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Massive IIA on S6 / SYM-CS duality

Electric-magnetic duality in N=8 supergravity

Holographic RG flows: domain-walls & black holes
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Electric-magnetic duality in N=8 supergravity
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Ungauged  (abelian)  supergravity:   Reduction  of  M-theory  on  a  torus  T7 
down to 4D produces  N = 8  supergravity with  G = U(1)28

Gauged (non-abelian) supergravity: 

- Reduction of M-theory on a sphere S7 down to 4D produces  N = 8  supergravity 
with  G = SO(8)

- Reduction of M-theory on  S1  (Type IIA) and subsequently on S6  down to 4D 
produces  N = 8  supergravity with  G = ISO(7)

N=8  supergravity in 4D

 • SUGRA  :      metric  +  8 gravitini  +  28 vectors  +  56 dilatini  +  70 scalars
(s = 2)             (s = 3/2)                (s = 1)               (s = 1/2)                (s = 0)       

✱  These gauged supergravities believed to be unique for 30 years…

[ Cremmer, Julia ’79 ] 

[ de Wit, Nicolai ’82 ] 
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[ Hull ’84 ] 

SO(8)c     vs    ISO(7)c 
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SO(8)c  theories  :  physical meaning in 4D

LSLJ[YPJ
LJ[VY

THNUL[PJ
LJ[VY

G = SO(8)

D = @ � g (Aelec � c Ãmag)

! = Arg(1 + ic)
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Why ISO(7)c works ?

THNUL[PJ
LJ[VY

LSLJ[YPJ
LJ[VY

SO(7)
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G = ISO(7) = SO(7)n R7

! = Arg(1 + ic)

D = @ � g Aelec

SO(7)
� g (Aelec

R7 � c ÃR7 mag)
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Higher-dimensional origin?
Obstruction for SO(8)c ,  cf.  [ de Wit, Nicolai ’13 ]

[ Lee, Strickland-Constable, Waldram ’15 ] 



 1)  Family of  SO(8)c  theories  :  c = [0,           ] is a continuous param                     

Electric-magnetic deformations

Type IIB   :    AdS5  x  S5    ( D3-brane ~ N = 4  SYM  in  4d )    

M-theory :    AdS4  x  S7    ( M2-brane ~ ABJM  theory  in  3d )  

 • N=8 supergravity in 4D admits a deformation parameter   c   yielding  inequivalent 
theories.  It is an electric/magnetic deformation

 • Uniqueness historically inherited from the connection with NH geometries of branes 
and SCFT’s

D = @ � g (Aelec � c Ãmag)

 • There are  two generic situations : 

 2)  Family of  ISO(7)c  theories :  c = 0 or 1  is an  (on/off)  param                     

g = 4D gauge coupling
c = deformation param.

[ Dall’Agata, Inverso, Marrani ’14 ]

p
2� 1
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[ similar for  SO(p,q)c  ]

[ same for  ISO(p,q)c  ]

[ Dall’Agata, Inverso, Trigiante ’12 ] 

[ Maldacena ’97 ] 

[ Aharony, Bergman, Jafferis, Maldacena ’08 ] 



SO(8)c     vs    ISO(7)c 
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Higher-dimensional origin?
Obstruction for SO(8)c ,  cf.  [ de Wit, Nicolai ’13 ]

[ Lee, Strickland-Constable, Waldram ’15 ] 

Holographic dual?



Well-established and independent dualities :

Type IIB on S5/N=4 SYM   —    M-theory on S7/ABJM  —  mIIA on S6/SYM-CS

!7

A new 10D/4D/3d correspondence

massive IIA on S6     «   ISO(7)c-gauged sugra   »   SU(N)k  C-S-M theory

gc =        =  

4D

10D

3d

F̂(0)

gc = elec/mag deformation in 4D

        = Romans mass in 10D

k = Chern-Simons level in 3d

F̂(0)k/(2⇡`s)

[ AG, Jafferis, Varela ’15 ] 
[ AG, Varela ’15 ] 

[ Schwarz ’04 ] 

A new 10D/4D/3d correspondence

massive IIA on S6     «   ISO(7)c-gauged sugra   »   SU(N)k  SYM-CS theory

[ AG, Jafferis, Varela ’15 ]  
[ AG, Varela ’15 ] 
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Massive IIA on S6 / SYM-CS duality



• Electric vectors  (21 + 7) :                            [ SO(7) ]   and           [ R7 ]  with                                                                            

• Auxiliary magnetic vectors  (7) :             [ R7 ]   with                field strength

• E7/SU(8) scalars :                

• Auxiliary two-forms (7) :           [ R7 ]

• Topological term :   g c [ … ] 

• Scalar potential :

AI

4D :   ISO(7)c Lagrangian 

the theory [18,19]. By solving these constraints, one finds a one-parameter family of ISO(7)

gaugings specified by an electric/magnetic deformation parameter c . However, it was shown

in [2] that all non-vanishing values of c produce equivalent theories up to a rescaling of the

gauge coupling, thus rendering the deformation discrete. The components of the embedding

tensor ⇥M
↵ take the explicit form

⇥[IJ ]
KL = �

KL

IJ
, ⇥[I8]

K = �
K

I
, ⇥[IJ ]KL = 0 , ⇥[I8]K = �c �

K

I
, (2.3)

where the index ↵ runs over the 21+7 linear combinations of E7(7) generators associated to

ISO(7) = SO(7) n R7 . We have included, for further emphasis, the vanishing components

⇥[IJ ]KL = 0. The quadratic constraints require these to be zero, which means that the 21

rotations SO(7) ⇢ ISO(7) are gauged electrically only. In contrast, the 7 translations R7 are

gauged dyonically in the SL(8) symplectic frame we are considering (see eq.(2.6) below).

