Mass deformations \& SL(2) angles from exceptional field theory

Adolfo Guarino
Université Libre de Bruxelles

40 years ago...

Reduction of SYM in 10D

- Masses in 4D from reduction of non-abelian SYM in 10D
[$\boldsymbol{f}=$ Lie algebra structure constants]

SUPERSYMMETRIC YANG-MILLS THEORIES *

Lars BRINK ** and John H. SCHWARZ
California Institute of Technology, Pasadena, California 91125
J. SCHERK

Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris, France

Received 22 December 1976

Yang-Mills theories with simple supersymmetry are constructed in 2, 4, 6, and 10 dimensions, and it is argued that these are essentially the only cases possible. The method of dimensional reduction is then applied to obtain various Yang-Mills theories with extended supersymmetry in two and four dimensions. It is found that all possible four-dimensional Yang-Mills theories with extended supersymmetry are obtained in this way.
[Brink, Scherk \& Schwarz '76]
KK reduction

$$
\begin{aligned}
& L_{10 \mathrm{D}}=-\frac{1}{4} F^{2}+\frac{i}{2} \bar{\lambda} \not D \lambda \quad L_{4 \mathrm{D}}=-\frac{1}{4} F^{2}+i \bar{\lambda} \not D \lambda-D_{\mu} M D^{\mu} M^{-1} \\
& -\quad \frac{i}{2} f M \bar{\lambda} \lambda+\text { c.c } \\
& -\quad \frac{1}{4} f f M^{-1} M^{-1} M M
\end{aligned}
$$

Reduction of gravity theories in 10D/11D

- Masses in 4D from reduction of gravity theories in 10D/11D with non-trivial internal profiles

$$
\begin{gathered}
\Phi_{m}(x, y)=U(y)_{m}^{n} \Phi_{n}(x) \\
f=U^{-1} U^{-1} \partial U=c t e
\end{gathered}
$$

[$\boldsymbol{f}=$ Lie algebra structure constants]

HOW TO GET MASSES FROM EXTRA DIMENSIONS

J. SCHERK and John H. SCHWARZ *

Laboratoire de Physique Théorique de l'Ecole Normale Supérieure ${ }^{\star \star}$, France
Received 19 February 1979

A generalized method of dimensional reduction, applicable to theories in curved space, is described. As in previous works by other authors, the extra dimensions are related to the manifold of a Lie group. The new feature of this work is to define and study a class of Lie groups, called "flat groups", for which the resulting theory has no cosmological constant, a well-behaved potential, and a number of arbitrary mass parameters. In partic ular, when the analysis is applied to the reduction of 11 -dimensional supergravity to four dimensions it becomes possible to incorporate three arbitrary mass parameters in the resulting $N=8$ theory. This shows that extended supersymmetry theories allow more possibilities for spontaneous symmetry breaking than was previously believed to be the case

SS reduction

$$
\begin{aligned}
L_{10 \mathrm{D} / 11 \mathrm{D}}=e R & \square \quad L_{4 \mathrm{D}}
\end{aligned}=e R-\frac{1}{4} M F^{2}-D_{\mu} M D^{\mu} M^{-1}, ~=2 f f M^{-1}-f f M M^{-1} M^{-1}
$$

Lower-dimensional masses from non-trivial internal dependence

After 40 years, a new framework where to jointly describe gravitational and gauge aspects of massless maximal supergravities in 10D/11D has been constructed...

Exceptional Field Theory (EFT) 〔Hohm \& Samteben" 13 〕

- Space-time : external (11-n) + generalised internal ($y^{\mathcal{M}}$ coordinates in $\mathrm{E}_{\mathrm{n}(\mathrm{n})}$ rep.) [momentum, winding, ...]

$$
\text { Generalised diffs }=\text { ordinary internal diffs }+ \text { internal gauge transfos }
$$

- Generalised Lie derivative built from an $\mathrm{E}_{\mathrm{n}(\mathrm{n})}$-invariant structure Y-tensor
[specific for each \boldsymbol{n}]
- Closure requires a section constraint :

$$
Y^{\mathcal{P Q}}{ }_{\mathcal{M N}} \partial_{\mathcal{P}} \otimes \partial_{\mathcal{Q}}=0
$$

Two maximal solutions: M-theory (\mathbf{n} dimensional) \& Type IIB ($\mathbf{n} \mathbf{- 1}$ dimensional) [massless theories]

Question: Is there an exceptional story behind massive IIA too?

