Connecting vacua

of half-maximal supergravities :

a type IIA example

Adolfo Guarino

University of Groningen

27th Nordic Network Meeting on "Strings, Fields and Branes" 25 March 2011, Copenhagen

with G. Dibitetto and D. Roest : arXiv:1102.0239

The footprint of extra dimensions

Four dimensional supergravity theories appear when compactifying string theory

Fluctuations of the internal space around a fixed geometry translates into massless 4d scalar fields known as ``moduli "

$$\mathcal{L} = \frac{1}{2} R - \frac{1}{2} \partial_{\mu} \phi_i \partial^{\mu} \phi^i$$

massless scalars = long range interactions (precision tests of GR)

Linking strings to observations Mechanisms to stabilise moduli !!

$$V(\phi) = m_{ij}^2 \phi^i \phi^j + \dots$$

> Moduli VEVs $\langle \phi \rangle = \phi_0$ determine 4d physics $\langle g_s \rangle$ and Vol_{int}

 $\Lambda_{c.c} \equiv V(\phi_0)$ fermi masses

- How to deform massless theories to have $V(\phi) \neq 0$?
- Supersymmetry dictates what deformations are allowed

gaugings = part of the global symmetry is promoted to local (gauge)
Questions :

- > Can the whole vacuum structure be charted in $\mathcal{N} = 4$ theories ?
- Are there connections in the landscape of vacua ?

Half-maximal supergravities

 $\mathcal{N} = 4$ supergravities are commonly found in string reductions

Global symmetry group

$$G = SL(2) \times SO(6,6)$$

38 scalars

> Field content = supergravity multiplet + six vector multiplets

▹ Vectors $A^{\alpha M}_{\mu}$ in the fundamental of G $\alpha = +, - \text{ is an electric-magnetic } SL(2) \text{ index}$ M = 1, ..., 12 is an SO(6, 6) index24 vectors

> The scalar sector parameterises the coset space $\mathcal{M} = G/H$ where *H* is the maximal compact subgroup of *G*

- $1 \operatorname{axion} + 1 \operatorname{dilaton} \operatorname{in} \operatorname{SL}(2)$
- 30 axions + 6 dilatons in SO(6,6)

Gaugings and scalar potential

[Schon, Weidner '06]

→ A subgroup $G_0 \subset SL(2) \times SO(6,6)$ is promoted to local (*gauged*)

Gaugings are classified by the embedding tensor parameters

 $\xi_{\alpha M} \in (2, 12)$ and $f_{\alpha MNP} \in (2, 220)$

Supersymmetry + gauge invariance determine the scalar potential

$$V(\Phi) = \sum_{\text{terms}} f f \Phi^{\text{high degree}} + \xi \xi \Phi^{\text{high degree}}$$

Quadratic in the emb. tens. parameters !!

The SO(3) truncation

> Keeping SO(3)-invariant fields and embedding tensor parameters

- global symmetry $G = SL(2) \times SO(2,2)$ $\xi_{\alpha M} = 0$
- scalar coset = 3 complex scalars = STU models !!

[Derendinger, Kounnas, Petropoulos, Zwirner '04]

[▶] The *gaugings* $G_0 ⊂ G$ and the scalar potential V(S,T,U) are specified by the embedding tensor parameters $f_{\alpha MNP}$

Quadratic Constraints $\epsilon^{\alpha\beta} f_{\alpha MNR} f_{\beta PQ}{}^R = 0$ $f_{\alpha R[MN} f_{\beta PQ]}{}^R = 0$

String embedding as type II orientifold reductions

generalised fluxes =
$$f_{\alpha MNP}$$

We would like to . . .

1) build all the consistent SO(3)-invariant gaugings specified by $f_{\alpha MNP}$ by solving the quadratic constraints

$$\epsilon f f = 0$$
 and $f f = 0$

2) compute all the SO(3)-invariant extrema of the *f*-induced scalar potential $V(f, \Phi)$ by solving the extremisation conditions

$$\left. \frac{\partial V}{\partial \Phi} \right|_{\Phi_0} = 0 \qquad \text{with} \qquad \Phi \equiv (S, T, U)$$

3) check stability of these extrema with respect to fluctuations of all the 38 scalars of half-maximal supergravity

4) identify the gauge group G_0 underlying all the different solutions

... but is this doable ?

Strategy and tools

> At the origin everything is simply quadratic in the $f_{\alpha MNP}$ parameters

computing the
vacua structure=solving a quadratic ideal
 $I = \langle \partial_{\Phi} V |_{\Phi_0} , \epsilon f f , f f \rangle$

> Algebraic Geometry algorithms : GTZ prime decomposition , ...

[Singular project, 97]

$$I = J_1 \cap J_2 \cap \ldots \cap J_n$$

Splitting of the landscape into n disconnected pieces !!

