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Yang-Mills theories with simple supersymmetry are constructed in 2, 4, 6, and 10 dimen- 
sions, and it is argued that these are essentially the only cases possible. The method of di- 
mensional reduction is then applied to obtain various Yang-Mills theories with extended 
supersymmetry in two and four dimensions. It is found that all possible four-dimensional 
Yang-Mills theories with extended supersymmetry are obtained in this way. 

1. Introduct ion  

Three types of supersymmetric Yang-Mills theories in four dimensions are known. 
In the first one that was found [1] the infinitesimal parameter of the supersymmetry 
transformation is a Majorana spinor ("simple" supersymmetry). In the second one [2] 
it is a Dirac spinor ("complex" supersymmetry). In the third case it consists of four 
Majorana (or Weyl) spinors [3]. This last model was obtained recently by applying 
the method of dimensional reduction to a supersymmetric Yang-Mills theory in ten- 
dimensional space-time. 

The goal of this paper is to classify all the possible supersymmetric Yang-Mills 
theories in both two and four dimensions. The interest in four dimensions is obvious, 
of course, as one of these schemes may be part of a correct theory. The two-dimen- 
sional cases are also emphasized because of the possibility of coupling such Yang- 
Mills multiplets to a corresponding two-dimensional supergravity theory [4] in order 
to get a modified string theory. Our technique consists of two stages. In the first 
stage Yang-Mills theories with simple supersymmetry are constructed for all space- 
time dimensions in which it is possible. Then in the second stage each of the higher- 

'~ Work supported in part by the US Energy Research and Development Administration under 
contract E(11-1)-68, and by the Swedish Atomic Research Council under contract 0310-026. 
On leave of absence from Institute of Theoretical Physics, GiSteborg, Sweden. 

77 

- Masses in 4D from reduction of non-abelian 

SYM in 10D

[ Brink, Scherk & Schwarz ’76 ]

Lower-dimensional masses from higher-dimensional deformations

KK reduction
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Notation and conventions
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We will adopt the NorthWest-SouthEast (NW-SE) conventions of [?], e.g. UP = U
Q ⌦QP .

In order to truncate from maximal to half-maximal supergravity we are making use of the

decomposition (branching) of di↵erent E7(7) representations under the SL(2) ⇥ SO(6, 6)

symmetry of half-maximal supergravity. Of special interest are

56 �! (2,12) + (1,32) , (3)

133 �! (1,66) + (3,1) + (2,32’) , (4)

912 �! (2,12) + (2,220) + (1,352’) + (3,32) , (5)

where 32 and 32’ respectively denote left- and right-handed Majorana-Weyl (M-W) spinorial

representations of SO(6, 6) and similarly for the other spinorial irrep’s1. The decomposition

of the 56 in (3) amounts to the index splitting M = (↵,M)� µ , where ↵ = ± is an electric-

magnetic SL(2) index, M = 1, . . . , 12 refers to an SO(6, 6) vector index and µ = 1, . . . , 32

denotes a M-W left-handed fermionic index. Analogously, an index µ̇ = 1, . . . , 32 will

denote a M-W right-handed spinor. To carry out the truncation one has to apply a discrete

Z2-projection2

Z2 : N = 8 �! N = 4

E7(7) �! SL(2)⇥ SO(6, 6)
(6)

under which di↵erent SL(2) ⇥ SO(6, 6) indices acquire a parity. In particular, the bosonic

indices ↵ and M are even whereas the fermionic indices µ and µ̇ become odd. Keeping only

states which are parity even will truncate from maximal to half-maximal supergravity [?].

As a result, the skew-symmetric ⌦MN matrix becomes block-diagonal with bosonic and

fermionic blocks

⌦MN =

0

@
⌦↵M�N 0

0 ⌦µ⌫

1

A =

0

@
✏↵� ⌘MN 0

0 Cµ⌫

1

A . (7)

1See the appendix in ref. [?] for conventions about M-W spinorial irrep’s of SO(6, 6) .
2In a string theory realisation of maximal supergravity, this Z2-projection corresponds to orientifolding

the theory.
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A generalized method of dimensional reduction, applicable to theories in curved space, 
is described. As in previous works by other authors, the extra dimensions are related to 
the manifold of a Lie group. The new feature of this work is to define and study a class 
of Lie groups, called “flat groups” , for which the resulting theory has no cosmological 
constant, a well-behaved potential, and a number of arbitrary mass parameters. In partic- 
ular, when the analysis is applied to the reduction of 1 l-dimensional supergravity to 
four dimensions it becomes possible to incorporate three arbitrary mass parameters in the 
resulting N = 8 theory. This shows that extended supersymmetry theories allow more 
possibilities for spontaneous symmetry breaking than was previously believed to be the 
case. 