In the next section we will present the expression for the bosonic Lagrangian associated

to the embedding tensor (2.3). The couplings induced by the dyonic ISO(7) gaugings appear,

on the one hand, as new two-form dependent terms that modify the definition of (some of)

the electric vector field strengths and, on the other hand, in the form of a topological term

and a scalar potential. We refer to appendix A for further details of the construction of the

bosonic sector of the N = 8 theory from the formalism of [18, 19], and to references [2, 15]

for further analysis of the ISO(7) embedding tensor.

2.2 The bosonic Lagrangian

As we have just discussed, the bosonic field content we are considering includes the vielbein

eµ
a and scalars MMN , together with

vectors: AIJ
, AI

, ÃIJ , ÃI and two-forms: BIJ , BI . (2.4)

The derivation of the N = 8 bosonic Lagrangian of the dyonically-gauged ISO(7) theory has

been carried out in appendix A. Bringing the main results here, and using di↵erential form

notation, we obtain the Lagrangian

Lbos = (R� V ) vol4 � 1
48DMMN ^ ⇤DMMN + 1

2 I⇤⌃ H⇤
(2) ^ ⇤H⌃

(2) � 1
2 R⇤⌃ H⇤

(2) ^H⌃
(2)

� m

h
�
IJ BI ^

�
H̃(2)J + g

2 BJ

�
+ 1

4 ÃI ^ ÃJ ^
�
dAIJ + g

2 �KL AIK ^AJL
� i

.

(2.5)

where g is the gauge coupling and m ⌘ gc is the electric/magnetic parameter introduced

in ref. [11].
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 ✱ Ingredients :

MMN

⇤ = 1, ..., 28

AIJ = A[IJ]

ÃI

M = 1, ..., 56

I = 1, ..., 7

Let us comment on the di↵erent pieces in the above Lagrangian (2.5). In the upper line

one finds the Einstein-Hilbert term, the kinetic terms for the E7(7)/SU(8) scalar MMN (2.2)

with covariant derivatives

D = @ � 1
2 gA

IJ
TIJ �

�
gAI �m �

IJ ÃJ

�
TI , (2.6)

and the scalar potential

1
4 V (M) =

g
2

672

�
XMN

R
XPQ

SMMPMNQMRS + 7XMN
Q
XPQ

NMMP�
. (2.7)

Here, TIJ and TI are SO(7) and R7 generators of ISO(7) = SO(7) n R7, respectively, and

the tensor XMN
P = ⇥M

↵
[t↵]N

P corresponds to the contraction of the embedding tensor with

such generators in the fundamental representation of E7(7) (see appendix A). In addition,

there are kinetic terms and (generalised) ✓-terms for the electric field strengths specified by

the complex scalar-dependent matrix

N⇤⌃ = R⇤⌃ + i I⇤⌃ , (2.8)

which can be obtained from MMN as

MMN =

0

@
M⇤⌃ M⇤

⌃

M⇤
⌃ M⇤⌃

1

A =

0

@
�(I +RI�1R)⇤⌃ (RI�1)⇤

⌃

(I�1R)⇤⌃ �(I�1)⇤⌃

1

A . (2.9)

The electric field strengths H⇤
(2) = (HIJ

(2) , HI

(2) ) appearing in the upper line of (2.5) take

the form
HI

(2) = dAI � g �JK AIJ ^AK + 1
2 mAIJ ^ ÃJ �m �

IJBJ ,

HIJ

(2) = dAIJ � g �KL AIK ^ALJ
.

(2.10)

Note the presence of the magnetic vectors ÃI and the two-forms BI in the electric HI

(2) field

strengths whenever m 6= 0. The lower line in (2.5) is a topological term that depends on the

magnetic field strengths H̃(2)⇤ = ( H̃(2)IJ , H̃(2)I ) . These are given by

H̃(2)I = dÃI � 1
2 g �IJ A

JK ^ ÃK � g BI ,

H̃(2)IJ = dÃIJ � gAK
[I ^ ÃJ ]K + g �K[IAK ^ ÃJ ] �m ÃI ^ ÃJ � g BIJ .

(2.11)

To be more precise, only H̃(2)I enter the topological term. Therefore, neither ÃIJ nor

BIJ appear in the Lagrangian (2.5), which is consistent with SO(7) ⇢ ISO(7) being gauged

electrically. Accordingly, the electric field strength HIJ

(2) takes on the usual, purely electric,

Yang-Mills form. The electric field strength HI

(2) has the contribution expected from the
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BI

✦   Setting		c	=	0	,	all	the	magnetic	pieces	in	the	Lagrangian	disappear.	

