How to get masses from Extended Field Theories

Adolfo Guarino
Université Libre de Bruxelles

40 years ago...

Reduction of SYM in 10D

- Masses in 4D from reduction of non-abelian SYM in 10D
[$\boldsymbol{f}=$ Lie algebra structure constants]

SUPERSYMMETRIC YANG-MILLS THEORIES *
Lars BRINK ** and John H. SCHWARZ
California Institute of Technology, Pasadena, California 91125
J. SCHERK

Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris, France

Received 22 December 1976

Yang-Mills theories with simple supersymmetry are constructed in $2,4,6$, and 10 dimensions, and it is argued that these are essentially the only cases possible. The method of dimensional reduction is then applied to obtain various Yang-Mills theories with extended supersymmetry in two and four dimensions. It is found that all possible four-dimensional Yang-Mills theories with extended supersymmetry are obtained in this way.
[Brink, Scherk \& Schwarz '76]
KK reduction

$$
\begin{aligned}
& L_{10 \mathrm{D}}=-\frac{1}{4} F^{2}+\frac{i}{2} \bar{\lambda} \not D \lambda \\
& L_{4 \mathrm{D}}=-\frac{1}{4} F^{2}+i \bar{\lambda} \not D \lambda-D_{\mu} M D^{\mu} M^{-1} \\
& -\quad \frac{i}{2} f M \bar{\lambda} \lambda+\text { c.c } \\
& -\quad \frac{1}{4} f f M^{-1} M^{-1} M M
\end{aligned}
$$

Reduction of gravity theories in 10D/11D

- Masses in 4D from reduction of gravity theories in 10D/11D with non-trivial internal profiles

$$
\begin{gathered}
\Phi_{m}(x, y)=U(y)_{m}^{n} \Phi_{n}(x) \\
f=U^{-1} U^{-1} \partial U=c t e
\end{gathered}
$$

[$\boldsymbol{f}=$ Lie algebra structure constants]

HOW TO GET MASSES FROM EXTRA DIMENSIONS
J. SCHERK and John H. SCHWARZ *

Laboratoire de Physique Théorique de l'Ecole Normale Supérieure ${ }^{\star \star}$, France
Received 19 February 1979

A generalized method of dimensional reduction, applicable to theories in curved space, is described. As in previous works by other authors, the extra dimensions are related to the manifold of a Lie group. The new feature of this work is to define and study a class of Lie groups, called "flat groups", for which the resulting theory has no cosmological constant, a well-behaved potential, and a number of arbitrary mass parameters. In particular, when the analysis is applied to the reduction of 11-dimensional supergravity to four dimensions it becomes possible to incorporate three arbitrary mass parameters in the resulting $N=8$ theory. This shows that extended supersymmetry theories allow more possibilities for spontaneous symmetry breaking than was previously believed to be the case.

SS reduction

$$
\begin{aligned}
L_{10 \mathrm{D} / 11 \mathrm{D}}=e R \quad \square \quad L_{4 \mathrm{D}} & =e R-\frac{1}{4} M F^{2}-D_{\mu} M D^{\mu} M^{-1} \\
& -2 f f M^{-1}-f f M M^{-1} M^{-1}
\end{aligned}
$$

Lower-dimensional masses from non-trivial internal dependence

After 40 years, a new framework where to jointly describe gauge and gravitational aspects of 10D/11D supergravities (string/M-theory) has been constructed based on the idea of dualities...

Dualities and Extended Field Theories (ExFT)

- Different strings related by dualities: IIA/IIB T-duality, IIB S-duality, ...
- String dualities realised as non-linear global symmetries in SUGRA

Today's talk: Extended Field Theories (ExFT) [extend intermal coords to transform linearly under duality]

- Exceptional Field Theory (EFT) \Rightarrow Exceptional groups $\mathrm{E}_{d+1(d+1)} \quad[$ max SUGRA (U-duality)]
- Double Field Theory (DFT) \Rightarrow Orthogonal groups O(d,d) [half-max SUGRA (T-duality)]
[Siegel '93] [Hull \& Zwiebach (Hohm) '09'10] [Hohm \& Samtleben '13]