1. Introduction 

Dimensional reduction has been used to construct Yang-Mills theories [ 1,2] with 
extended supersymmetry [3] and the N = 8 supergravity theory [4]. In “ordinary”  
dimensional reduction, the coordinates of a D + E dimensional theory are divided 
into D space-time coordinates (xP) and E internal coordinates b”) that form a com- 
pact space. The fields and symmetry transformation laws that the theory possesses 
in D t E dimensions are taken to be y independent. This requirement for the fields 
and transformation laws implies in particular that an invariance of the D + E dimen- 
sional theory results in a corresponding one for the reduced theory in D dimensions. 
For example, from a theory with simple supersymmetry in D + E dimensions one 
deduces a theory with extended supersymmetry in D dimensions ??*. An obvious 
limitation of this approach is that starting from a massless theory (as is necessarily 
the case for supersymmetric theories in 10 or 11 dimensions [3,6]) the resulting 
reduced theory is also massless (aside from possible masses due to the Higgs mecha- 

* John Simon Guggenheim Fellow on leave of absence from the California Institute of Tech- 
nology. 

??* Laboratoire propre du CNRS, associ6 ?I 1’Ecole Normale Supbrieure et & l’Universit6 de Paris- 
Sud. Postal address: 24 rue Lhomond, 75231 Paris Cedex 05 (France). 

??** For a review of extended supergravity theories, see ref. [ 5 1. 
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Reduction of gravity theories in 10D/11D

- Masses in 4D from reduction of gravity theories 

in 10D/11D with non-trivial internal profiles

[ Scherk & Schwarz ’79 ]

Lower-dimensional masses from non-trivial internal dependence

SS reduction

 4

L10D/11D = eR

�m(x, y) = U(y)m
n �n(x)

f = U�1 U�1@U = cte

[ f = Lie algebra structure constants ]

L4D = eR � 1
4 M F 2 � DµMDµM�1

� 2 f f M�1 � f f M M�1 M�1



After 40 years, a new framework where to jointly 

describe gauge and gravitational aspects of 

10D/11D supergravities (string/M-theory) has 

been constructed based on the idea of 

dualities…

 5
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Dualities and Extended Field Theories (ExFT)

- Different strings related by dualities:  IIA/IIB T-duality,  IIB S-duality, …

- String dualities realised as non-linear global symmetries in SUGRA

lower-dimensional phenomenon       VS       higher-dimensional phenomenon

Today’s talk :  Extended Field Theories  (ExFT)  

 Double Field Theory  (DFT)                 Orthogonal groups  O(d,d) [ half-max SUGRA   (T-duality) ]

gaugings, embedding tensor, … non-geometry, ß-supergravity, ExFT …

[ Siegel ’93] [ Hull & Zwiebach (Hohm) ’09 ’10] [ Hohm & Samtleben ’13 ]

 Exceptional Field Theory  (EFT)           Exceptional groups  Ed+1(d+1) [ max SUGRA   (U-duality) ]

[ extend internal coords to transform linearly under duality ]
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Dualities in SUGRA and Extended Field Theory

D Maximal sugra / EFT Half-maximal sugra DFT

9 R+ × SL(2) R+ ×O(1, 1 + n) R+ ×O(1, 1 + n)

8 SL(2)× SL(3) R+ ×O(2, 2 + n) R+ ×O(2, 2 + n)

7 SL(5) R+ ×O(3, 3 + n) R+ ×O(3, 3 + n)

6 SO(5, 5) R+ ×O(4, 4 + n) R+ ×O(4, 4 + n)

5 E6(6) R+ ×O(5, 5 + n) R+ ×O(5, 5 + n)

4 E7(7) SL(2)×O(6, 6 + n) R+ ×O(6, 6 + n)

3 E8(8) O(8, 8 + n) R+ ×O(7, 7 + n)

Table 1: Relevant duality groups in maximal and half-maximal supergravity as well as in

extended field theory. Only the non-chiral N = (1, 1) supergravity in D = 6 is displayed.