In (2.23), only components M⇤N in the notation of (2.15), and not M⇤
N, are contracted

with the SL(7)nR7 generators. The combination of these duality relations with the Bianchi

identities (2.13) reproduces a subset of the equations of motion: see section 2.4.

Extensions of the duality hierarchy (2.6) may be considered that are still smaller than

the full E7(7) hierarchy. A natural extension includes, besides the 28
0 CIJ three-form

potentials in (2.6) conjugate to the electric embedding tensor, also the SL(7)-singlet three-

form potential C̃ conjugate to the singlet magnetic component of the embedding tensor.

Consistency then requires that the singlet two-form potential B that renders BI
J traceful

is also retained. The extension of the Bianchi identities (2.13) to also include these singlets

reads

DH(3) = HIJ
(2) ^ H̃(2)IJ +HI

(2) ^ H̃(2)I � 2g �IJ HIJ
(4) � 14m H̃(4) ,

DH̃(4) ⌘ 0 ,
(2.24)

while their duality relations are, from (2.17) and (2.18),

H(3) = 1
12(t8

8)MPMNP ⇤DMMN ,

H̃(4) = 1
84 XNQ

S(t8K)PRM8K
NMPQMRS vol4 .

(2.25)

We have used tI I = �t88 and Tr(tIJ t8K) = Tr(t8J t8K) = 0 to simplify the results.

For H̃(4) in (2.25), components M⇤
N, and not M⇤N, in the notation of (2.15), are now

contracted with the R7 generators, opposite to what happened for HIJ
(4) in (2.23). Although

the singlet C̃ does not play a role in the restricted duality hierarchy (2.6), its dualised

field strength H̃(4) in (2.25) is still crucial to recover the scalar potential, as we will show

in the next subsection. The significance of this asymmetric role of C̃ for the massive type

IIA embedding of dyonic ISO(7) supergravity will be discussed in [16].

2.3 Bosonic Lagrangian

We will now write the Lagrangian of N = 8 dyonically gauged ISO(7) supergravity, focus-

ing on the bosonic terms. While it is possible to write a Lagrangian that includes higher

rank fields in the E7(7) tensor hierarchy (or in the restricted hierarchy (2.6)) supplemented

by duality relations [26], we will instead write a Lagrangian in the formulation of [22]. The

latter includes, besides the metric and scalars, only some of the vectors and two-forms in

(2.6). More concretely, the Lagrangian can be expressed in terms of the 21
0 + 7

0 electric

vectors A⇤ = (AIJ ,AI ) and their field strengths H⇤
(2) = (HIJ

(2) , HI
(2) ) , the 7 magnetic vec-

tors ÃI and their field strengths H̃(2)I , and the 70 two-form potentials BI . As (2.13) shows,

this field content does not define a consistent truncation of (2.6), but this is certainly not

necessary as far as writing a Lagrangian is concerned.

The bosonic Lagrangian of N = 8 dyonically gauged ISO(7) supergravity is

L = R vol4 � 1
48DMMN ^ ⇤DMMN + 1

2 I⇤⌃H⇤
(2) ^ ⇤H⌃

(2) � 1
2 R⇤⌃H⇤

(2) ^H⌃
(2) (2.26)

�V vol4 +m
h
BI ^

�
H̃(2)I � g

2�IJB
J
�
� 1

4 ÃI ^ ÃJ ^
�
dAIJ + g

2 �KLAIK ^AJL
�i

.
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+

3

SO(7,1) or ISO(7) by the seven generators Tp8. Plugging
(10) into (3) and substituting again in (2) gives rise to a
covariant derivative of the form

Dµ = @µ � g

⇣
A

[pq]

µ
� ✏1cAµ [pq]

⌘
� g

⇣
A

[p8]

µ
� ✏2cAµ [p8]

⌘
.

(12)
As noticed in [17], taking c 6= 0 in (12) translates
into all the generators being gauged dyonically in the
SO(7,1)c case whereas only the seven flat generators Tp8

are gauged dyonically in the ISO(7)c case with ✏1 = 0 .
The SO(6,2)c and ISO(6, 1)c ⌘ CSO(6, 1, 1)c gaugings

can be jointly analysed in a similar manner. This time
we split the fundamental SL(8) index as A = (1, a, 8)
with a = 2, ..., 7. The invariant metrics preserved by the
gaugings are now given by

⌘ = diag(�1, 1, 1, 1, 1, 1, 1, ✏1✏2) , (13)

with (✏1, ✏2) being (1,�1) and (0, 1) for the SO(6,2)c and
ISO(6,1)c gaugings, respectively. The embedding tensor
⇥M

↵ has components

⇥[ab]

cd = �
cd

ab
, ⇥[ab] cd = �✏1 c �

cd

ab
,

⇥[18]

18 = �1 , ⇥[18] 18 = �✏2 c ,

⇥[1b]