Dualities in SUGRA and Extended Field Theory

D	Maximal sugra / EFT	Half-maximal sugra	DFT
9	$\mathbb{R}^{+} \times \mathrm{SL}(2)$	$\mathbb{R}^{+} \times \mathrm{O}(1,1+n)$	$\mathbb{R}^{+} \times \mathrm{O}(1,1+n)$
8	$\mathrm{SL}(2) \times \mathrm{SL}(3)$	$\mathbb{R}^{+} \times \mathrm{O}(2,2+n)$	$\mathbb{R}^{+} \times \mathrm{O}(2,2+n)$
7	$\mathrm{SL}(5)$	$\mathbb{R}^{+} \times \mathrm{O}(3,3+n)$	$\mathbb{R}^{+} \times \mathrm{O}(3,3+n)$
6	$\mathrm{SO}(5,5)$	$\mathbb{R}^{+} \times \mathrm{O}(4,4+n)$	$\mathbb{R}^{+} \times \mathrm{O}(4,4+n)$
5	$\mathrm{E}_{6(6)}$	$\mathbb{R}^{+} \times \mathrm{O}(5,5+n)$	$\mathbb{R}^{+} \times \mathrm{O}(5,5+n)$
4	$\mathrm{E}_{7(7)}$	$\mathrm{SL}(2) \times \mathrm{O}(6,6+n)$	$\mathbb{R}^{+} \times \mathrm{O}(6,6+n)$
3	$\mathrm{E}_{8(8)}$	$\mathrm{O}(8,8+n)$	$\mathbb{R}^{+} \times \mathrm{O}(7,7+n)$

Duality groups of half-maximal SUGRA and DFT differ for $\mathbf{D}<\mathbf{5}$

Dualities in SUGRA and Extended Field Theory

D	Maximal sugra / EFT	Half-maximal sugra	DFT
9	$\mathbb{R}^{+} \times \mathrm{SL}(2)$	$\mathbb{R}^{+} \times \mathrm{O}(1,1+n)$	$\mathbb{R}^{+} \times \mathrm{O}(1,1+n)$
8	$\mathrm{SL}(2) \times \mathrm{SL}(3)$	$\mathbb{R}^{+} \times \mathrm{O}(2,2+n)$	$\mathbb{R}^{+} \times \mathrm{O}(2,2+n)$
7	$\mathrm{SL}(5)$	$\mathbb{R}^{+} \times \mathrm{O}(3,3+n)$	$\mathbb{R}^{+} \times \mathrm{O}(3,3+n)$
6	$\mathrm{SO}(5,5)$	$\mathbb{R}^{+} \times \mathrm{O}(4,4+n)$	$\mathbb{R}^{+} \times \mathrm{O}(4,4+n)$
5	$\mathrm{E}_{6(6)}$	$\mathbb{R}^{+} \times \mathrm{O}(5,5+n)$	$\mathbb{R}^{+} \times \mathrm{O}(5,5+n)$
4	$\mathrm{E}_{7(7)}$	$\mathrm{SL}(2) \times \mathrm{O}(6,6+n)$	$\mathbb{R}^{+} \times \mathrm{O}(6,6+n)$
3	$\mathrm{E}_{8(8)}$	$\mathrm{O}(8,8+n)$	$\mathbb{R}^{+} \times \mathrm{O}(7,7+n)$

Duality groups of half-maximal SUGRA and DFT differ for D<5

How to get masses from ExFT

1. Deformations à la SYM : $\mathrm{E}_{7(7)}$ covariant ExFT
[Motivation $=$ Massive IIA]

JHEP 08 (2016) 154 with F. Ciceri and G. Inverso
2. Deformations à la gravity : $\mathrm{SL}(2) \times \mathrm{O}(6,6)$ covariant ExFT
[Motivation = fluxes and moduli stabilisation]

```
JHEP O7 (2017) 028 with F. Ciceri and G. Inverso
    + G. Dibitetto and J.J. Fernández-Melgarejo
```


$\mathrm{E}_{7(7)-}$ EFT

- Space-time : external ($\mathrm{D}=4)+$ generalised internal $\left(y^{\mathcal{M}}\right.$ coordinates in 56 of $\left.\mathrm{E}_{7(7)}\right)$

Generalised diffs $=$ ordinary internal diffs + internal gauge transfos

- Generalised Lie derivative built from an $\mathrm{E}_{7(7) \text {-invariant }}$ structure Y-tensor

$$
\mathbb{L}_{\Lambda} U^{\mathcal{M}}=\Lambda^{\mathcal{N}} \partial_{\mathcal{N}} U^{\mathcal{M}}-U^{\mathcal{N}} \partial_{\mathcal{N}} \Lambda^{\mathcal{M}}+Y^{\mathcal{M} \mathcal{N}} \mathcal{P Q \mathcal { Q }} \partial_{\mathcal{N}} \Lambda^{\mathcal{P}} U^{\mathcal{Q}} \quad \text { [no density term] }
$$

Closure requires a section constraint : $\quad Y^{\mathcal{P} \mathcal{Q}}{ }_{\mathcal{M N}} \partial_{\mathcal{P}} \otimes \partial_{\mathcal{Q}}=0$

Two maximal solutions: M-theory (7 dimensional) \& Type IIB (6 dimensional) [massless theories]

Question: What about the massive IIA theory?