The R+ factor in the duality structure of DFT is actually a combination of an internal

R+ contained in the second column and a trombone rescaling.

are SL(2) rotated with respect to each other. Various maximally symmetric solutions

compatible with four-dimensional N = 4 gaugings of this type were discussed in [28,29].

It thus becomes crucial to have access to the SL(2) factor of the duality group in

the half-maximal extended field theory in order to generate N = 4 gaugings that may

stabilise the moduli upon reduction to a D = 4 gauged supergravity. One systematic

manner of obtaining N = 4 gaugings at SL(2) angles is by Z2-truncating gaugings of

N = 8 supergravity [30] for which moduli stabilisation is known to occur, e.g. the

CSO(p, q, r) gaugings (p + q + r = 8) of maximal supergravity [31–34]. Some of these

gaugings arise from consistent reductions of string/M-theory with fluxes2, and without

extra spacetime-filling sources. However, from a phenomenological point of view, these

gaugings are not yet fully satisfactory because they cannot arise from compactifications

(without boundaries) and, at the same time, produce Minkowski or de Sitter (dS) solu-

tions due to the no-go theorem of [41] (see also [42]). In order to circumvent this no-go

theorem, one may add sources (branes, orientifold planes, KK-monopoles, ...) and/or

introduce non-geometric fluxes [43, 44] whose higher-dimensional origin is not yet well

understood. The resulting four-dimensional supergravity is no longer compatible with

maximal supersymmetry but still can preserve some fraction thereof if the sources and

fluxes are judiciously distributed over the internal space. When they are set to preserve

N = 4 supersymmetry, no example of a perturbatively stable dS vacuum in D = 4

2See [11] (and references therein) for a unified account of electric gaugings, as well as [35–37] for

dyonic ones [38–40].

3

Duality groups of half-maximal SUGRA and DFT differ for D<5

* n = additional vector multiplets
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1. Deformations à la SYM :   E7(7) covariant ExFT

How to get masses from ExFT
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JHEP 08 (2016) 154   with   F. Ciceri  and  G. Inverso

[ Motivation = Massive IIA ]

[ Motivation = fluxes and moduli stabilisation ]

2. Deformations à la gravity  :  SL(2) x O(6,6) covariant ExFT

JHEP 07 (2017) 028   with   F. Ciceri  and  G. Inverso  

                                            + G. Dibitetto  and  J.J. Fernández-Melgarejo



- Space-time :  external ( D=4 ) + generalised internal   (        coordinates in 56 of E7(7) )   

Generalised diffs  =  ordinary internal diffs  +  internal gauge transfos

 Generalised Lie derivative built from an E7(7)-invariant structure Y-tensor

Y PQ
MN @P ⌦ @Q = 0

Two maximal solutions :   M-theory  ( 7 dimensional )   &  Type IIB   ( 6 dimensional )

Closure requires a section constraint  :

Question:  What about the massive IIA theory?

yM

[ momentum, winding, … ]

 10

[ massless theories ]

[ Romans ’86 ] 

[ Hohm & Kwak ’11 (sec const violated) ]

E7(7)-EFT

L⇤UM = ⇤N@NUM � UN@N⇤M + Y MN
PQ @N⇤P UQ [ no density term ]



- E7(7)-EFT action   [                           ]

with field strengths & potential term given by 

Dµ = @µ � LAµ

VEFT(M, g) = � 1
48 M

MN @MMKL @NMKL + 1
2 M

MN @MMKL @LMNK

� 1
2 g

�1@Mg @NMMN � 1
4 M

MN g�1@Mg g�1@N g � 1
4 M

MN @Mgµ⌫ @N gµ⌫

SEFT =

Z
d4x d56y e

⇥
R̂ + 1

48 g
µ⌫ DµMMN D⌫MMN � 1

8 MMN Fµ⌫MFµ⌫
N

+ e�1 Ltop � VEFT(M, g)
⇤

- Two-derivative potential :   ungauged  N=8  D=4  SUGRA  when  

Fµ⌫
M = 2 @[µA⌫]

M �
⇥
Aµ, A⌫

⇤M
E

+ two-form terms

�(x, y) = �(x)
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( tensor hierarchy )