1d = ��
d

b
, ⇥[1b] 1d = �✏1 c �

d

b
,

⇥[a8]

c8 = �
c

a
, ⇥[a8] c8 = �✏2 c �

c

a
,

(14)

with the index ↵ in ⇥M
↵ running this time over the linear

combinations

Tcd ⌘ tc
d
� td

c
, T18 ⌘ ✏1 t1

8
� t8

1
,

T1d ⌘ �t1
d
� td

1
, Tc8 ⌘ �✏1 tc

8
� t8

c
,

(15)

of SL(8) generators tAB . The covariant derivative in this
case takes the form

Dµ = @µ

� g

⇣
A

[cd]

µ � ✏1cAµ [cd]

⌘
+ g

⇣
A

[18]

µ + ✏2cAµ [18]

⌘

+ g

⇣
A

[1d]

µ + ✏1cAµ [1d]

⌘
� g

⇣
A

[c8]

µ � ✏2cAµ [c8]

⌘
.

(16)
Taking again c 6= 0 in (16), all the generators are gauged
dyonically in the SO(6,2)c case. For the ISO(6,1)c gaug-
ings, only the seven flat generators T18 and Tc8 are
gauged dyonically as ✏1 = 0, similar to what happened
in the ISO(7)c case.

The rest of CSO(p, q, r) gaugings, with p+ q + r = 8,
that admit symplectic deformations are the families of
SO(5, 3)c and ISO(5, 2)c ⌘ CSO(5, 2, 1)c gaugings leav-
ing invariant the metrics

⌘ = diag(1,�1, 1,�1, 1, ✏1✏2, 1, 1) , (17)

with (✏1, ✏2) being (1,�1) and (0, 1) respectively, as well
as the SO(4, 4)c and ISO(4, 3)c ⌘ CSO(4, 3, 1)c ones
with invariant metrics

⌘ = diag(1,�1, 1,�1, 1,�1, 1, ✏1✏2) , (18)

where (✏1, ✏2) are respectively given by (1,�1) and (0, 1).
The derivation of the corresponding embedding tensors
and covariant derivatives proceeds as for the previous
cases without surprises. As before, only the seven flat
generators are gauged dyonically for the ISO(5,2)c and
ISO(4,3)c gaugings. For the sake of brevity, we are not
presenting the expressions here.
Apart from covariantising the derivatives in (2),

turning on a gauging drastically modifies the dynamics
of the scalar fields in the theory by introducing a scalar
potential [5]

V (M) =
g
2

672
XMN

R
XPQ

S
M

MP�
M

NQ
MRS + 7 �QR �

N
S
�
.

(19)
In the above formula, the 70 scalars of maximal
supergravity are encoded into a coset representative
V 2 E7(7)/SU(8) which transforms under global E7(7)

transformations from the left and local SU(8) ones from
the right. This coset representative is then used to build
the scalar-dependent matrix MMN as M = V V

t, whose
inverse M

MN appears in (19) together with the tensor
XMN

P already introduced in (3). The kinetic terms for
the scalars then follow from the standard coset construc-
tions yielding a Einstein-scalar Lagrangian of the form

e
�1

LE-s =
1

2
R+ 1

96
Tr

�
DµMD

µ
M

�1
�
� V (M) . (20)

In this note we are setting all the vector fields to zero, so
Dµ ! @µ in all the forthcoming formulas.

III. N = 2 SUPERPOTENTIALS

After shortly reviewing the electric/magnetic CSOc

gaugings of maximal supergravity, we now move on to-
wards our actual target: provide N = 2 truncations
based on a G0 = SU(3) invariant sector [12] that allow
for an easy rewriting of the Lagrangian (20).

The SO(8)c , SO(7, 1)c , ISO(7)c , SO(6, 2)c and
ISO(6, 1)c gaugings, they all contain an SU(3) subgroup
within their maximal compact subgroups and, therefore,
can accommodate such a truncation. The relevant chain
of embeddings is given by

SO(6)

SO(8) � SO(7) � or � SU(3) .

G2

(21)

Truncating the N = 8 supergravity multiplet with
respect to this SU(3) preserves N = 2 supersymme-
try – the 8 gravitini of the maximal theory decom-
pose as 8 ! 1 + 1 + 3 + 3 under SU(3) ⇢ SU(8),
thus providing two singlets – and retains the met-
ric, two vector fields (we are setting to zero) and six
real scalars. The scalars parameterise a scalar mani-
fold Mscal = MSK ⇥MQK consisting of a special Kähler
(SK) piece MSK = SU(1, 1)/U(1) and a quaternionic

!9

g c



AdS4 solutions

N G0 c
�1/3

� c
�1/3

e
�'

c
�1/3

⇢ c
�1/3

e
�� 1

4 g
�2

c
1/3

V0 M
2
L
2

N = 1 G2 � 1
27/3

51/2 31/2

27/3
� 1

27/3
51/2 31/2

27/3
�222/3 31/2

55/2
4±

p
6 , �1

6(11±
p
6)