$\mathrm{E}_{7(7)-}$ EFT

- $\mathrm{E}_{\text {(}(7)}$-EFT action [$\mathcal{D}_{\mu}=\partial_{\mu}-\mathbb{L}_{A_{\mu}}$]

$$
\begin{gathered}
S_{\mathrm{EFT}}=\int d^{4} x d^{56} y e\left[\hat{R}+\frac{1}{48} g^{\mu \nu} \mathcal{D}_{\mu} \mathcal{M}^{\mathcal{M N}} \mathcal{D}_{\nu} \mathcal{M}_{\mathcal{M N}}-\frac{1}{8} \mathcal{M}_{\mathcal{M N}} \mathcal{F}^{\mu \nu \mathcal{M}_{\mathcal{F}_{\mu \nu}} \mathcal{N}}\right. \\
\left.+e^{-1} \mathcal{L}_{\mathrm{top}}-V_{\mathrm{EFT}}(\mathcal{M}, g)\right]
\end{gathered}
$$

with field strengths \& potential term given by

$$
\mathcal{F}_{\mu \nu}^{\mathcal{M}}=2 \partial_{[\mu} A_{\nu]}^{\mathcal{M}}-\left[A_{\mu}, A_{\nu}\right]_{\mathrm{E}}^{\mathcal{M}}+\text { two-form terms }
$$

$$
\begin{aligned}
V_{\mathrm{EFT}}(\mathcal{M}, g)= & -\frac{1}{48} \mathcal{M}^{\mathcal{M} \mathcal{N}} \partial_{\mathcal{M}} \mathcal{M}^{\mathcal{K} \mathcal{L}} \partial_{\mathcal{N}} \mathcal{M}_{\mathcal{K} \mathcal{L}}+\frac{1}{2} \mathcal{M}^{\mathcal{M} \mathcal{N}} \partial_{\mathcal{M}} \mathcal{M}^{\mathcal{K} \mathcal{L}} \partial_{\mathcal{L}} \mathcal{M}_{\mathcal{N K}} \\
& -\frac{1}{2} g^{-1} \partial_{\mathcal{M}} g \partial_{\mathcal{N}} \mathcal{M}^{\mathcal{M} \mathcal{N}}-\frac{1}{4} \mathcal{M}^{\mathcal{M} \mathcal{N}} g^{-1} \partial_{\mathcal{M}} g g^{-1} \partial_{\mathcal{N}} g-\frac{1}{4} \mathcal{M}^{\mathcal{M} \mathcal{N}} \partial_{\mathcal{M}} g^{\mu \nu} \partial_{\mathcal{N}} g_{\mu \nu}
\end{aligned}
$$

- Two-derivative potential : ungauged $\mathrm{N}=8 \mathrm{D}=4$ SUGRA when $\Phi(x, y)=\Phi(x)$

Deforming $\mathrm{E}_{7(7)-}$ EFT

- Generalised Lie derivative

$$
\mathbb{L}_{\Lambda} U^{\mathcal{M}}=\Lambda^{\mathcal{N}} \partial_{\mathcal{N}} U^{\mathcal{M}}-U^{\mathcal{N}} \partial_{\mathcal{N}} \Lambda^{\mathcal{M}}+Y^{\mathcal{M} \mathcal{N}_{\mathcal{P} \mathcal{Q}}} \partial_{\mathcal{N}} \Lambda^{\mathcal{P}} U^{\mathcal{Q}}
$$

- Deformed generalised Lie derivative

$$
\widetilde{\mathbb{L}}_{\Lambda} U^{\mathcal{M}}=\Lambda^{\mathcal{N}} \partial_{\mathcal{N}} U^{\mathcal{M}}-U^{\mathcal{N}} \partial_{\mathcal{N}} \Lambda^{\mathcal{M}}+Y^{\mathcal{M} \mathcal{N}} \mathcal{P Q}_{\mathcal{Q}} \partial_{\mathcal{N}} \Lambda^{\mathcal{P}} U^{\mathcal{Q}}-\frac{X_{\mathcal{N} \mathcal{P}}{ }^{\mathcal{M}} \Lambda^{N} U^{\mathcal{P}}}{\text { non-derivative }}
$$

in terms of an X deformation which is $\mathrm{E}_{\mathrm{n}(\mathrm{n})}$-algebra valued