E7(7)-EFT



Deforming E7(7)-EFT

- Generalised Lie derivative

L⇤UM = ⇤N@NUM � UN@N⇤M + Y MN
PQ @N⇤P UQ

- Deformed generalised Lie derivative

in terms of an X deformation which is En(n)-algebra valued

- Closure & triviality of the Jacobiator require  ( together with sec. constraint )

XMN
P @P = 0 XMP

Q XNQ
R �XNP

Q XMQ
R +XMN

Q XQP
R = 0

X constraint Quadratic constraint   (gauged max. supergravity)

eL⇤UM = ⇤N@NUM � UN@N⇤M + Y MN
PQ @N⇤P UQ �XNP

M ⇤N UP

[ X deformation vs embedding tensor ]
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non-derivative



- E7(7)-XFT action   [                           ]

- Two-One-Zero-derivative potential :  gauged 4D max. sugra when  �(x, y) = �(x)

Dµ = @µ � eLAµ

SXFT =

Z
d4x d56y e

⇥
R̂ + 1

48 g
µ⌫ DµMMN D⌫MMN � 1

8 MMN Fµ⌫MFµ⌫
N

+ e�1 Ltop � VXFT(M, g)
⇤

Fµ⌫
M = 2 @[µA⌫]

M +X[PQ]
M Aµ

PA⌫
Q �

⇥
Aµ, A⌫

⇤M
E

+ two-form terms

VXFT(M, g,X) = VEFT(M, g) + 1
12 M

MNMKLXMK
P @NMPL + VSUGRA(M, X)

cross term gauged max. sugra

with field strengths & potential given by 
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[        coords in the 56 of E7(7) ] yM

( deformed tensor hierarchy )

E7(7)-XFT



X deformation : background fluxes & Romans mass

XMN
P @P = 0

X constraint

section constraint

Y PQ
MN @P ⌦ @Q = 0
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[ algebraic system ]

[ QC = flux-induced tadpoles ]

M-theory  ( 7 coords ) Type IIB  ( 6 coords )

• SL(7) orbit 

• Freund-Rubin param. 

• massless IIA (subcase)

• SL(6) orbit 

• p-form fluxes 
   compatible with SL(6) 

• SL(2)-triplet of 1-form flux 
   ( includes compact SO(2) )



X deformation : background fluxes & Romans mass

XMN
P @P = 0

X constraint

section constraint

Y PQ
MN @P ⌦ @Q = 0 M-theory  ( 7 coords ) Type IIB  ( 6 coords )

• SL(7) orbit 

• Freund-Rubin param. 

• massless IIA (subcase)

• SL(6) orbit 

• p-form fluxes 
   compatible with SL(6) 

• SL(2)-triplet of 1-form flux 
   ( includes compact SO(2) )

+

New massive Type IIA  ( 6 coords )

• SL(6) orbit 

• p-form fluxes compatible with SL(6) 

• dilaton flux 

• Romans mass parameter  ( kills the M-theory coord )

Massive Type IIA described in a 
purely geometric manner !!
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[ algebraic system ]

[ QC = flux-induced tadpoles ]



1. Deformations à la SYM :   E7(7) covariant ExFT

How to get masses from ExFT
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JHEP 08 (2016) 154

[ Motivation = Massive IIA ]

[ Motivation = fluxes and moduli stabilisation ]

2. Deformations à la gravity  :  SL(2) x O(6,6) covariant ExFT

JHEP 07 (2017) 028



- Halving E7(7)-EFT to obtain SL(2)-DFT with SL(2) x SO(6,6) symmetry

From  E7(7)-EFT  to  SL(2)-DFT

E7(7) ! SL(2)⇥ SO(6, 6)

56 ! (2,12) + (1,32)

yM ! y↵M + yA

α = ( + , - )  vector index of SL(2) 

M   vector index of SO(6,6) 
A    M-W spinor index of SO(6,6)

via a Z2 truncation  ( vector = +1 , spinor = -1 )  on coordinates, fields, etc.