N = 2 U(3) �1
2

31/2

2 0 1
21/2

�33/2 3±
p
17 , 2 , 2

N = 1 SU(3) 1
22

31/2 51/2

22 �31/2

22
51/2

22 �26 33/2

55/2
4±

p
6 , 4±

p
6

N = 0 SO(6)+ 0 21/6 0 1
25/6

�3 25/6 6 , 6 , �3
4 , 0

N = 0 SO(7)+ 0 1
51/6

0 1
51/6

�3 57/6

22 6 , �12
5 , �6

5 , �
6
5

N = 0 G2
1

24/3
31/2

24/3
1

24/3
31/2

24/3
�210/3

31/2
6 , 6 , �1 , �1

N = 0 SU(3) 0.455 0.838 0.335 0.601 �5.864 6.214 , 5.925 , 1.145 , �1.284

N = 0 SU(3) 0.270 0.733 0.491 0.662 �5.853 6.230 , 5.905 , 1.130 , �1.264

Table 1: All critical points of N = 8 ISO(7)-dyonically-gauged supergravity with at least

SU(3) invariance. For each point we give the residual supersymmetry and bosonic symmetry

within the full N = 8 theory, its location, the cosmological constant and the scalar masses

within the SU(3) sector.

include points with SO(6) and SO(7) residual symmetry, that were already found in [15],

and three new points: one with G2 and two with SU(3) symmetry. In Table 1, we have

appended a subscript + to the SO(7) and SO(6) points in order to indicate that they are

supported by proper scalars (not pseudoscalars) of E7(7)/SU(8): in fact, they are supported

by dilatons only.

We find that all these critical points disappear in the limit c ! 0 corresponding to the

purely electric ISO(7) gauging. In the parameterisation we are using, the points are pushed

in this limit to infinite values of the scalar fields. We can thus extend the claim made

in [13] against points with SO(7)+ symmetry: the electrically gauged ISO(7) theory lacks

any critical point with at least SU(3) symmetry. From the analysis of [17], it also follows

that the electric ISO(7) gauging also lacks points with N > 2 supersymmery, irrespective of

the residual bosonic symmetry. The question remains whether the electric ISO(7) gauging

has critical points at all.

It is also interesting to compare with the critical points in the SU(3)-invariant sector

of the SO(8)-gauged supergravity. The points (SU(3) ⇥ U(1), N = 2), (G2, N = 1), and

(SO(7)+, N = 0) have direct analogs, both in the purely electric [24] and the dyonic [3]

SO(8) gauging. The SO(8) gauging also possesses a non-supersymmetric point with sym-

12

✦		N	=	2	solution	will	play	a	central	role	in	holography	!!
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(2.2) and fermions (2.5). We will focus on the bosonic fields. Equations (2.13)–(2.15) can

be easily inverted to solve for the fields that enter (2.2) in terms of the tensor-hierarchy-

compatible fields. Expressing the latter through the KK ansatze (3.4)–(3.6), we obtain the

following expressions for the vectors,

Bµ
m = 1

2
g K

m
IJ Aµ

IJ
,

Aµ = �µI Aµ
I
,

Aµmn = 1

4
K

IJ
mn Ãµ IJ � µI BmnAµ

I
,

Bµm = �g
�1 (@mµ

I) Ãµ I , (3.9)

two-forms,

Aµ⌫m = g
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J)
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Bµ⌫ J

I +A[µ
IK

Ã⌫]KJ +A[µ
I
Ã⌫]J

⌘
,

Bµ⌫ = �µI
�
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I +A[µ
IJ
Ã⌫]J

�
, (3.10)

and three-form,

Aµ⌫⇢ = µIµJ

⇣
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IJ + 3A[µ
I
B⌫⇢]

J +A[µ
IK

A⌫
JL

Ã⇢]KL +A[µ
I
A⌫

JK
Ã⇢]K

⌘
. (3.11)

In these expressions we have again dropped the labels (x, y) on the left-hand-sides and (x)

and (y) on the right-hand-sides. In order to simplify them, we have used some tensorial

identities on S
6, including (E.3), (E.5). Now, bringing (3.3) and (3.9)–(3.11) to (2.2)

and performing some further simplifications of the same type, we finally obtain the full

non-linear embedding of ISO(7) supergravity into type IIA:

dŝ
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Â(1) = �µI A
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m
. (3.12)

Here, we have defined the covariant derivatives

Dy
m

⌘ dy
m + 1

2
g K

m
IJ A

IJ
, Dµ

I
⌘ dµ

I
� gA

IJ
µJ , (3.13)

which feature only the vectors AIJ that gauge SO(7) electrically. The expressions for dŝ2
10
,

B̂(2) and Â1 have already appeared in [19]. The expression for the Ramond-Ramond three-

form Â(3) appears here for the first time. Here we have also provided a detailed derivation

of these formulae, and will show their consistency in sections 3.3 and 3.4. Although the

KK ansatze (3.4)–(3.6) relate linearly the tensor-hierarchy-compatible IIA fields (2.24) to
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dŝ
2