How to get masses from EFT

1. Deformations of EFT (à la SYM)

[Motivation = Massive IIA]
arXiv:1604.08602 with Ciceri and Inverso

Clues:
[Romans '86]
[Behrndt \& Cvetic '04]
[Lüst \& Tsimpis '04]
[Kashani-Poor '07]
[A.G. \& Varela '15]
[Schwarz '04]
[Gaiotto \& Tomasiello '09]
[A.G., Jafferis \& Varela '15]
2. Generalised Scherk-Schwarz reductions (à la gravity)
[Motivation = fluxes and moduli stabilisation]
work in progress

Overview

1. Deformations of EFT and massive IIA

2. Scherk-Schwarz reductions: DFT at $\operatorname{SL}(2)$ angles
3. What next?

X deformation of EFT (XFT)

- Generalised Lie derivative

$$
\mathbb{L}_{\Lambda} U^{\mathcal{M}}=\Lambda^{\mathcal{N}} \partial_{\mathcal{N}} U^{\mathcal{M}}-U^{\mathcal{N}} \partial_{\mathcal{N}} \Lambda^{\mathcal{M}}+Y^{\mathcal{M} \mathcal{N}_{\mathcal{P Q}}} \partial_{\mathcal{N}} \Lambda^{\mathcal{P}} U^{\mathcal{Q}}
$$

in terms of an $E_{n(n) \text {-invariant structure } Y \text {-tensor. Closure requires sec. constraint }}$

- Deformed generalised Lie derivative

$$
\begin{aligned}
& \quad \widetilde{\mathbb{L}}_{\Lambda} U^{\mathcal{M}}=\Lambda^{\mathcal{N}} \partial_{\mathcal{N}} U^{\mathcal{M}}-U^{\mathcal{N}} \partial_{\mathcal{N}} \Lambda^{\mathcal{M}}+Y^{\mathcal{M} \mathcal{N}} \mathcal{P Q}^{\mathcal{Q}} \partial_{\mathcal{N}} \Lambda^{\mathcal{P}} U^{\mathcal{Q}}-\frac{X_{\mathcal{N P}} \mathcal{M}}{} \Lambda^{N} U^{\mathcal{P}} \\
& \text { in terms of an } X \text { deformation which is } E_{n(n) \text {-algebra valued }} \quad \frac{\text { non-derivative }}{}
\end{aligned}
$$

- Closure \& triviality of the Jacobiator require (together with sec. constraint)
$X_{\mathcal{M N}}{ }^{\mathcal{P}} \partial_{\mathcal{P}}=0$
X constraint

$$
X_{\mathcal{M P}}{ }^{\mathcal{Q}} X_{\mathcal{N Q}}{ }^{\mathcal{R}}-X_{\mathcal{N P}}{ }^{\mathcal{Q}} X_{\mathcal{M} \mathcal{Q}}{ }^{\mathcal{R}}+X_{\mathcal{M} \mathcal{N}^{\mathcal{Q}}} X_{\mathcal{Q P}}{ }^{\mathcal{R}}=0
$$

Quadratic constraint (gauged max. supergravity)

X deformation : background fluxes \& Romans mass

$$
Y^{\mathcal{P Q}}{ }_{\mathcal{M N}} \partial_{\mathcal{P}} \otimes \partial_{\mathcal{Q}}=0
$$

section constraint

$$
\begin{gathered}
X_{\mathcal{M N}}{ }^{\mathcal{P}} \partial_{\mathcal{P}}=0 \\
X \text { constraint }
\end{gathered}
$$

[algebraic system]
[QC = flux-induced tadpoles]

M-theory (\mathbf{n} coords) Type IIB (\mathbf{n} - $\mathbf{1}$ coords)

- $\mathrm{SL}(\mathrm{n})$ orbit
- Freund-Rubin param. ($\mathrm{n}=4$ and $\mathrm{n}=7$)
- massless IIA (subcase)
- $\mathrm{SL}(\mathrm{n}-1)$ orbit
- p-form fluxes compatible with SL(n-1)
- SL(2)-triplet of 1-form flux (includes compact SO(2))

X deformation : background fluxes \& Romans mass

$Y^{\mathcal{P Q}}{ }_{\mathcal{M N}} \partial_{\mathcal{P}} \otimes \partial_{\mathcal{Q}}=0$
section constraint

$$
X_{\mathcal{M} \mathcal{N}^{\mathcal{P}}} \partial_{\mathcal{P}}=0
$$

X constraint
[algebraic system]

Massive Type IIA described in a purely geometric manner !!