EFT SL(2)-DFT
[ see Dibitetto, A.G. & Roest ’11 for sugra ]

- SL(2)-DFT section constraints : ⌘MN @↵M ⌦ @�N = 0 ✏↵� @↵[M | ⌦ @�|N ] = 0

⇥

- SL(2)-DFT generalised Lie derivative

,

L⇤U
↵M = ⇤�N@�NU↵M � U�N@�N⇤↵M + ⌘MN ⌘PQ @�N⇤�P U↵Q + 2 ✏↵� ✏�� @�N⇤�[M U |�|N ]

[ DFT corresponds to an  α = +  orientation ]
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[ Hull & Zwiebach ’09] [ Hohm, Hull & Zwiebach ’10]



- SL(2)-DFT action   [                           ]

with field strengths & potential term given by 

Dµ = @µ � LAµ

- Two-derivative potential :   ungauged  N=4  D=4  SUGRA  when  �(x, y) = �(x)

 18

( tensor hierarchy )

SL(2)-DFT

Fµ⌫
↵M = 2 @[µA⌫]

↵M �
⇥
Aµ, A⌫

⇤↵M
S

+ two-form terms

2.3 Bosonic pseudo-action

We now present the pseudo-action governing the dynamics of the theory. It can be derived

by Z2-truncating the pseudo-action of E7(7)-EFT [5], as described in the appendix A, and

must be supplemented with the twisted self-duality relations

Fµ⌫
↵M = �

1

2
e "µ⌫⇢�⌘

MN
"
↵�

M�N�P F
⇢� �P

, (2.17)

where e is the determinant of the vierbein and M
↵M�N

⌘ M
↵�
M

MN is a symmetric

matrix parameterising the scalar manifold. The dynamics of the theory is completely

specified by imposing the above twisted self-duality equations after varying the pseudo-

action

SSL(2)-DFT =

Z
d
4
x d

24
y e

⇥
R̂ + 1

4 g
µ⌫

DµM
↵�

D⌫M↵� +
1
8 g

µ⌫
DµM

MN
D⌫MMN

�
1
8 M↵� MMN F

µ⌫ ↵M
Fµ⌫

�N + e
�1

Ltop � VSL(2)-DFT(M, g)
⇤
.

(2.18)

The gauge invariance of this pseudo-action is guaranteed by the fact that the section

constraints (2.6) are in one-to-one correspondence with the truncation of the E7(7)-EFT

section constraint. Nevertheless, gauge invariance can be checked explicitly using the

fact that the vierbein and the scalar matrix M
↵M�N transform under generalised di↵eo-

morphisms as a scalar density and as a symmetric tensor of weight �(eµa) = 1/2 and

�(M↵M�N) = 0, respectively. This implies6 in particular

�⇤eµ
a = ⇤�P

@�P eµ
a + 1

2 @�P⇤
�P
eµ

a
,

�⇤M
↵� = ⇤�P

@�PM
↵�

� 2M�(↵
@�P⇤�)P +M

↵�
@�P⇤�P

,

�⇤M
MN = ⇤�P

@�PM
MN

� 2MP (M
@�P⇤|�|N) + 2 ⌘P (M

M
N)R

@�P⇤�Q
⌘QR .

(2.19)

Equipped with these formulae and the transformations (2.17), it is then possible to ver-

ify that each term in the pseudo-action is invariant under generalised di↵eomorphisms

and tensor gauge transformations. The relative coe�cients between the various term can

be fixed by requiring invariance under external di↵eomorphisms but this computation is

more involved and we expect it to follow the same steps as in E7(7)-EFT.

The kinetic terms: In line with the structure of extended field theories, the Einstein-

Hilbert term is constructed from a modified Riemann tensor

R̂µ⌫
ab = Rµ⌫

ab[!] + Fµ⌫
↵M

e
a⇢
@↵Me⇢

b
, (2.20)

6There is an ambiguity in how to distribute the density term between the transformation of M↵�

and the one of MMN . Note however that this is irrelevant for the gauge invariance of the pseudo-action

(2.18). In order to recover later on the correct transformation of MMN in DFT, we have chosen here

to move the whole density term to the transformation of M↵� .
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where Rµν
ab[ω] is the curvature of the spin connection in the external space-time and

carries weight λ(Rµν
ab[ω]) = 0. The corresponding modified Ricci scalar then transforms

as scalar of weight λ(R̂) = −1 under generalised diffeomorphims.

