full embedding tensor/flux correspondence :
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[Dibitetto, A.G, Roest ’11, ’12, ’14]
[Aldazabal, Cámara, Font, Ibáñez ’06]

[Dall’Agata, Villadoro, Zwirner ’09]
[Dibitetto, AG, Roest ’11 ’12 ‘14]
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❖ Novel (dyonic) non-geometric supergravities constructed using the ET fomalism

AdS vacua: applications in holography dS vacua: applications in cosmology

(2009-2016)

❖ New AdS and dS vacua (systematically) found after the full ET/flux correspondence

12

• dS in extended supergravity

• charting the landscape of flux vacua

• inflationary models (slow-roll)

• open/closed string interplay  
    (alternative to anti-branes)

• Dyonic gaugings and dual CFT3

• Consistent reductions of massive IIA /M-theory

• Non-geometric superpotentials and BPS 
solutions

• New holographic RG flows from (M2)D2-branes  
     and AdS4/CFT3

[Dall’Agata, Inverso, Trigiante  & Marrani ’12, ‘14]

[Borghese, A.G, Roest ’12, ’13]

[ AG, Jafferis, Varela ’15] 

[A.G ’13] , [Tarrío, Varela ’13] , [A.G, Tarrío, Varela ’16] 

[A.G  ’13, ‘15]

[ Dibitetto, AG, Roest  ’12] 

[Dibitetto, A.G, Roest ’11, ’12, ’14]

[Dall’Agata, Inverso ’11]    [Borghese, Dibitetto, A.G, Roest, Varela ’12] 

[A.G, Inverso ‘16]

[Casas, de Carlos, A.G, Moreno, Seto  ‘07]

[Danielsson, Dibitetto, A.G ’14]  [Derendinger, A.G ’14]

[A.G , Varela ’15]  

(2009 - 2016)
New AdS and dS vacua (systematically) found using the ET/flux correspondence

ET framework relevant for holography and cosmology

[Dall’Agata, Inverso, Trigiante ’12] [AG, Jafferis, Varela ’15]

[AG & Tarrío, Varela ’13] [Pang, Rong ‘15] [AG, Tarrío, Varela ’16]

[Dall’Agata, Villadoro, Zwirner ’09] [Godazgar’s, Nicolai ‘13]
[Derendinger, AG ’14] [Danielsson, Dibitetto, AG ’14] 
[Baron, Dall’Agata ’14] [AG, Varela ’15]

[Roest, Rosseel ’09] [Borghese, Roest ‘10] 
[Dibitetto, AG, Roest ’12]

[Dall’Agata, Inverso ’11] [Damian, Loaiza-Brito ’13]
[Danielsson, Haque, Shiu, van Riet & Koerber ’10 ‘11]
[Aldazabal, Marques, Nuñez, Rosabal ’11] 
[Kodama, Nozawa ’12] [Dibitetto, AG, Roest ’11 ’12 ’14]
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[Blåbäk, Roest, Zavala & Danielsson, Dibitetto ’13]  
[Kallosh, Linde, Vercnocke, Wrase ’14] [AG, Inverso ‘15]

[ A biased choice of applications ]
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[de Carlos, AG, Moreno ’09] [Hassler, Lüst, Massi ’14] 
[Kodama, Nozawa ’15] [Blumenhagen et al ’15] 

[AG, ’13 ’15] [Danielsson, Dibitetto ’15]
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Holography :   a new AdS4/CFT3 duality

 [Dall’Agata, Inverso, Trigiante & Marrani ’12, ‘14]  [Borghese, Dibitetto, AG, Roest, Varela  ’12]  [Borghese, AG, Roest ’12,’13]

New dyonic maximal supergravities constructed using the ET framework

    Example :   One-parameter family of SO(8)-gauged supergravities !!Physical meaning in 4D :    electric/magnetic deformation

7>7OFDUO��
b7OF[DE

YMSZ7FUO�
b7OF[DE

G = SO(8)

D = @ � g (Aelec � c Ãmag)

! = Arg(1 + ic)

Physical meaning in 4D :    electric/magnetic deformation

7>7OFDUO��
b7OF[DE

YMSZ7FUO�
b7OF[DE

G = SO(8)

D = @ � g (Aelec � c Ãmag)

! = Arg(1 + ic)

• AdS4 x S7 backgrounds of 11D supergravity    (M2-brane) ?