M-theory (\mathbf{n} coords) Type IIB (\mathbf{n} - $\mathbf{1}$ coords)

- $S L(n)$ orbit
- Freund-Rubin param. ($n=4$ and $n=7$)
- massless IIA (subcase)
- $\mathrm{SL}(\mathrm{n}-1)$ orbit
- p-form fluxes compatible with SL(n-1)
- SL(2)-triplet of 1-form flux (includes compact SO(2))

New massive Type IIA ($\mathbf{n}-1$ coords)

- $\operatorname{SL}(\mathrm{n}-1)$ orbit
- p-form fluxes compatible with $\operatorname{SL}(n-1)$
- dilaton flux
- Romans mass parameter (kills the M-theory coord)
[QC = flux-induced tadpoles]

EFT action ($n=7, D=4$)

- $\mathrm{E}_{\text {7(7) }}$-EFT action [$\mathcal{D}_{\mu}=\partial_{\mu}-\mathbb{L}_{A_{\mu}}$]

$$
\begin{gathered}
S_{\mathrm{EFT}}=\int d^{4} x d^{56} y e\left[\hat{R}+\frac{1}{48} g^{\mu \nu} \mathcal{D}_{\mu} \mathcal{M}^{\mathcal{M} \mathcal{N}} \mathcal{D}_{\nu} \mathcal{M}_{\mathcal{M N}}-\frac{1}{8} \mathcal{M}_{\mathcal{M N}} \mathcal{F}^{\mu \nu \mathcal{M}_{\mathcal{F}_{\mu \nu}} \mathcal{N}}\right. \\
\left.+e^{-1} \mathcal{L}_{\mathrm{top}}-V_{\mathrm{EFT}}(\mathcal{M}, g)\right]
\end{gathered}
$$

[Hohm \& Samtleben '13]
with field strengths \& potential given by

$$
\begin{aligned}
\mathcal{F}_{\mu \nu} \mathcal{M}= & 2 \partial_{[\mu} A_{\nu]} \mathcal{M}_{-\left[A_{\mu}, A_{\nu}\right]_{\mathrm{E}}^{\mathcal{M}}+\text { two-form terms } \quad \text { (tensor hierarchy) }} \\
V_{\mathrm{EFT}}(\mathcal{M}, g)= & -\frac{1}{48} \mathcal{M}^{\mathcal{M} \mathcal{N}} \partial_{\mathcal{M}} \mathcal{M}^{\mathcal{K} \mathcal{L}} \partial_{\mathcal{N}} \mathcal{M}_{\mathcal{K} \mathcal{L}}+\frac{1}{2} \mathcal{M}^{\mathcal{M N}} \partial_{\mathcal{M}} \mathcal{M}^{\mathcal{L} \mathcal{L}} \partial_{\mathcal{L}} \mathcal{M}_{\mathcal{N K}} \\
& -\frac{1}{2} g^{-1} \partial_{\mathcal{M}} g \partial_{\mathcal{N}} \mathcal{M}^{\mathcal{M} \mathcal{N}}-\frac{1}{4} \mathcal{M}^{\mathcal{M} \mathcal{N}} g^{-1} \partial_{\mathcal{M}} g g^{-1} \partial_{\mathcal{N}} g-\frac{1}{4} \mathcal{M}^{\mathcal{M N}} \partial_{\mathcal{M}} g^{\mu \nu} \partial_{\mathcal{N} g_{\mu \nu}}
\end{aligned}
$$

- Two-derivative potential : ungauged 4D max. sugra when $\Phi(x, y)=\Phi(x)$

XFT action ($n=7, D=4$)

- $\mathrm{E}_{7(7)}$-XFT action $\left[\mathcal{D}_{\mu}=\partial_{\mu}-\tilde{\mathbb{L}}_{A_{\mu}}\right.$]
[$y^{\mathcal{M}}$ coords in the $\mathbf{5 6}$ of $\mathrm{E}_{7(7)}$]