The second, third and fourth terms respectively correspond to the kinetic terms for

the Mαβ ∈ SL(2)/SO(2) scalars, the MMN ∈ SO(6, 6)/(SO(6)× SO(6)) scalars and the

vector fields in the theory. Furthermore, we will parameterise Mαβ and its inverse as

Mαβ =
1

ImS

⎛

⎝
|S|2 ReS

ReS 1

⎞

⎠ and Mαβ =
1

ImS

⎛

⎝
1 −ReS

−ReS |S|2

⎞

⎠ , (2.21)

where S(x, y) ≡ χ0+ i e−φ is the complex axion-dilaton of SL(2)-DFT. In particular, the

rigid SL(2) symmetry acts linearly on Mαβ and as a fractional linear transformation on

the complex field S . The specific parameterisation of MMN will not play any role in

this work.

The topological term: The topological term is obtained from the one of E7(7)-EFT

and takes the form of a surface term in five dimensions

Stop = − 1

24

∫

Σ5

d5x d24y εµνρστ εβα ηMN Fµν
αM DρFστ

βN . (2.22)

The potential: The potential resulting from the truncation of the E7(7)-EFT expression

takes the following form

VSL(2)-DFT(M, g) = MαβMMN
[
− 1

4 (∂αMMγδ)(∂βNMγδ)− 1
8 (∂αMMPQ)(∂βNMPQ)

+ 1
2 (∂αMMγδ)(∂δNMβγ) +

1
2(∂αMMPQ)(∂βQMNP )

]

+ 1
2 M

MNMPQ(∂αMMαδ)(∂δQMNP ) +
1
2 M

αβMγδ(∂αMMMQ)(∂δQMβγ)

− 1
4 M

αβ MMN
[
g−1(∂αMg) g−1(∂βNg) + (∂αMgµν) (∂βNgµν)

]

− 1
2 g

−1 (∂αMg) ∂βN(MαβMMN ) ,
(2.23)

and depends on both SL(2) and SO(6, 6) scalars.

Vector and tensor field equations: The field equations for the vectors Aµ
αM can be

derived by varying the Lagrangian (2.18)

δAL =
[1
4
Dµ

(
2 eMαβMMNFµν βN + εµνρσFρσ αM

)
+ e Ĵ ν

αM + eJ ν
αM

]
δAν

αM , (2.24)

where the first and second terms come from the variation of the kinetic and topological

term7, respectively. The currents Ĵ and J in (2.24) are defined by

δLEH = e Ĵ ν
αM δAν

αM and δLkin. scal = eJ ν
αM δAν

αM , (2.25)

7This variation is once again easily derived by truncating the expression of E7(7)-EFT.
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- One maximal solution of sec. constraint :    it describes Type I/Heterotic

 19

- Generalised SS reductions with SL(2) x O(6,6) twist matrices 

    yield N=4 gauging parameters

U↵M
�N = e� e↵

� UM
N

f↵MNP = �3 e�� e↵� ⌘Q[M UN
R UP ]

S @�RUS
Q

⇠↵M = 2UM
N@�N (e��e↵�)

- Moduli stabilisation requires gaugings  G = G1 x G2  at relative SL(2) angles

Section constraint & SL(2) angles 

f+

f�
G2 ( sec. constraint violated )

[ not possible in DFT ]

G1

[ as in DFT ]

✏↵� @↵[M | ⌦ @�|N ] 6= 0

[ de Roo & Wagemans ’85 ]
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Example : SO(4) x SO(4) gaugings and non-geometry

- SS with                              :  Half of the coords of  type +   &   half of  type - 

- SL(2)-superposition of two chains of non-geometric fluxes  ( H , ! , Q , R )±

Most general family (8 params) of SO(4) x SO(4) gaugings of N=4 sugra

-  SO(4) x SO(4) N=4 sugra :  AdS & dS vacua ( sphere/hyperboloid reductions )

- ``Hybrid ±” sources to cancel flux-induced tadpoles (QC) :    dual branes ?