• AdS4/CFT3 duality   (ABJM or ABJ) ? … no conclusive answer yet

[Dall’Agata, Inverso, Trigiante ’12]

[de Wit, Nicolai ‘13] [Lee, Strickland-Constable, Waldram ‘15]

[de Wit, Nicolai ‘82]

[Aharony, Bergman, Jafferis, Maldacena ‘08]
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    Example :   One-parameter family of ISO(7)-gauged supergravities

• AdS4 x S6 background of massive IIA supergravity  (D2-brane)

• AdS4/CFT3 duality :  Chern-Simons-SYM theories with simple gauge 
                                          group SU(N) and level k given by Romans mass

• Matching of the free energies in supergravity and field theory sides (localisation)

• Further checks of the duality have been performed afterwords

Physical meaning in 4D = electric/magnetic deformation

YMSZ7FUO�
b7OF[DE

7>7OFDUO��
b7OF[DE

SO(7)

R7

G = ISO(7) = SO(7)n R7

! = Arg(1 + ic)

D = @ � g Aelec
SO(7) � g (Aelec

R7 � c ÃR7 mag)

Physical meaning in 4D = electric/magnetic deformation

YMSZ7FUO�
b7OF[DE

7>7OFDUO��
b7OF[DE

SO(7)

R7

G = ISO(7) = SO(7)n R7

! = Arg(1 + ic)

D = @ � g Aelec
SO(7) � g (Aelec

R7 � c ÃR7 mag)

[AG, Jafferis, Varela ’15]
[AG, Varela ’15] 

 [Dall’Agata, Inverso, Marrani ‘14]

[Araujo, Nastase ‘16]

[Schwarz ’04]



Well-established and independent dualities :

Type IIB on S5/N=4 SYM   —    M-theory on S7/ABJM  —  mIIA on S6/CS-SYM

16

A new 10D/4D/3d correspondence

massive IIA on S6     «   ISO(7)c-gauged sugra   »   SU(N)k  C-S-M theory

gc =        =  

4D

10D

3d

F̂(0)

gc = elec/mag deformation in 4D

        = Romans mass in 10D

k = Chern-Simons level in 3d

F̂(0)k/(2⇡`s)

[ AG, Jafferis, Varela ’15 ] 
[ AG, Varela ’15 ] 

[ Schwarz ’04 ] 

A new 10D/4D/3d correspondence

massive IIA on S6     «   ISO(7)c-gauged sugra   »   SU(N)k  CS-SYM theory

[AG, Jafferis, Varela ’15]  
[AG, Varela ’15] 



Holographic RG-flows on the D2-brane

All these supersymmetric AdS4 solutions of massive type IIA string theory should corre-
spond to conformal phases of the D2 brane field theory with distinct flavour symmetries and
supersymmetry. They should arise as the IR endpoints of RG flows triggered by di↵erent
symmetry- and supersymmetry-preserving deformations of N = 8 SYM caused by the Ro-
mans mass. We confirm this expectation for the N = 2 flow discussed in [11] by explicitly
constructing an N = 2 domain wall solution in D = 4 dyonic ISO(7) supergravity that inter-
polates between the N = 2, SU(3) ⇥ U(1) vacuum in the IR and the (corresponding D = 4
description of the) planar D2 brane solution in the UV. More generally, we show that there
exists an N = 1 family of flows that originate in N = 8 SYM and drive the theory towards the
N = 2, SU(3)⇥ U(1)-symmetric IR fixed point. We find a second family of N = 1 RG flows
that drive N = 8 SYM into the supersymmetric IR phase with SU(3) invariance. Both fami-
lies are bounded by a unique flow with IR endpoint into the G2-symmetric phase. Finally, we
are also able to construct two unique domain walls that interpolate between the G2 conformal
phase in the in the UV and either the N = 2, SU(3)⇥ U(1) point or the N = 1 SU(3) point
in the IR. By the generic results of [11, 14] and the specific formulae of [25], these domain
walls uplift to massive type IIA supergravity and link the corresponding AdS4 solutions. See
figure 1 for a schematic sketch of this web of domain walls. ov: Say something about the
SO(4) point and flow. In the remainder of the paper we do this and that.