10 = ��1
ds

2

4 + gmnDy
m
Dy

n
,
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^ ÃJ

�
^ µIDµ

J + 1

2
g
�2
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^ ÃJ

�
� g

�1
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B̂(2) and Â1 have already appeared in [19]. The expression for the Ramond-Ramond three-

form Â(3) appears here for the first time. Here we have also provided a detailed derivation

of these formulae, and will show their consistency in sections 3.3 and 3.4. Although the

KK ansatze (3.4)–(3.6) relate linearly the tensor-hierarchy-compatible IIA fields (2.24) to
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where	we	have	defined	:		

The	scalars	are	embedded	as

gmn = 1
4 g

2 �MIJ KL Km
IJ Kn

KL , Bmn = � 1
2 � gmp K

p
IJ @nµK MIJ

K8 ,

Am = 1
2 g� gmn Kn

IJ µK MIJ K8 , Amnp = 1
8 g� gmq K

q
IJ KKL

np MIJ
KL +AmBnp .
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where	we	have	introduced	the	quantities																										and	

N=2 solution of massive type IIA

dŝ210 = L2

�
3 + cos 2↵

� 1
2

�
5 + cos 2↵

�� 1
8

h
ds2(AdS4) +

3

2
d↵2 +

6 sin2 ↵

3 + cos 2↵
ds2(CP2) +

9 sin2 ↵

5 + cos 2↵
⌘2

i
,

e�̂ = e�0

�
5 + cos 2↵

�3/4

3 + cos 2↵
, Ĥ(3) = 24

p
2 L2 e

1
2�0

sin3 ↵
�
3 + cos 2↵

�2 J ^ d↵ ,

L�1 e
3
4�0 F̂(2) = �4

p
6

sin2 ↵ cos↵�
3 + cos 2↵

��
5 + cos 2↵

� J � 3
p
6

�
3� cos 2↵

�
�
5 + cos 2↵

�2 sin↵ d↵ ^ ⌘ ,

L�3 e
1
4�0 F̂(4) = 6vol4

+12
p
3

7 + 3 cos 2↵
�
3 + cos 2↵

�2 sin4 ↵ volCP2 + 18
p
3

(9 + cos 2↵) sin3 ↵ cos↵�
3 + cos 2↵

��
5 + cos 2↵

� J ^ d↵ ^ ⌘ ,

Maximal gauged supergravity in four dimensions often admits continuous or discrete

symplectic deformations that respect N = 8 supersymmetry and the gauge group [1, 2].

The simplest type of deformation introduces a dependence on a dimensionless parameter c

in the gauging-dependent couplings of the theory. The covariant derivatives, for example,

acquire a new coupling to the magnetic vectors proportional to c ,

D = d� g (A⇤ � c Ã⇤) , (1.1)

thus leading to a dyonic gauging. The role of this parameter, in a passive picture, is to tune

the electric/magnetic symplectic frame prior to introducing the gauging. In the ungauged

limit, c can be set to zero without loss of generality by a symplectic transformation.

At finite gauge coupling g, however, electric/magnetic duality is broken and the theory

typically becomes sensitive to the symplectic frame specified by c. Various aspects of this

deformation for di↵erent gauge groups have now been studied, including its e↵ect on the

vacuum structure [1, 3, 4, 5, 6], on domain-wall [7, 8, 9] and black hole solutions [10, 11, 12],

or on inflationary models [13, 14].

An immediate question is whether these N = 8 dyonic gaugings descend from higher

dimensions. This was recently answered positively when the gauge group is chosen to be

ISO(7)c ⌘ CSO(7, 0, 1)c ⌘ SO(7) n R7
c [15]. Here and often in the following, we have

followed the notation of [1] and have sticked in a subscript c to denote that ISO(7) (more

precisely, only its seven translations) is gauged dyonically. In [15, 16] we showed that

D = 4 N = 8 ISO(7)-dyonically-gauged supergravity arises as a consistent truncation of

massive type IIA supergravity [17] on the six-sphere, with the magnetic coupling constant

m ⌘ gc identified upon reduction with the Romans mass, F̂(0) = m. All solutions of the

D = 4 theory uplift to solutions of massive type IIA by the consistency of the truncation.

In particular, its vacua (all known ones are AdS) give rise to AdS4 backgrounds of massive

type IIA string theory. Quantitative evidence was also given in [15] that these AdS4 vacua

are dual to the simplest type of Chern-Simons theories with a single gauge group and

adjoint matter [18]. The answer to the question of the higher-dimensional origin of these

dyonic gaugings is of course gauge group dependent. Arguments have been recently given

[19] against an M-theory origin of the dyonic deformation [1] of the SO(8) gauging [20].