- Closure \& triviality of the Jacobiator require (together with sec. constraint)

$$
X_{\mathcal{M N}}{ }^{\mathcal{P}} \partial_{\mathcal{P}}=0
$$

$$
X_{\mathcal{M P}}{ }^{\mathcal{Q}} X_{\mathcal{N Q}}{ }^{\mathcal{R}}-X_{\mathcal{N P}}{ }^{\mathcal{Q}} X_{\mathcal{M Q}}{ }^{\mathcal{R}}+X_{\mathcal{M} \mathcal{N}^{\mathcal{Q}}} X_{\mathcal{Q P}}{ }^{\mathcal{R}}=0
$$

Quadratic constraint (gauged max. supergravity)

$E_{7(7)-X F T}$

- $\mathrm{E}_{7(7)}$-XFT action $\left[\mathcal{D}_{\mu}=\partial_{\mu}-\widetilde{\mathbb{L}}_{A_{\mu}}\right]$

$$
\begin{gathered}
S_{\mathrm{XFT}}=\int d^{4} x d^{56} y e\left[\hat{R}+\frac{1}{48} g^{\mu \nu} \mathcal{D}_{\mu} \mathcal{M}^{\mathcal{M} \mathcal{N}} \mathcal{D}_{\nu} \mathcal{M}_{\mathcal{M N}}-\frac{1}{8} \mathcal{M}_{\mathcal{M N}} \mathcal{F}^{\mu \nu \mathcal{M}} \mathcal{F}_{\mu \nu} \mathcal{N}\right. \\
\left.+e^{-1} \mathcal{L}_{\mathrm{top}}-V_{\mathrm{XFT}}(\mathcal{M}, g)\right]
\end{gathered}
$$

with field strengths \& potential given by
(deformed tensor hierarchy)

$$
\mathcal{F}_{\mu \nu}^{\mathcal{M}}=2 \partial_{[\mu} A_{\nu]}^{\mathcal{M}}+X_{[\mathcal{P} \mathcal{Q}]}^{\mathcal{M}} A_{\mu}^{\mathcal{P}} A_{\nu}^{\mathcal{Q}}-\left[A_{\mu}, A_{\nu}\right]_{\mathrm{E}}^{\mathcal{M}}+\text { two-form terms }
$$

$$
V_{\mathrm{XFT}}(\mathcal{M}, g, X)=V_{\mathrm{EFT}}(\mathcal{M}, g)+\frac{1}{12} \mathcal{M}^{M N} \mathcal{M}^{K L} X_{M K}^{P} \partial_{N} \mathcal{M}_{P L}+V_{\mathrm{SUGRA}}(\mathcal{M}, X)
$$

- Two-One-Zero-derivative potential : gauged 4D max. sugra when $\Phi(x, y)=\Phi(x)$

X deformation : background fluxes \& Romans mass

$$
Y^{\mathcal{P Q}}{ }_{\mathcal{M N}} \partial_{\mathcal{P}} \otimes \partial_{\mathcal{Q}}=0
$$

section constraint

$$
\begin{gathered}
X_{\mathcal{M N}}{ }^{\mathcal{P}} \partial_{\mathcal{P}}=0 \\
X_{\text {constraint }}
\end{gathered}
$$

[algebraic system]
[$\mathrm{QC}=$ flux-induced tadpoles]

M-theory (7 coords) Type IIB (6 coords)

- SL(7) orbit
- Freund-Rubin param.
- massless IIA (subcase)
- $\mathrm{SL}(6)$ orbit
- p-form fluxes compatible with SL(6)
- SL(2)-triplet of 1-form flux (includes compact SO(2))

X deformation : background fluxes \& Romans mass

$Y^{\mathcal{P Q}}{ }_{\mathcal{M N}} \partial_{\mathcal{P}} \otimes \partial_{\mathcal{Q}}=0$
section constraint

$$
X_{\mathcal{M} \mathcal{N}^{\mathcal{P}}} \partial_{\mathcal{P}}=0
$$

X constraint
[algebraic system]

Massive Type IIA described in a purely geometric manner !!