D2-brane

N=1 & G2

N=1 & SU(3)

N=2 & SU(3)xU(1)

Figure 4
Figures 3 & 5

N=3 & SO(4)

Figure 1: RG flows from SYM (dotted lines) and between CFT’s (solid lines) dual to BPS
domain-wall solutions within the SU(3) and SO(4) invariant sectors of the dyonic ISO(7)-
gauged maximal supergravity.

ag: Say this somewhere at the begining: To generate all the figures in this paper, we
have set g = c = 1 without loss of generality, since all theories with c 6= 0 are equivalent to
each other and g sets the unit of length in the gravitational solution. Note however that the
position of the fixed point in scalar-space, and therefore the domain walls connecting them,

3

1717

RG flows from SYM (dotted lines) and between CFT’s (solid lines) dual to 
BPS domain-wall solutions of the dyonic ISO(7)-gauged supergravity

[AG, Tarrío, Varela ’16] 

mIIA on S6/CS-SYM correspondence  &  holographic RG flows
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What is the higher-dimensional origin of non-geometric fluxes 

and, more generally, of the various supergravities obtained using 

the lower-dimensional and duality covariant ET framework ?

Back to a long-standing question
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(2013 - 2016)  :  string dualities in higher-dimensions 

- Different strings related by dualities:  IIA/IIB T-duality,  IIB S-duality, …

- String dualities realised as global symmetries in lower-dimensional SUGRA

lower-dimensional phenomenon       VS       higher-dimensional phenomenon

New approach :  Extended Field Theories    [ extend internal coords to transform under duality ]

 Double Field Theory  (DFT)                 Orthogonal groups  O(d,d)

 Exceptional Field Theory  (EFT)           Exceptional groups  Ed+1(d+1) [ max SUGRA   (U-duality) ]

[ half-max SUGRA   (T-duality) ]

embedding tensor, non-geometric fluxes… ß-supergravity  ,  γ-supergravity…

[Siegel ’93] [Hull, Zwiebach & Hohm ’09 ’10] [Hohm, Samtleben ’13]

[Andriot, Betz ’13]  [Lee, Rey, Sakatani ‘16]



•                                           generalised metric :    metric + B-field

20

Double Field Theory  (DFT)

T-duality covariant framework to describe momentum + winding modes

[Siegel ’93] 
[Hull, Zwiebach & Hohm ’09 ’10]

The theory lives in  D (external) + 2d (internal)  coordinates        ,  with  D + d = 10 ,  
    and has an R+ x O(d, d) symmetry linearly realised

Here D̂µ is the spacetime derivative covariantised with respect to both external and

internal generalised diffeomorphisms (i.e. it contains generalised Christoffel symbols).

When substituted into the action, the last term is integrated by part. In the process, one

directly drops a total Dµ derivative. This is allowed since it acts on a scalar density of

weight 1 under R
+
DFT . Note also that the rescaling (2.58) has no effect on the Fµν

+M

term in the modified Ricci scalar. After taking the DFT limit, dualising the axion χ0

into a tensor field Bµν and moving to the string frame, the action (2.33) then reduces to

SDFT =
∫
d4x d12y ẽ e−2d

[
R̂(ẽ) + 4DµdDµd+

1
8 D

µMMN DµMMN

− 1
12 Hµνρ Hµνρ − 1

4 MMN Fµν
MFµνN − VDFT(d,MMN , g̃)

]
,

(2.61)

where the field strengths of the electric vectors read15

Fµν
M ≡ Fµν

+M = Fµν
+M − ηMN∂NBµν , (2.62)

and where external space-time indices are now raised and lowered with the rescaled metric

g̃µν . Finally, the part of the Lagrangian containing the potential takes the form

LPot = −ẽ e−2d VDFT

= ẽ e−2d
[

1
8 M

MN (∂MMKL)(∂NMKL)− 1
2 M

MN (∂NMKL)(∂LMMK)

− 2 (∂Md)(∂NMMN ) + 4MMN (∂Md)(∂Nd)

+ 1
4 M

MN ∂M g̃µν ∂N g̃µν +
1
4 M

MN g̃−1(∂M g̃) g̃−1(∂N g̃)

− 2MMN (∂Md) g̃−1(∂N g̃) +
1
2 (∂MMMN ) g̃−1(∂N g̃)

]
.