2

L2 ⌘ 2�
5
8 3�1 g�2 c

1
12 e�0 ⌘ 2

1
4 c�

5
6

• N=2	&	U(3)	AdS4	point	of	the	ISO(7)c	theory	

✦
	The	angle															locally	foliates	S6		with	S5		regarded	as	Hopf	fibrations	over	CP20  ↵  ⇡

!12



3D : CFT3 dual  &  matching of free energies

•   3d SYM + (N=2)	Chern-Simons	with	simple	group	SU(N)	,	level	k ,	three	adjoint	matter	and		

a	cubic	superpotential	W	=	Tr(X[Y,Z])

•  The	3d	free	energy	F	=	-Log(Z),	where	Z	is	the	partition	function	of	the	CFT	on	a	Euclidean	S3,	

can	be	computed	via	localisation	over	supersymmetric	configurations

Dyonic � = 8 supergravity from IIA strings

and its Chern-Simons duals

Adolfo Guarino , Daniel L. Jafferis and Oscar Varela
NIKHEF, Amsterdam, the Netherlands

aguarino@nikhef.nl

While electromagnetic duality is a symmetry of many supergravity theories, this is not the
case for the maximal ( � = 8 ) gauged theory. It was recently shown that this rotation
leads to a one-parameter family of SO(8)� supergravities, with parameter �, and similarly
for other gauge groups, like its contraction ISO(7)� = SO(7) n R7

� . In the latter case,
only the seven tranlations are gauged dyonically and the parameter � turns out to be a
discrete (on/off) deformation [1] .
The questions arise:

Does such an electric/magnetic deformation of maximal supergravity enjoy a string/M-
theory origin, or is it just a four-dimensional feature?

For deformed supergravities with supersymmetric anti-de-Sitter vacua (AdS), are these
AdS4/CFT3-dual to any identifiable three-dimensional superconformal field theory?

Electric/magnetic duality in maximal supergravity

• Using the embedding tensor formalism [3] , the (bosonic) Lagrangian of the dyonic
ISO(7)-gauged theory contains scalars �MN(φ) parameterising E7(7)/SU(8), electric
vectors (�IJ = �[IJ ] � �I) , magnetic vectors �̃I , two-form fields � I and the metric �µν .
It reads

� = R vol4 − 1
48 D�MN ∧ ∗D�MN + 1

2 �ΛΣ �Λ
(2) ∧ ∗�Σ

(2) − 1
2 �ΛΣ �Λ

(2) ∧ �Σ
(2)

− V vol4 + � �
�
� I ∧

�
�̃(2)I − �

2 δIJ � J� − 1
4 �̃I ∧ �̃J ∧

�
��IJ + �

2 δKL �IK ∧ �JL��
�

whereM = 1� ���� 56 and I = 1� ���� 7 are fundamental E7(7) and SL(7) indices, respectively.
The index Λ = 1� ���� 28 collectively runs over the 21+7 electric field strenghts (�IJ

(2)� �I
(2)) .

The covariant derivative takes the form D = � − � �IJ �[I
K δJ ]K + � (δIJ �I − � �̃J) �8J ,

gauging dyonically the R7 ⊂ ISO(7) generators �8J . Finally, the scalar potential reads

V = �2

168 XMPRXNQS�MN
�

�PQ�RS + 7 δPS δQR
�

�

and depends on the scalars �MN , the embedding tensor XMNP(�) specifying the
dyonic gauging of ISO(7) ⊂ E7(7) , and the gauge coupling constant � .

• We can describe the dynamics of the theory by using a (restricted) SL(7)-covariant
tensor hierarchy of 4D fields. Apart from the metric and the scalars, there are

21� + 7� + 21 + 7 vectors : �IJ � �I � �̃IJ � �̃I �
48 + 7� + 1 two-forms : �I

J � � I � � �
28� + 1 three-forms : �IJ � � �

endowed with duality relations that transfer degrees of freedom among different fields

�̃(2)IJ = −1
2�[IJ ][KL] ∗ �KL

(2) − �[IJ ][K8] ∗ �K
(2) + 1

2�[IJ ][KL] �KL
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(2) �

�̃(2)I = −1
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(2) − �[I8][K8] ∗ �K
(2) + 1
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12(�I
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7 δJ
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I = − 1

12(�8
I)MP�NP ∗ D�MN �

�(3) = 1
12(�8

8)MP�NP ∗ D�MN �

�IJ
(4) = 1

84XNQS
�
(�K

(I|)PR�|J)K N + (�8
(I|)PR�|J)8N��

�PQ�RS + 7 δPS δQR
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vol4 �

�(4) = 1
84 XNQS(�8

K )PR�8K
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• Closed set of Bianchi identities D�(�) and Hodge-duality relations in four dimensions.

tensor hierarchy + duality relations = duality hierarchy

Dyonic ISO(7) supergravity [2]
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The non-linear embedding of the 4D (restricted) tensor hierarchy into the 10D type IIA
fields reads