M-theory (7 coords) Type IIB (6 coords)

- SL(7) orbit
- Freund-Rubin param.
- massless IIA (subcase)
- SL(6) orbit
- p-form fluxes compatible with SL(6)
- SL(2)-triplet of 1-form flux (includes compact SO(2))

New massive Type IIA (6 coords)

- SL(6) orbit
- p-form fluxes compatible with $\operatorname{SL}(6)$
- dilaton flux
- Romans mass parameter (kills the M-theory coord)

How to get masses from ExFT

1. Deformations à la SYM : $E_{7(7)}$ covariant ExFT
[Motivation $=$ Massive IIA]

JHEP 08 (2016) 154
2. Deformations à la gravity : $\mathrm{SL}(2) \times \mathrm{O}(6,6)$ covariant ExFT
[Motivation = fluxes and moduli stabilisation]
JHEP 07 (2017) 028

From $\mathrm{E}_{7(7)-}-\mathrm{EFT}$ to $\mathrm{SL}(2)-\mathrm{DFT}$

- Halving $\mathrm{E}_{7(7)}$-EFT to obtain $\operatorname{SL}(2)$-DFT with $\mathrm{SL}(2) \times \mathrm{SO}(6,6)$ symmetry

$$
\begin{aligned}
\mathrm{E}_{7(7)} & \rightarrow \mathrm{SL}(2) \times \mathrm{SO}(6,6) \\
\mathbf{5 6} & \rightarrow(\mathbf{2}, \mathbf{1 2})+(\mathbf{1}, \mathbf{3 2}) \\
\frac{y^{\mathcal{M}}}{\mathrm{EFT}} & \rightarrow \frac{y^{\alpha M}+\not \text { A }^{A}}{\mathrm{SL}(2)-\mathrm{DFT}}
\end{aligned}
$$

$$
\begin{aligned}
& \alpha=(+,-) \text { vector index of } \mathrm{SL}(2) \\
& M \text { vector index of } \mathrm{SO}(6,6) \\
& \text { A M-W spinor index of } \mathrm{SO}(6,6) \\
& \text { [see Dibitetto, A.G. \& Roest '11 for sugra] }
\end{aligned}
$$

via a \mathbf{Z}_{2} truncation (vector $=+1$, spinor $=-1$) on coordinates, fields, etc.

- SL(2)-DFT generalised Lie derivative
[Hull \& Zwiebach '09] [Hohm, Hull \& Zwiebach '10]
[DFT corresponds to an $\alpha=+$ orientation]

$$
\mathbb{L}_{\Lambda} U^{\alpha M}=\Lambda^{\beta N} \partial_{\beta N} U^{\alpha M}-U^{\beta N} \partial_{\beta N} \Lambda^{\alpha M}+\eta^{M N} \eta_{P Q} \partial_{\beta N} \Lambda^{\beta P} U^{\alpha Q}+2 \epsilon^{\alpha \beta} \epsilon_{\gamma \delta} \partial_{\beta N} \Lambda^{\gamma[M} U^{|\delta| N]}
$$

- SL(2)-DFT section constraints :

$$
\eta^{M N} \partial_{\alpha M} \otimes \partial_{\beta N}=0 \quad, \quad \epsilon^{\alpha \beta} \partial_{\alpha[M \mid} \otimes \partial_{\beta \mid N]}=0
$$

SL(2)-DFT

- SL(2)-DFT action [$\mathcal{D}_{\mu}=\partial_{\mu}-\mathbb{L}_{A_{\mu}}$]

$$
\begin{array}{r}
S_{\mathrm{SL}(2)-\mathrm{DFT}}=\int d^{4} x d^{24} y e\left[\hat{R}+\frac{1}{4} g^{\mu \nu} \mathcal{D}_{\mu} M^{\alpha \beta} \mathcal{D}_{\nu} M_{\alpha \beta}+\frac{1}{8} g^{\mu \nu} \mathcal{D}_{\mu} M^{M N} \mathcal{D}_{\nu} M_{M N}\right. \\
\left.-\frac{1}{8} M_{\alpha \beta} M_{M N} \mathcal{F}^{\mu \nu \alpha M} \mathcal{F}_{\mu \nu}{ }^{\beta N}+e^{-1} \mathcal{L}_{\mathrm{top}}-V_{\mathrm{SL}(2)-\mathrm{DFT}}(M, g)\right]
\end{array}
$$