(2.63)

As previously stated, the axion χ0 cancels out in the above expression. Dropping a total

derivative16 and using ẽ−1(∂M ẽ) = 1
2 g̃

−1(∂M g̃) , the potential (2.63) can be expressed as

LPot = ẽ e−2d
[
R(d,M) +

1

4
MMN ∂M g̃µν ∂N g̃

µν +
1

4
MMN g̃−1(∂M g̃) g̃−1(∂N g̃)

]
, (2.64)

where R(d,M) is the Ricci scalar for the internal doubled-space [70]

R(d,M) =
1

8
MMN (∂MMKL)(∂NMKL)−

1

2
MMN (∂NM

KL)(∂LMMK)− ∂M∂NM
MN

− 4MMN (∂Md)(∂Nd) + 4 (∂MMMN ) (∂Nd) + 4MMN (∂M∂Nd) . (2.65)

The potential (2.64) corresponds to the one derived in [60] up to the last term.

15Note that the last term from (2.12), i.e. − 1
2 η

MNBµν −N , is absent as Bµν αM are covariantly

constrained compensating fields solving (2.9) as the internal derivatives (2.47). This sets Bµν −M = 0 .
16Note that the second line of (2.63) can be rewritten as follows:

ẽ e−2d
[
− (∂M∂NMMN )− 4MMN (∂Md)(∂Nd) + 4 ∂M (MMN ∂Nd)

− ẽ−1(∂M ẽ)[∂NMMN − 4MMN ∂Nd]
]
+ ∂M

(
ẽ e−2d[∂NMMN − 4MMN ∂Nd]

)
.
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Example :  D = 4 , d = 6   &  M = 1, …, 12

MMN 2 O(6, 6)/O(6)2

Generalised geometries (beyond Riemann) &  non-geometry (T-folds)

N=1 sugra in 10D• Consistency requires a section constraint : ⌘MN @M ⌦ @N = 0

yM

[Dabholkar, Hull ’03]  [Hull ’04 ’06]
[Coimbra, Strickland-Constable, Waldram ’11]

� � �

�

[asymmetric orbifolds]



Type IIB  
or  

11D supergravity

21

Exceptional Field Theory  (EFT)

U-duality covariant framework to describe momentum + winding + brane modes

The theory lives in  D (external) + R[Ed(d)] (internal)  coordinates        ,  with  D + d = 11 ,  
    and has an Ed(d) symmetry linearly realised

Exceptional generalised geometries (beyond Riemann) &  non-geometry (U-folds)

[Hohm, Samtleben ’13]

Example :  D = 4 , d = 7   &        = 1, …, 56

•                                        generalised metric :  metric  +  type IIB  or  A(3)  potentials

Y MN
PQ @M ⌦ @N = 0

MMN 2 E7(7)/SU(8)

• Consistency requires a section constraint : 

yM

[ Massive IIA : Ciceri, AG, Inverso ’16 ]

[Coimbra, Strickland-Constable, Waldram ’11 ‘12]

M

MMN

SE7(7)-EFT =

Z
d

4

x d

56

y e

⇥
R̂ + 1

48

g

µ⌫ DµM
MN D⌫MMN � 1

8

MMN Fµ⌫MFµ⌫
N

+ e

�1 L
top

� VE7(7)-EFT(MMN , g)
⇤
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Dualities in SUGRA and Extended Field Theory

D Maximal sugra / EFT Half-maximal sugra DFT

9 R+ × SL(2) R+ ×O(1, 1 + n) R+ ×O(1, 1 + n)

8 SL(2)× SL(3) R+ ×O(2, 2 + n) R+ ×O(2, 2 + n)

7 SL(5) R+ ×O(3, 3 + n) R+ ×O(3, 3 + n)

6 SO(5, 5) R+ ×O(4, 4 + n) R+ ×O(4, 4 + n)

5 E6(6) R+ ×O(5, 5 + n) R+ ×O(5, 5 + n)

4 E7(7) SL(2)×O(6, 6 + n) R+ ×O(6, 6 + n)

3 E8(8) O(8, 8 + n) R+ ×O(7, 7 + n)

Table 1: Relevant duality groups in maximal and half-maximal supergravity as well as in

extended field theory. Only the non-chiral N = (1, 1) supergravity in D = 6 is displayed.