$$
\begin{gathered}
S_{\mathrm{XFT}}=\int d^{4} x d^{56} y e\left[\hat{R}+\frac{1}{48} g^{\mu \nu} \mathcal{D}_{\mu} \mathcal{M}^{\mathcal{M} \mathcal{N}} \mathcal{D}_{\nu} \mathcal{M}_{\mathcal{M N}}-\frac{1}{8} \mathcal{M}_{\mathcal{M N}} \mathcal{F}^{\mu \nu \mathcal{M}_{\mathcal{F}_{\mu \nu}} \mathcal{N}}\right. \\
\left.+e^{-1} \mathcal{L}_{\mathrm{top}}-V_{\mathrm{XFT}}(\mathcal{M}, g)\right]
\end{gathered}
$$

with field strengths \& potential given by
(deformed tensor hierarchy)

$$
\mathcal{F}_{\mu \nu}^{\mathcal{M}}=2 \partial_{[\mu} A_{\nu]}^{\mathcal{M}}+X_{[\mathcal{P} \mathcal{Q}]}{ }^{\mathcal{M}} A_{\mu}^{\mathcal{P}} A_{\nu}^{\mathcal{Q}}-\left[A_{\mu}, A_{\nu}\right]_{\mathrm{E}}^{\mathcal{M}}+\text { two-form terms }
$$

- Two-One-Zero-derivative potential : gauged 4D max. sugra when $\Phi(x, y)=\Phi(x)$

Application: massive IIA on $\mathrm{S}^{\mathrm{n}-1} \quad(2<n<8)$

> Massless IIA reductions on $\mathrm{S}^{\mathrm{n}-1}$ to gauged maximal sugra : EFT framework
> Massive IIA reductions on $\mathrm{S}^{\mathrm{n}-1}$ to gauged maximal sugra : XFT framework

Question: when is a consistent reduction Ansatz for massless IIA also consistent for massive IIA ?
[Cvetic , Lü \& Pope '00]
[Lee, Strickland-Constable \& Waldram '14]
Procedure :
[Hohm \& Samtleben '14]
a) Massless IIA : generalised twist matrices valued in $\mathrm{SL}(\mathrm{n})$
b) Romans mass introduced as an X^{R} deformation
c) Consistency requires the stabiliser of X^{R} in $E_{n(n)}$ to contain $S L(n)$

Answer: Only massive IIA on $\mathbf{S}^{\mathbf{6}}$ works ($n=7$)!!

Overview

1. Deformations of EFT and massive IIA
2. Scherk-Schwarz reductions: DFT at $\operatorname{SL}(2)$ angles
3. What next?

From EFT to SL(2)-DFT

- Halving EFT with $\mathrm{E}_{7(7)}$ symmetry to obtain $\operatorname{SL}(2)$-DFT with $\operatorname{SL}(2) \times S O(6,6)$ symmetry

$$
\begin{aligned}
\mathrm{E}_{7(7)} & \rightarrow \mathrm{SL}(2) \times \mathrm{SO}(6,6) \\
\mathbf{5 6} & \rightarrow(\mathbf{2}, \mathbf{1 2})+(\mathbf{1}, \mathbf{3 2}) \\
\frac{y^{\mathcal{M}}}{\mathrm{EFT}} & \rightarrow \frac{y^{\alpha M}+\not \text { X }^{A}}{\text { SL(2)-DFT }}
\end{aligned}
$$

```
    \alpha=(+,-) vector index of SL(2)
    M vector index of SO(6,6)
    A M-W spinor index of SO(6,6)
    [ see Dibitetto, A.G. & Roest '11 for sugra ]
```

via a \mathbf{Z}_{2} truncation (vector $=+1$, spinor $=-1$) on coordinates, fields, etc.
[Hull \& Zwiebach '09] [Hohm, Hull \& Zwiebach '10]

- SL(2)-DFT generalised Lie derivative
[DFT corresponds to an $\alpha=+$ orientation]

$$
\mathbb{L}_{\Lambda} U^{\alpha M}=\Lambda^{\beta N} \partial_{\beta N} U^{\alpha M}-U^{\beta N} \partial_{\beta N} \Lambda^{\alpha M}+\eta^{M N} \eta_{P Q} \partial_{\beta N} \Lambda^{\beta P} U^{\alpha Q}+2 \epsilon^{\alpha \beta} \epsilon_{\gamma \delta} \partial_{\beta N} \Lambda^{\gamma[M} U^{|\delta| N]}
$$

- SL(2)-DFT section constraints :

$$
\eta^{M N} \partial_{\alpha M} \otimes \partial_{\beta N}=0 \quad, \quad \epsilon^{\alpha \beta} \partial_{\alpha[M \mid} \otimes \partial_{\beta \mid N]}=0
$$