with field strengths \& potential term given by

$$
\begin{aligned}
\mathcal{F}_{\mu \nu}{ }^{\alpha M}= & 2 \partial_{[\mu} A_{\nu]}{ }^{\alpha M}-\left[A_{\mu}, A_{\nu}\right]_{\mathrm{S}}^{\alpha M}+\text { two-form terms } \quad \text { (tensor hierarchy) } \\
V_{\mathrm{SL}(2)-\mathrm{DFT}}(M, g)= & M^{\alpha \beta} M^{M N}\left[-\frac{1}{4}\left(\partial_{\alpha M} M^{\gamma \delta}\right)\left(\partial_{\beta N} M_{\gamma \delta}\right)-\frac{1}{8}\left(\partial_{\alpha M} M^{P Q}\right)\left(\partial_{\beta N} M_{P Q}\right)\right. \\
& \left.\quad+\frac{1}{2}\left(\partial_{\alpha M} M^{\gamma \delta}\right)\left(\partial_{\delta N} M_{\beta \gamma}\right)+\frac{1}{2}\left(\partial_{\alpha M} M^{P Q}\right)\left(\partial_{\beta Q} M_{N P}\right)\right] \\
+ & \frac{1}{2} M^{M N} M^{P Q}\left(\partial_{\alpha M} M^{\alpha \delta}\right)\left(\partial_{\delta Q} M_{N P}\right)+\frac{1}{2} M^{\alpha \beta} M^{\gamma \delta}\left(\partial_{\alpha M} M^{M Q}\right)\left(\partial_{\delta Q} M_{\beta \gamma}\right) \\
- & \frac{1}{4} M^{\alpha \beta} M^{M N}\left[g^{-1}\left(\partial_{\alpha M} g\right) g^{-1}\left(\partial_{\beta N} g\right)+\left(\partial_{\alpha M} g^{\mu \nu}\right)\left(\partial_{\beta N} g_{\mu \nu}\right)\right] \\
- & \frac{1}{2} g^{-1}\left(\partial_{\alpha M} g\right) \partial_{\beta N}\left(M^{\alpha \beta} M^{M N}\right)
\end{aligned}
$$

- Two-derivative potential : ungauged $\mathrm{N}=4 \mathrm{D}=4$ SUGRA when $\Phi(x, y)=\Phi(x)$

Section constraint \& SL(2) angles

- One maximal solution of sec. constraint : it describes Type I/Heterotic [as in DFT]
- Generalised SS reductions with $\mathbf{S L}(2) \times \mathbf{O}(\mathbf{6}, \mathbf{6})$ twist matrices $U_{\alpha M}{ }^{\beta N}=e^{\lambda} e_{\alpha}{ }^{\beta} U_{M}{ }^{N}$ yield $N=4$ gauging parameters

$$
\begin{aligned}
f_{\alpha M N P} & =-3 e^{-\lambda} e_{\alpha}{ }^{\beta} \eta_{Q[M} U_{N}{ }^{R} U_{P]}^{S} \partial_{\beta R} U_{S}{ }^{Q} \\
\xi_{\alpha M} & =2 U_{M}^{N} \partial_{\beta N}\left(e^{-\lambda} e_{\alpha}^{\beta}\right)
\end{aligned}
$$

- Moduli stabilisation requires gaugings $G=G_{1} \times G_{2}$ at relative $S L(2)$ angles

[not possible in DFT]

Example : SO(4) $\times \mathrm{SO}(4)$ gaugings and non-geometry

- SS with $U\left(y^{\alpha M}\right) \in \mathrm{O}(6,6)$: Half of the coords of type + \& half of type -
- $\mathrm{SL}(2)$-superposition of two chains of non-geometric fluxes ($H, \omega, Q, R)_{ \pm}$
f_{+}

$$
\begin{aligned}
& f_{+a b c}=H^{(+)}{ }_{a b c} \quad, \quad f_{+i j k}=H^{(+)}{ }_{i j k} \quad, \quad f_{+a b \bar{c}}=\omega^{(+)}{ }_{a b}{ }^{c} \quad, \quad f_{+i j \bar{k}}=\omega^{(+)}{ }_{i j}{ }^{k} \\
& f_{+\bar{a} \bar{b} c}=Q^{(+) a b}{ }_{c} \quad, \quad f_{+\bar{i} \bar{j} k}=Q^{(+) i j}{ }_{k} \quad, \quad f_{+\bar{a} \bar{b} \bar{c}}=R^{(+) a b c} \quad, \quad f_{+i \bar{j} \bar{k}}=R^{(+) i j k} \\
& f_{-i j k}=H^{(-)}{ }_{i j k} \quad, \quad f_{-a b c}=H^{(-)}{ }_{a b c} \quad, \quad f_{-i j \bar{k}}=\omega^{(-)}{ }_{i j}{ }^{k} \quad, \quad f_{-a b \bar{c}}=\omega^{(-)}{ }_{a b}{ }^{\text {b }} \\
& f_{-\bar{i} \bar{j} k}=Q^{(-) i j}{ }_{k} \quad, \quad f_{-\bar{a} \bar{b} c}=Q^{(-) a b}{ }_{c} \quad, \quad f_{-\bar{i} \bar{j} \bar{b}}=R^{(-) i j k} \quad, \quad f_{-\bar{a} \bar{b} \bar{c}}=R^{(-) a b c}
\end{aligned}
$$

Most general family (8 params) of $\mathrm{SO}(4) \times \mathrm{SO}(4)$ gaugings of $\mathrm{N}=4$ sugra

- $\mathrm{SO}(4) \times \mathrm{SO}(4) \mathrm{N}=4$ sugra : AdS \& dS vacua (sphere/hyperboloid reductions)
[de Roo, Westra, Panda \& Trigiante '03]
[Dibitetto, A.G. \& Roest '12]
- "Hybrid \pm " sources to cancel flux-induced tadpoles (QC): dual branes ?