The R+ factor in the duality structure of DFT is actually a combination of an internal

R+ contained in the second column and a trombone rescaling.

are SL(2) rotated with respect to each other. Various maximally symmetric solutions

compatible with four-dimensional N = 4 gaugings of this type were discussed in [28,29].

It thus becomes crucial to have access to the SL(2) factor of the duality group in

the half-maximal extended field theory in order to generate N = 4 gaugings that may

stabilise the moduli upon reduction to a D = 4 gauged supergravity. One systematic

manner of obtaining N = 4 gaugings at SL(2) angles is by Z2-truncating gaugings of

N = 8 supergravity [30] for which moduli stabilisation is known to occur, e.g. the

CSO(p, q, r) gaugings (p + q + r = 8) of maximal supergravity [31–34]. Some of these

gaugings arise from consistent reductions of string/M-theory with fluxes2, and without

extra spacetime-filling sources. However, from a phenomenological point of view, these

gaugings are not yet fully satisfactory because they cannot arise from compactifications

(without boundaries) and, at the same time, produce Minkowski or de Sitter (dS) solu-

tions due to the no-go theorem of [41] (see also [42]). In order to circumvent this no-go

theorem, one may add sources (branes, orientifold planes, KK-monopoles, ...) and/or

introduce non-geometric fluxes [43, 44] whose higher-dimensional origin is not yet well

understood. The resulting four-dimensional supergravity is no longer compatible with

maximal supersymmetry but still can preserve some fraction thereof if the sources and

fluxes are judiciously distributed over the internal space. When they are set to preserve

N = 4 supersymmetry, no example of a perturbatively stable dS vacuum in D = 4

2See [11] (and references therein) for a unified account of electric gaugings, as well as [35–37] for

dyonic ones [38–40].

3

Duality groups of half-maximal SUGRA and DFT differ for

* n = additional vector multiplets

D  4
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… so there is a theory in between EFT and DFT in D = 4

EFT  with  E7(7)  duality  group

SL(2)-DFT  with  SL(2) x O(6,6+n)  duality  group

DFT  with  R+ x O(6,6+n)  duality  group

[Hohm, Samtleben ’13]

[Siegel ’93] 
[Hull, Zwiebach ’09] 

[Hohm, Hull, Zwiebach ’10]
[Hohm, Kwak ’11]

[Ciceri, Dibitetto, F-Melgarejo, AG, Inverso ‘16]



SL(2) -Double Field Theory

SL(2) x O(6, 6) covariant framework

The theory lives in  D (external) + 2 x 12 (internal)  coordinates                                       ,  
    and has an SL(2) x O(6, 6) symmetry linearly realised

Example :  D = 4 , d = 6   &  α = +, - ,  M = 1, …, 12

• Consistency section constraints : 

2.3 Bosonic pseudo-action

We now present the pseudo-action governing the dynamics of the theory. It can be derived

by Z2-truncating the pseudo-action of E7(7)-EFT [5], as described in the appendix A, and

must be supplemented with the twisted self-duality relations

Fµν
αM = −1

2
e εµνρση

MNεαβ MβNγP Fρσ γP , (2.17)

where e is the determinant of the vierbein and MαMβN ≡ MαβMMN is a symmetric

matrix parameterising the scalar manifold. The dynamics of the theory is completely

specified by imposing the above twisted self-duality equations after varying the pseudo-

action

SSL(2)-DFT =

∫
d4x d24y e

[
R̂ + 1

4 g
µν DµM

αβ DνMαβ +
1
8 g

µν DµM
MN DνMMN

−1
8 Mαβ MMN Fµν αMFµν

βN + e−1 Ltop − VSL(2)-DFT(M, g)
]
.

(2.18)

The gauge invariance of this pseudo-action is guaranteed by the fact that the section

constraints (2.6) are in one-to-one correspondence with the truncation of the E7(7)-EFT

section constraint. Nevertheless, gauge invariance can be checked explicitly using the

fact that the vierbein and the scalar matrix MαMβN transform under generalised diffeo-

morphisms as a scalar density and as a symmetric tensor of weight λ(eµa) = 1/2 and

λ(MαMβN) = 0, respectively. This implies6 in particular

δΛeµa = ΛγP ∂γP eµa +
1
2 ∂γPΛ

γP eµa ,

δΛMαβ = ΛγP ∂γPMαβ − 2Mγ(α ∂γPΛβ)P +Mαβ ∂γPΛγP ,

δΛMMN = ΛγP ∂γPMMN − 2MP (M ∂γPΛ|γ|N) + 2 ηP (M MN)R ∂γPΛγQ ηQR .