f+abc = H
(+)

abc , f+ijk = H
(+)

ijk , f+abc̄ = !
(+)

ab
c

, f+ijk̄ = !
(+)

ij
k

f+āb̄c = Q
(+)ab

c , f+īj̄k = Q
(+)ij

k , f+āb̄c̄ = R
(+)abc

, f+īj̄k̄ = R
(+)ijk

f�ijk = H
(-)

ijk , f�abc = H
(-)

abc , f�ijk̄ = !
(-)

ij
k

, f�abc̄ = !
(-)

ab
c

f�īj̄k = Q
(-)ij

k , f�āb̄c = Q
(-)ab

c , f�īj̄k̄ = R
(-)ijk

, f�āb̄c̄ = R
(-)abc

f+

f�

[ de Roo, Westra, Panda & Trigiante ’03 ] 
[ Dibitetto, A.G. & Roest ’12 ]

[ Bergshoeff, de Roo, Kerstan, Ortín & Riccioni ’06  ]

U(y↵M ) 2 O(6, 6)



- Cosmological applications of SL(2)-DFT ( moduli stab, de Sitter, inflation, … )

 21

What next ?
[ Bossard & Kleinschmidt ‘15 ] 

[ Bandos ‘15 ]
XMN

P @P = 0

[ Bergshoeff, de Roo, Kerstan, Ortín & Riccioni ’06 ] 
[ Aldazabal, Graña, Marqués & Rosabal ‘13 ]

[ Hassler, Lüst & Massai  ‘14 ]

- SL(2)-DFT sec. constraints :  N=1 SUGRA in D=10  &  N=(2,0) SUGRA in D=6 

- Flux formulation of SL(2)-DFT : sec. cons violating terms & dual NS-NS branes

- SL(2)-DFT and consistent truncations to half-maximal supergravity 

- X constraint                           and mutually BPS states 



Gracias !!
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Application :  massive IIA on Sn-1     ( 2 < n < 8 )

 23

Massless IIA reductions on Sn-1 to gauged maximal sugra  :   EFT framework 

Massive IIA  reductions on Sn-1 to gauged maximal sugra  :   XFT framework

Procedure : 

a) Massless IIA :  generalised twist matrices valued in SL(n) 

b) Romans mass introduced as an XR deformation 

c) Consistency requires the stabiliser of  XR  in  En(n)  to contain SL(n)

Answer :  Only massive IIA on S6 works  (n=7) !!

Question :  when is a consistent reduction Ansatz for massless IIA  also consistent    
                   for massive IIA ?

[ Cvetic , Lü & Pope ’00 ]  
[ Lee, Strickland-Constable & Waldram ‘14 ] 

[ Hohm & Samtleben ’14 ]

[ A.G. & Varela ’15 ]



Extended (super) Poincaré superalgebra

Extended (super) Poincaré algebra

{Q,Q} must be a linear combination of bosonic operators in the (0, 0) and

(1, 0) representations of the Lorentz group.

The only (1, 0) is the self-dual part of Mµ⌫ , but it would not commute with Pµ.

Thus, we need a new generator, ZIJ
�
Q

I
↵,QJ

�

 
= 2 ✏↵� Z

IJ
ZIJ = �ZJI

that should be a linear combination of the internal symmetry generators,

ZIJ = (aa
IJ) T a

Z
IJ are central extensions or central charges (which can be deduced from the

algebra and the Jacobi identities) ) Z
IJ
2 Z(G).

The adjoint of the bracket above reads

n
Q̄

I
↵̇, Q̄J

�̇

o
= �2 ✏↵̇�̇ Z

IJ †

where we used ✏↵̇�̇ = �✏↵� .
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- Central charges  (internal symmetries)

- The algebra :Extended (super) Poincaré algebra

[Pµ, P⌫ ] = 0 [Mµ⌫ , M⇢�] = i (⌘⌫⇢ Mµ� � ⌘⌫� Mµ⇢ � ⌘µ⇢ M⌫� + ⌘µ� M⌫⇢)

[Pµ, M⇢�] = i (⌘µ⇢ P� � ⌘µ� P⇢)

⇥
T a, T b⇤ = if ab

c T c [T a, Pµ] = [T a, Mµ⌫ ] = 0

⇥
Q

I
↵, Pµ

⇤
=
⇥
Q̄

I
↵̇, Pµ

⇤
= 0

⇥
Q

I
↵, T a⇤ = (ba)