What next?

- X constraint $X_{\mathcal{M} \mathcal{N}}{ }^{\mathcal{P}} \partial_{\mathcal{P}}=0$ and mutually BPS states
- SL(2)-DFT sec. constraints : $N=1$ SUGRA in $D=10$ \& $N=(2,0)$ SUGRA in $D=6$
- Flux formulation of SL(2)-DFT : sec. cons violating terms \& dual NS-NS branes
[Bergshoeff, de Roo, Kerstan, Ortín \& Riccioni '06]
[Aldazabal, Graña, Marqués \& Rosabal '13]
- SL(2)-DFT and consistent truncations to half-maximal supergravity
- Cosmological applications of SL(2)-DFT (moduli stab, de Sitter, inflation, ...)

Gracias !!

Application: massive IIA on Sn-1 $^{n} \quad(2<n<8)$

> Massless IIA reductions on $\mathrm{S}^{\mathrm{n}-1}$ to gauged maximal sugra : EFT framework
> Massive IIA reductions on $\mathrm{S}^{\mathrm{n}-1}$ to gauged maximal sugra : XFT framework

Question : when is a consistent reduction Ansatz for massless IIA also consistent for massive IIA ?
[Cvetic , Lü \& Pope '00]
[Lee, Strickland-Constable \& Waldram '14]
Procedure :
[Hohm \& Samtleben '14]
a) Massless IIA : generalised twist matrices valued in $\mathrm{SL}(\mathrm{n})$
b) Romans mass introduced as an X^{R} deformation
c) Consistency requires the stabiliser of X^{R} in $E_{n(n)}$ to contain $S L(n)$

Answer: Only massive IIA on $\mathbf{S}^{\mathbf{6}}$ works $(n=7)$!!

Extended (super) Poincaré superalgebra

- Central charges (internal symmetries) $\mathcal{Z}_{I J}=\left(a_{l J}^{a}\right) T^{a}$
- The algebra:

$$
\begin{gathered}
{\left[P_{\mu}, P_{\nu}\right]=0 \quad\left[M_{\mu \nu}, M_{\rho \sigma}\right]=i\left(\eta_{\nu \rho} M_{\mu \sigma}-\eta_{\nu \sigma} M_{\mu \rho}-\eta_{\mu \rho} M_{\nu \sigma}+\eta_{\mu \sigma} M_{\nu \rho}\right)} \\
{\left[P_{\mu}, M_{\rho \sigma}\right]=i\left(\eta_{\mu \rho} P_{\sigma}-\eta_{\mu \sigma} P_{\rho}\right)} \\
{\left[T^{a}, T^{b}\right]=i f_{c}^{a b} T^{c} \quad\left[T^{a}, P_{\mu}\right]=\left[T^{a}, M_{\mu \nu}\right]=0}
\end{gathered}
$$

$$
\begin{gathered}
{\left[\mathcal{Q}_{\alpha}^{\prime}, P_{\mu}\right]=\left[\overline{\mathcal{Q}}_{\dot{\alpha}}^{\prime}, P_{\mu}\right]=0 \quad\left[\mathcal{Q}_{\alpha}^{\prime}, T^{a}\right]=\left(b_{\alpha}\right)^{\prime}{ }_{\mathcal{Q}} \mathcal{Q}_{\alpha}^{J} \quad\left[\overline{\mathcal{Q}}_{\dot{\alpha}}^{\prime}, T^{a}\right]=-\overline{\mathcal{Q}}_{\dot{\alpha}}^{J}\left(b_{a}\right) \jmath^{\prime}} \\
{\left[\mathcal{Q}_{\alpha}^{\prime}, M_{\mu \nu}\right]=\frac{1}{2}\left(\sigma_{\mu \nu}\right)_{\alpha}^{\beta} \mathcal{Q}_{\beta}^{\prime} \quad\left[\overline{\mathcal{Q}}_{\dot{\alpha}}^{\prime}, M_{\mu \nu}\right]=-\frac{1}{2} \overline{\mathcal{Q}}_{\dot{\beta}}^{\prime}\left(\bar{\sigma}_{\mu \nu}\right)_{\dot{\alpha}}^{\dot{\dot{\alpha}}}}
\end{gathered}
$$