(2.19)

Equipped with these formulae and the transformations (2.17), it is then possible to ver-

ify that each term in the pseudo-action is invariant under generalised diffeomorphisms

and tensor gauge transformations. The relative coefficients between the various term can

be fixed by requiring invariance under external diffeomorphisms but this computation is

more involved and we expect it to follow the same steps as in E7(7)-EFT.

The kinetic terms: In line with the structure of extended field theories, the Einstein-

Hilbert term is constructed from a modified Riemann tensor

R̂µν
ab = Rµν

ab[ω] + Fµν
αM eaρ ∂αMeρ

b , (2.20)

6There is an ambiguity in how to distribute the density term between the transformation of Mαβ

and the one of MMN . Note however that this is irrelevant for the gauge invariance of the pseudo-action

(2.18). In order to recover later on the correct transformation of MMN in DFT, we have chosen here

to move the whole density term to the transformation of Mαβ .

9

⌘MN @↵M ⌦ @�N = 0

✏↵� @↵[M | ⌦ @�|N ] = 0

N=1 sugra in 10D 
or  

(2,0) sugra in 6D

•                                       generalised dilaton :   dilaton + axionM↵� 2 SL(2)/SO(2)

[ n = 0 ] [Ciceri, Dibitetto, F-Melgarejo, AG, Inverso ‘16]

24

y↵M = (y+M , y�M )

DFT corresponds to SL(2)+ -DFT

•                                               generalised metric :    metric + B-fieldMMN 2 SO(6, 6)/SO(6)2

… but what for ?
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Scherk-Schwarz (SS) reductions with SL(2) x O(6,6) twist matrices
    yield N = 4 , D = 4 gaugings

U↵M
�N = e� e↵

� UM
N

f↵MNP = �3 e�� e↵� ⌘Q[M UN
R UP ]

S @�RUS
Q

⇠↵M = 2UM
N@�N (e��e↵�)

Moduli stabilisation requires gaugings  G = G1 x G2  at relative SL(2) angles

SL(2) angles  and  moduli stabilisation 

f+

f�
G2 ( sec. constraint violated )

[ not possible in DFT ]

G1
✏↵� @↵[M | ⌦ @�|N ] 6= 0

[de Roo, Wagemans ’85]

[Schön, Weidner ’06]

Dependence on both  type +  &  type -  coordinates
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Example :   SO(4) x SO(4)-gauged  sugra   and   non-geometry

- SS with                                   :  Half of the coords of  type +   &   half of  type - 

- SL(2)-superposition of two chains of non-geometric fluxes  ( H , ! , Q , R )±

Most  general  family  (8 params)  of  SO(4) x SO(4)-gauged  N=4  sugra

-  SO(4) x SO(4) SUGRA :   AdS4  &  dS4  vacua  ( sphere/hyperboloid reductions)

- ``Hybrid ±” sources to cancel flux-induced tadpoles :   SL(2)-dual NS-NS branes ??

f+

f�

[de Roo, Westra, Panda, Trigiante ’03]   [Dibitetto, AG, Roest ’12]

U(y↵M ) 2 O(6, 6)

f+mnp = H+
mnp , f+mnp̄ = !+

mn
p , f+m̄n̄p = Q+mn

p , f+m̄n̄p̄ = R+mnp

f�mnp = H�
mnp , f�mnp̄ = !�

mn
p , f�m̄n̄p = Q�mn

p , f�m̄n̄p̄ = R�mnp

[ exotic branes : de Boer, Shigemori ’10 ]
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Summary  &  Future directions  ( 2017 - … )

Understanding the string dynamics beyond the standard 10D/11D supergravity regime 
is a key step towards linking strings to cosmological data,  e.g. de Sitter from strings

String dualities connect different regimes of the string dynamics, thus motivating the 
search for duality covariant frameworks :

• Lower-dimensional  (Embed. Tensor)

• Higher-dimensional  (Ext. Field Theories)

Cosmology :  non-geometry & de Sitter vacua
                        charting the string landscape

Holography :  new AdS4/CFT3 duality
                     mIIA on S6/CS-SYM 

Unification of 10D/11D supergravities

Generalised geometries (T/S/U-folds)

Consistent reductions ( AdS5 x S5 , … )

Non-geometry  vs  section constraint
…Exotic branes  &  BH microstates counting



Thanks
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15

(2016-future)
❖ The fact that our Universe is currently undergoing a phase of accelerated expansion makes 

the search for de Sitter vacua a key step towards linking strings to cosmological data

❖ Non-geometry has proven crucial to obtain stable dS vacua. However, its string theory 
origin remains yet unclear  (although important progress has been made!!) 