An example : type IIA with metric fluxes

Testing the method with type IIA orientifold models including
 gauge fluxes and a metric flux
 [Dall'Agata, Villadoro, Zwirner '09]

$$\left(F_{p=0,2,4,6}, H_3\right) + \omega \subset f_{\alpha MNP}$$

Q.C. of gaugings = B.I. + tadpoles cancellation

> Subset of embedding tensor components closed under $G_{n.c}$

- Fields can still be set at the origin without lost of generality
- Stability with respect to fluctuations around the origin can be computed

[Borghese, Roest '10]

Vacua structure of these type IIA orientifolds

The 16 critical points

- > An AdS₄ landscape 16 = 4 + 4 + 4 + 4
- > All the solutions are embeddable in $\mathcal{N} = 8$

$1_{(\pm,\pm)}$	$2_{(\pm,\pm)}$	$3_{(\pm,\pm)}$	$4_{(\pm,\pm)}$
$\mathcal{N} = 1$ SUSY & & FAKE SUSY	SUSY	SUSY	SUSY
stable	unstable	stable	stable
$m^2 = -2/3$	$m^2 = -4/5$	$m^2 > 0$	$m^2 > 0$
<i>V</i> = -1	V=-32/27	<i>V</i> = -8/15	V=-32/27

(*) $m^2 \equiv \text{lightest mode (B.F. bound} = -3/4)$

- All the solutions are connected
- > Unique gauging

Unique theory

with 4 different vacua !!

Conclusions

Some progress towards disentangling the landscape of half-maximal supergravities can still be done without performing statistics of vacua

> The approach relies on the combined use of global symmetries and of algebraic geometry techniques

As a warming-up, the complete vacua structure of simple type IIA orientifold theories can be worked out revealing some odd features :

- *i*) stability without supersymmetry
- *ii)* connections between vacua
- *iii*) $\mathcal{N} = 8$ embedding of the entire vacua structure

For the future :

- Going beyond the geometric limit : non-geometric backgrounds . . .

- Systematic *s*earch of de Sitter stable solutions in extended supergravity and also links to Cosmology

Thanks for your attention !!

Extra material...

Gaugings and their higher-dimensional origin

- Scalars potentials are induced by ``gaugings'': Part of the global symmetry is promoted to local (gauge)
 [de Wit, Samtleben, Trigiante '07]
 [Schon, Weidner '06]
- $\sim \mathcal{N} = 8$: Gauging a subgroup of the global symmetry $G = E_7$

Internal space extension

Exceptional Generalised Geometry ?

[Pacheco, Waldram '08, Grana, Louis, Sim, Waldram '09] [Aldazabal, Andrés, Cámara, Grana '10]

→ $\mathcal{N} = 4$: Gauging a subgroup of the global symmetry $G = SL(2) \times SO(6, 6)$

> [Hitchin '02, Gualtieri '04] [Hull '04, '06]

String compactifications including generalised flux backgrounds !!

De Sitter in extended supergravity

- $\mathcal{N} = 8$: unstable dS solutions with SO(4,4) and SO(5,3) gaugings [Hull, Warner '85]
- $\sim \mathcal{N} = 4$: unstable dS solutions with gaugings at *angles*

[De Roo, Wagemans '85]

i)
$$G_1 \times G_2$$
 gaugings with
$$\begin{cases} G_i = SO(p_i, q_i) &, p_i + q_i = 4 \\ G_i = CSO(p_i, q_i, r_i) &, p_i + q_i + r_i = 4 \end{cases}$$

[De Roo, Westra, Panda, (Trigiante) '02, '03, '06]

[Dibitetto, A.G, Roest '11]

ii) $SO(3,1) \ltimes U(1)^6$ gauging

non-geometric fluxes in string theory !!

[Dibitetto, Linares, Roest '10]

> $\mathcal{N} = 2$: stable dS solutions with $SO(2,1) \times SO(3)$ gauging plus Fayet-Iliopoulos terms [Fré, Trigiante, Van Proeyen '03]

unclear origin in string theory !!

De Sitter in minimal supergravity

> No-go theorems forbidding dS solutions in $\mathcal{N} = 1$ compactifications with magnetic fluxes $V_o = -\frac{1}{9} \sum \bar{F}^2 \leq 0$ \longrightarrow AdS !!

[Hertzberg, Kachru, Taylor, Tegmark '07]

> Including more general fluxes : (metric + non-geometric)

$$V_o = -\frac{1}{9}\sum \bar{F}^2 + \Delta V_{\text{metric}} + \Delta V_{\text{non-geom}}$$

a) metric fluxes **()** unstable dS in type IIA models

[Caviezel, Koerber, Kors, Lust, Wrase, Zagerman '08]

b) non-geometric fluxes \iff stable dS in type IIA models

[de Carlos, A.G, Moreno '09, '10]

Including D-branes to uplift an AdS solution

[Kachru, Kallosh, Linde, Trivedi '03]

a) D-terms from D-branes \iff stable dS in type IIB models [Burgess, Kallosh, Quevedo '03]

b) non-perturbative effects from D-branes \longleftrightarrow stable dS in type IIB

[Achúcarro, de Carlos, Casas, Doplicher '06]

Cosmology from moduli ?

> slow-roll inflation requires an almost flat dS saddle point of $V(\phi)$ from which to start rolling down

$$\eta \equiv M_p^2 \left(\frac{V''}{V}\right) \ll 1$$

- * dS saddle points suffering from eta-problem, *i.e.* $\eta \sim O(1)$
 - *i*) gaugings in extended supergravity
- *ii*) general fluxes in minimal supergravity

[Kallosh, Linde, Prokushkin, Shmakova '01]

[Flauger, Paban, Robbings, Wrase '08]

[de Carlos, A.G, Moreno '10]

→ dS saddle points with $\eta \ll 1$ in minimal supergravity including non-perturbative effects \implies axion inflation !!

[Dimopoulos, Kachru, McGreevy, Wacker '05]