- SL(2)-DFT action extendable to $\operatorname{SL}(2) \times S O\left(6,6+n_{v}\right)$ and also X-deformable

Section constraint \& SL(2) angles

- One maximal solution of sec. constraint: it describes Type I/Heterotic [as in DFT]
- Generalised SS reductions with $\mathbf{S L}(\mathbf{2}) \mathbf{x} \mathbf{O}(\mathbf{6}, \mathbf{6})$ twist matrices $U_{\alpha M}{ }^{\beta N}=e^{\lambda} e_{\alpha}{ }^{\beta} U_{M}{ }^{N}$ yield $N=4$ gauging parameters

$$
\begin{aligned}
f_{\alpha M N P} & =-3 e^{-\lambda} e_{\alpha}{ }^{\beta} \eta_{Q[M} U_{N}{ }^{R} U_{P]}{ }^{S} \partial_{\beta R} U_{S}{ }^{Q} \\
\xi_{\alpha M} & =2 U_{M}^{N} \partial_{\beta N}\left(e^{-\lambda} e_{\alpha}^{\beta}\right)
\end{aligned}
$$

- Moduli stabilisation requires gaugings $G=G_{1} \times G_{2}$ at relative $S L(2)$ angles

(sec. constraint violated)

$$
\epsilon^{\alpha \beta} \partial_{\alpha[M \mid} \otimes \partial_{\beta \mid N]} \neq 0
$$

Example : SO(4) $\times \mathrm{SO}(4)$ gaugings and non-geometry

- SS with $U\left(y^{\alpha M}\right) \in \mathrm{O}(6,6)$: Half of the coords of type + \& half of type -
- $\mathrm{SL}(2)$-superposition of two chains of non-geometric fluxes $(H, \omega, Q, R)_{ \pm}$
f_{+}

$$
\begin{aligned}
& f_{+a b c}=H^{(+)}{ }_{a b c} \quad, \quad f_{+i j k}=H^{(+)}{ }_{i j k} \quad, \quad f_{+a b \bar{c}}=\omega^{(+)}{ }_{a b}{ }^{c} \quad, \quad f_{+i j \bar{k}}=\omega^{(+)}{ }_{i j}{ }^{k} \\
& f_{+\bar{a} \bar{b} c}=Q^{(+) a b}{ }_{c} \quad, \quad f_{+\bar{i} \bar{j} k}=Q^{(+) i j}{ }_{k} \quad, \quad f_{+\bar{a} \bar{b} \bar{c}}=R^{(+) a b c} \quad, \quad f_{+\bar{i} \bar{j} \bar{k}}=R^{(+) i j k} \\
& f_{-i j k}=H^{(-)}{ }_{i j k} \quad, \quad f_{-a b c}=H^{(-)}{ }_{a b c} \quad, \quad f_{-i j \bar{k}}=\omega^{(-)}{ }_{i j}{ }^{k} \quad, \quad f_{-a b \bar{c}}=\omega^{(-)}{ }_{a b}{ }^{c}
\end{aligned}
$$

Most general family (8 params) of SO(4) $\times \mathbf{S O (4)}$ gaugings of $\mathrm{N}=4$ sugra

- $S O(4) \times S O(4) N=4$ sugra : AdS \& dS vacua (sphere/hyperboloid reductions)
- "Hybrid \pm " sources to cancel flux-induced tadpoles (QC) : dual branes?

Overview

1. Deformations of EFT and massive IIA
2. Scherk-Schwarz reductions: DFT at $\operatorname{SL}(2)$ angles
3. What next ?

Future directions

- X constraint $X_{\mathcal{M N}}{ }^{\mathcal{P}} \partial_{\mathcal{P}}=0$ and mutually BPS states
[Bossard \& Kleinschmidt '15]
[Bandos'15]
- Connection of X deformation to other approaches
[du Bosque, Hassler, Lüst '15]
- The role of the maximal compact subgroups
[Bandos \& Ortín '15]
[Aldazabal, Andres, Cámara \& Graña '15]
- Flux formulation of SL(2)-DFT : sec. constraint, branes and non-geometry
[Aldazabal, Graña, Marqués \& Rosabal '13]
- SL(2)-DFT and massive IIA sphere reductions to half-maximal supergravity
[Cassani, Felice, Petrini, Strickland-Constable \& Waldram '16]
- Cosmological applications of SL(2)-DFT (moduli stab, de Sitter, inflation, ...)
[Hassler, Lüst \& Massai '14]

Thank you !!