❖ Novel duality covariant frameworks where to describe non-geometry have been put 
forward: embedding tensor (4D) ,  DFT (4+12) ,  QFT (4+24) ,  EFT (4+56) .  They have 
proven very successful to address also old problems:  consistent (sphere) reductions, 
charting the landscape of flux vacua (combined with algebraic geometry tools) , …

New generalised stringy geometries,  exotic dual branes , black hole microstates , 
inflationary models , new de sitter vacua  ,   AdS4/CFT3   ,  holographic RG flows  
and much more to be explored in the near future!!



Extra material
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A family of exotic branes

1 Introduction

String theory contains various extended objects such as fundamental strings, solitonic five-

branes, and Dp-branes. These objects are known to couple to the standard background fields;

the B-field or the Ramond-Ramond fields. If we consider a compactification on a seven-torus,

T 7
3···9, there arise additional objects, called exotic branes [1–6]. The exotic branes can exist

only in the presence of compact isometry directions, just like the Kaluza-Klein monopoles, and

have the tension proportional to gαs with α = −2,−3,−4. Among them, a 522-brane, which

has two isometry directions, has been well-studied recently [4–16]. Since the 522 background

has a non-vanishing (magnetic) Q-flux [8, 9], we can identify the 522-brane as an object that

magnetically couples to a bi-vector field βij whose derivative gives the Q-flux. This can be

shown more explicitly by writing down the worldvolume effective action of the 522-brane [12,15].

If we perform an S-duality transformation, the 522-brane is mapped to another exotic brane,

called a D52-brane, which is a member of a family of exotic p-branes, denoted by Dp7−p [2,3].

If we adopt a notation used in [1, 6], the exotic p-brane, which has (7 − p) special isometry

directions, is denoted by p7−p
3 (n1 · · ·np,m1 · · ·m7−p) since the mass is written as

M =
1

g3s ls

(Rn1 · · ·Rnp

lps

)(Rm1 · · ·Rm7−p

l7−p
s

)2 (
Ri: radius in the xi-direction

)
, (1.1)

where xni are the extending directions while xmi are the special isometry directions. They are

also called the higher Kaluza-Klein branes [3], since the quadratic dependence on the radii in

the isometry directions is similar to the case of the Kaluza-Klein monopole, KK5= 512 . For

the special case of p = 7, we frequently denote it by NS7 instead of 73 . The duality relation

between the standard branes and the exotic branes is summarized in Figure 1.

In spite of the presence of a symmetric structure between the exotic branes and the usual

branes (see Figure 1), little is known about the exotic branes; e.g., the background fields

which couple to the exotic branes have not been studied in detail, other than the case of the

522-brane.

Figure 1: A family of exotic branes and the duality web.

1
[ Sakatani ‘15 ]



Deformations of EFT   ( XFT )

- Generalised Lie derivative

L⇤UM = ⇤N@NUM � UN@N⇤M + Y MN
PQ @N⇤P UQ

in terms of an En(n)-invariant structure Y-tensor.  Closure requires sec. constraint

- Deformed generalised Lie derivative

in terms of an X deformation which is En(n)-algebra valued

- Closure & triviality of the Jacobiator require  ( together with sec. constraint )

XMN
P @P = 0 XMP

Q XNQ
R �XNP

Q XMQ
R +XMN

Q XQP
R = 0

X constraint Quadratic constraint   (gauged max. supergravity)

eL⇤UM = ⇤N@NUM � UN@N⇤M + Y MN
PQ @N⇤P UQ �XNP

M ⇤N UP

[ no density term ]

[ X deformation vs embedding tensor ]31

non-derivative



X deformation : background fluxes & Romans mass

XMN
P @P = 0

X constraint

section constraint

Y PQ
MN @P ⌦ @Q = 0 M-theory  ( n coords ) Type IIB  ( n-1 coords )