$$
\left\{\overline{\mathcal{Q}}_{\dot{\alpha}}^{\prime}, \overline{\mathcal{Q}}_{\dot{\beta}}^{J}\right\}=-2 \epsilon_{\dot{\alpha} \dot{\beta}} \mathcal{Z}^{I J \dagger} \quad\left\{\mathcal{Q}_{\alpha}^{\prime}, \mathcal{Q}_{\beta}^{J}\right\}=2 \epsilon_{\alpha \beta} \mathcal{Z}^{\prime J} \quad\left\{\mathcal{Q}_{\alpha}^{\prime}, \overline{\mathcal{Q}}_{\dot{\beta}}^{J}\right\}=2 \delta^{I J}\left(\sigma^{\mu}\right)_{\alpha \dot{\beta}} P_{\mu}
$$

$\mathrm{SO}(4) \times \mathrm{SO}(4)$ twist matrices

 where $\quad \beta^{m n}=\left(\begin{array}{cc}\left(\beta_{(1)}\right) 0^{a b} & 0_{3} \\ 0_{3} & \left(\beta_{(2)}\right)^{i d}\end{array}\right), b_{m n}=\left(\begin{array}{cc}\left(b_{(1)}\right)_{a b} & 0_{3} \\ 0_{3} & \left(b_{(2)}\right)_{i j}\end{array}\right), u_{m^{n}}=\left(\begin{array}{cc}\left(u_{(1)}\right) a_{a}^{b i} & 0_{3} \\ 0_{3} & \left(u_{(2)}\right)_{i}^{i}\end{array}\right)$

$$
u_{(1),(2)}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{2}\left(\cos Y_{(1),(2)}+\cos \tilde{Y}_{1(2),(2)}\right. & -\frac{1}{2}\left(\sin Y_{(1),(2)}+\sin \tilde{Y}_{(1),(2)}\right) \\
0 & \frac{1}{2}\left(\sin Y_{(1),(2)}+\sin \tilde{Y}_{(1),(2)}\right) & \frac{1}{2}\left(\cos Y_{(1),(2)}+\cos \tilde{Y}_{(1),(2)}\right)
\end{array}\right),
$$

$$
b_{(1),(2)}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & \frac{1}{2} \sin \left(Y_{(1),(2)}-\tilde{Y}_{(1),(2)}\right) \\
0 & -\frac{1}{2} \sin \left(Y_{(1),(2)}-\tilde{Y}_{(1),(2)}\right.
\end{array}\right),
$$

$$
\begin{aligned}
& Y_{(1)}=\left(\tilde{c}_{1}^{\prime}-a_{0}^{\prime}\right)\left(y^{+1}-y^{+\overline{1}}\right)+\left(\tilde{d}_{1}^{\prime}-b_{0}^{\prime}\right)\left(y^{-1}-y^{-\overline{1}}\right) \\
& \widetilde{Y}_{(1)}=\left(\tilde{c}_{1}^{\prime}+a_{0}^{\prime}\right)\left(y^{+1}+y^{+\overline{1}}\right)+\left(\tilde{d}_{1}^{\prime}+b_{0}^{\prime}\right)\left(y^{-1}+y^{-\overline{1}}\right) \\
& Y_{(2)}=\left(\tilde{c}_{2}^{\prime}-a_{3}^{\prime}\right)\left(y^{+4}-y^{+\overline{4}}\right)+\left(\tilde{d}_{2}^{\prime}-b_{3}^{\prime}\right)\left(y^{-4}-y^{-\overline{4}}\right) \\
& \widetilde{Y}_{(2)}=\left(\tilde{c}_{2}^{\prime}+a_{3}^{\prime}\right)\left(y^{+4}+y^{+\overline{4}}\right)+\left(\tilde{d}_{2}^{\prime}+b_{3}^{\prime}\right)\left(y^{-4}+y^{-\overline{4}}\right)
\end{aligned}
$$

$$
\beta_{(1),(2)}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & \tan \left(\frac{1}{2}\left(Y_{(1),(2)}-\tilde{Y}_{(1),(2)}\right)\right) \\
0 & -\tan \left(\frac{1}{2}\left(Y_{(1),(2)}-\tilde{Y}_{(1),(2)}\right)\right. & 0
\end{array}\right),
$$