I
J Q

J
↵

⇥
Q̄

I
↵̇, T a⇤ = �Q̄J

↵̇ (ba)
I

J

⇥
Q

I
↵, Mµ⌫

⇤
=

1

2
(�µ⌫) �

↵ Q
I
�

⇥
Q̄

I
↵̇, Mµ⌫

⇤
= �

1

2
Q̄

I
�̇

(�̄µ⌫)�̇
↵̇

n
Q

I
↵, Q̄J

�̇

o
= 2 �IJ (�µ)↵�̇ Pµ

n
Q̄

I
↵̇, Q̄J

�̇

o
= �2 ✏↵̇�̇ Z

IJ † �
Q

I
↵,QJ

�

 
= 2 ✏↵� Z

IJ
where ZIJ = (aa

IJ) T a

[ZIJ , anything] = 0
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SO(4) x SO(4) twist matrices

- O(6,6) twist : UM
N (y↵M ) =

✓
I6 06
� I6

◆✓
I6 b
06 I6

◆✓
u 06
06 u�t

◆
=

✓
um

n bmp (u�t)pn
�mp up

n (u�t)mn + �mp bpq (u�t)qn

◆with y↵M = (y↵m, y↵m̄) and m = 1, ..., 6 . For the sake of simplicity, from now on we

will consider sub-classes of twist matrices of the form U ⇢ SO(3, 3)(1) ⇥ SO(3, 3)(2) ⇢

SO(6, 6) . This translates into a further splitting of coordinates of the form y↵m = (y↵a, y↵i) ,

y↵m̄ = (y↵ā, y↵ī) with a = 1, 2, 3 , i = 4, 5, 6 , and a block-diagonal structure of the twist

parameters

�mn =

 
(�(1))ab 03

03 (�(2))ij

!
, bmn =

 
(b(1))ab 03

03 (b(2))ij

!
, um

n =

 
(u(1))ab 03

03 (u(2))i
j

!
,

(4.17)

where the (1),(2) labels refer to the SO(3, 3)(1),(2) factors.

SO(4)⇥ SO(4) gaugings:

This family of N = 4 gauged supergravities is obtained from twisting parameters of the

form

u(1),(2) =

0

BBB@

1 0 0

0 1
2 (cosY(1),(2) + cos eY(1),(2)) �

1
2 (sinY(1),(2) + sin eY(1),(2))

0 1
2 (sinY(1),(2) + sin eY(1),(2))

1
2 (cosY(1),(2) + cos eY(1),(2))

1

CCCA
,

b(1),(2) =

0

B@
0 0 0

0 0 1
2 sin(Y(1),(2) �

eY(1),(2))

0 �
1
2 sin(Y(1),(2) �

eY(1),(2)) 0

1

CA ,

�(1),(2) =

0

BB@

0 0 0

0 0 tan
⇣

1
2 (Y(1),(2) �

eY(1),(2))
⌘

0 � tan
⇣

1
2 (Y(1),(2) �

eY(1),(2))
⌘

0

1

CCA ,

(4.18)

which depend on four linear combinations of coordinates given by

Y(1) = (c̃01 � a00) (y
+1

� y+1̄) + (d̃01 � b00) (y
�1

� y�1̄) ,

eY(1) = (c̃01 + a00) (y
+1 + y+1̄) + (d̃01 + b00) (y

�1 + y�1̄) ,

Y(2) = (c̃02 � a03) (y
+4

� y+4̄) + (d̃02 � b03) (y
�4

� y�4̄) ,

eY(2) = (c̃02 + a03) (y
+4 + y+4̄) + (d̃02 + b03) (y

�4 + y�4̄) .

(4.19)

We are also setting � = 0 and e↵↵ = �↵↵ which in turn means ⇠↵M = 0 and #↵M = 0 .

The resulting family of N = 4 gauged supergravities turns out to depend on eight arbi-

trary parameters that activate sixteen components inside f↵MNP of the form [a.g: rename
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Y(2) = (c̃02 � a03) (y
+4

� y+4̄) + (d̃02 � b03) (y
�4

� y�4̄) ,

eY(2) = (c̃02 + a03) (y
+4 + y+4̄) + (d̃02 + b03) (y

�4 + y�4̄) .

(4.19)

We are also setting � = 0 and e↵↵ = �↵↵ which in turn means ⇠↵M = 0 and #↵M = 0 .

The resulting family of N = 4 gauged supergravities turns out to depend on eight arbi-

trary parameters that activate sixteen components inside f↵MNP of the form [a.g: rename
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where