• SL(n) orbit 

• Freund-Rubin param. 
   ( n = 4 and n = 7 ) 

• massless IIA (subcase)

• SL(n-1) orbit 

• p-form fluxes 
   compatible with SL(n-1) 

• SL(2)-triplet of 1-form flux 
   ( includes compact SO(2) )

+

New massive Type IIA  ( n-1 coords )

• SL(n-1) orbit 

• p-form fluxes compatible with SL(n-1) 

• dilaton flux 

• Romans mass parameter  ( kills the M-theory coord )

Massive Type IIA described in a 
purely geometric manner !!

32

[ algebraic system ]

[ QC = flux-induced tadpoles ]



- E7(7)-XFT action   [                           ]

- Two-One-Zero-derivative potential :  gauged 4D max. sugra when  �(x, y) = �(x)

Dµ = @µ � eLAµ

SXFT =

Z
d

4

x d

56

y e

⇥
R̂ + 1

48

g

µ⌫ DµMMN D⌫MMN � 1

8

MMN Fµ⌫MFµ⌫
N

+ e

�1 L
top

� VXFT(M, g)
⇤

Fµ⌫
M

= 2 @[µA⌫]
M

+X[PQ]
M Aµ

PA⌫
Q �

⇥
Aµ, A⌫

⇤M
E

+ two-form terms

VXFT(M, g,X) = VEFT(M, g) + 1
12 M

MNMKLXMK
P @NMPL + VSUGRA(M, X)

cross term gauged max. sugra

with field strengths & potential given by 
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[        coords in the 56 of E7(7) ] yM

( deformed tensor hierarchy )

E7(7)-XFT action



Extended (super) Poincaré superalgebra

Extended (super) Poincaré algebra

{Q,Q} must be a linear combination of bosonic operators in the (0, 0) and
(1, 0) representations of the Lorentz group.

The only (1, 0) is the self-dual part of Mµ⌫ , but it would not commute with Pµ.

Thus, we need a new generator, Z
IJ

�QI

↵,QJ

�

 

= 2 ✏↵� Z IJ Z
IJ

= �Z
JI

that should be a linear combination of the internal symmetry generators,

Z
IJ

= (aa

IJ

) T

a

Z IJ are central extensions or central charges (which can be deduced from the
algebra and the Jacobi identities) ) Z IJ 2 Z(G).

The adjoint of the bracket above reads
n

Q̄I

↵̇, Q̄J

�̇

o

= �2 ✏↵̇�̇ Z IJ †

where we used ✏↵̇�̇ = �✏↵� .
José D. Edelstein (USC) Lecture 6: Extended supersymmetry 20-nov-2012 4 / 15

- Central charges  (internal symmetries)

- The algebra :
Extended (super) Poincaré algebra

[Pµ, P⌫ ] = 0 [Mµ⌫ , M⇢�] = i (⌘⌫⇢ Mµ� � ⌘⌫� Mµ⇢ � ⌘µ⇢ M⌫� + ⌘µ� M⌫⇢)

[Pµ, M⇢�] = i (⌘µ⇢ P� � ⌘µ� P⇢)

⇥

T

a, T

b

⇤

= if

ab

c

T

c [T a, Pµ] = [T a, Mµ⌫ ] = 0

⇥QI

↵, Pµ

⇤

=
⇥Q̄I

↵̇, Pµ

⇤

= 0
⇥QI

↵, T

a

⇤

= (b
a

)I

J

QJ

↵

⇥Q̄I

↵̇, T

a

⇤

= �Q̄J

↵̇ (b
a

) I

J

⇥QI

↵, Mµ⌫

⇤

=
1
2

(�µ⌫) �
↵ QI

�

⇥Q̄I

↵̇, Mµ⌫

⇤

= �1
2
Q̄I

�̇
(�̄µ⌫)�̇

↵̇

n

QI

↵, Q̄J

�̇

o

= 2 �IJ (�µ)↵�̇ Pµ

n

Q̄I

↵̇, Q̄J

�̇

o

= �2 ✏↵̇�̇ Z IJ † �QI

↵,QJ

�

 

= 2 ✏↵� Z IJ where Z
IJ

= (aa

IJ

) T

a

[Z
IJ

, anything] = 0
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