��̂2
10 = ∆−1 ��2

4 + ��� D�� D�� �

B̂(2) = −µI
�
� I + 1

2�IJ ∧ �̃J
�

− �−1 �̃I ∧ DµI + 1
2 B�� D�� ∧ D�� �

�−3
2φ̂ = ∆ �I8 J8 µI µJ − ��� A� A� �

Â(1) = −µI �I + A� D�� �

Â(3) = µI µJ
�
�IJ + �I ∧ � J + 1

6 �IK ∧ �JL ∧ �̃KL + 1
6 �I ∧ �JK ∧ �̃K

�

+ �−1 �
�J

I + 1
2�IK ∧ �̃KJ + 1

2�I ∧ �̃J
�

∧ µI DµJ + 1
2 �−2 �̃IJ ∧ DµI ∧ DµJ

− 1
2 µI B�� �I ∧ D�� ∧ D�� + 1

6 A��� D�� ∧ D�� ∧ D�� �

with the purely internal (scalar) components of the 10D fields given by

��� = 1
4 �2 ∆ �IJ KL K �

IJ K �
KL � B�� = −1

2 ∆ ��� K �
IJ ∂�µK �IJK8 �

A� = 1
2 � ∆ ��� K �

IJ µK �IJ K8 � A��� = 1
8 � ∆ ��� K �

IJ K KL
�� �IJKL + A�B�� �

We have used a unit radius S6 parameterised as the locus δIJ µI µJ = 1 in R7 , together
with a set of Killing vectors K�IJ = 2 �−2 µ[I∂�µJ ] and tensors K��IJ = 4 �−2 ∂[�µI∂�]µJ .
Using the round S6 metric �̊�� = �−2 δIJ ∂�µI ∂�µJ , we have also defined

∆2 ≡ det ���
det �̊��

� D�� ≡ ��� + 1
2 � K �

IJ �IJ � DµI ≡ �µI − � �IJµJ �

Non-linear embedding into massive IIA on S6 [4]

The Freund-Rubin term F̂(4) = �IJ
(4) µI µJ + ��� , takes the compact form

�IJ
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There is an AdS4 solution of the 4D theory preserving � = 2 supersymmetry and U(3) ⊂
ISO(7) gauge symmetry, which uplifts to an analytic massive IIA solution of the form
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with L2 ≡ 2−5
8 3−1 �−2 �

1
12 and �φ0 ≡ 2

1
4 �−5

6 . The angle 0 ≤ α ≤ π locally foliates S6

with S5 leaves regarded as Hopf fibrations over CP2, with fibers squashed as a function of
α . Also, J is the Kähler form of CP2 and η = �ψ + σ with 0 ≤ ψ ≤ 2π a coordinate along
the fiber and �σ = 2J .

A new � = 2 solution of massive IIA [5]

• We propose an � = 2 Chern-Simons-matter theory with simple gauge group SU(N),
level � and only adjoint matter, as the CFT dual of the � = 2 massive IIA solution. The
3d free energy F = − log Z , where Z is the partition function of the CFT on a Euclidean
S3, can be computed via localisation over supersymmetric configurations [6]

Z =
� N�

�=1

�λ�
2π

N�

�<�=1

�
2 sinh2(

λ� − λ�
2 )

�
×

N�

���=1

�
exp(�(13 + �

2π (λ� − λ�)))
�3

�
��
4π

�
λ2

� �

where λ� are the Coulom branch parameters. In the N � � limit, the result for the free
energy is given by
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• The gravitational free energy of the massive IIA solution can be computed in terms of N
using the charge quantisation condition N = −(2π��)−5 �
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for D2-branes. Denoting by �2A the warp factor in the metric of the IIA solution, one finds
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in exact agreement with the gravitational result provided the 4D/10D/3d identification

� � = F̂(0) = �/(2π��)

CFT candidate and matching of free energies [5]

• The	gravitational	free	energy	can	be	computed	from	the	warp	factor	in	the	N=2	massive	IIA	
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for	the	D2-brane,	one	finds
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While electromagnetic duality is a symmetry of many supergravity theories, this is not the
case for the maximal ( � = 8 ) gauged theory. It was recently shown that this rotation
leads to a one-parameter family of SO(8)� supergravities, with parameter �, and similarly
for other gauge groups, like its contraction ISO(7)� = SO(7) n R7

� . In the latter case,
only the seven tranlations are gauged dyonically and the parameter � turns out to be a
discrete (on/off) deformation [1] .
The questions arise:

Does such an electric/magnetic deformation of maximal supergravity enjoy a string/M-
theory origin, or is it just a four-dimensional feature?

For deformed supergravities with supersymmetric anti-de-Sitter vacua (AdS), are these
AdS4/CFT3-dual to any identifiable three-dimensional superconformal field theory?

Electric/magnetic duality in maximal supergravity

• Using the embedding tensor formalism [3] , the (bosonic) Lagrangian of the dyonic
ISO(7)-gauged theory contains scalars �MN(φ) parameterising E7(7)/SU(8), electric
vectors (�IJ = �[IJ ] � �I) , magnetic vectors �̃I , two-form fields � I and the metric �µν .
It reads

� = R vol4 − 1
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whereM = 1� ���� 56 and I = 1� ���� 7 are fundamental E7(7) and SL(7) indices, respectively.
The index Λ = 1� ���� 28 collectively runs over the 21+7 electric field strenghts (�IJ

(2)� �I
(2)) .

The covariant derivative takes the form D = � − � �IJ �[I
K δJ ]K + � (δIJ �I − � �̃J) �8J ,

gauging dyonically the R7 ⊂ ISO(7) generators �8J . Finally, the scalar potential reads

V = �2
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and depends on the scalars �MN , the embedding tensor XMNP(�) specifying the
dyonic gauging of ISO(7) ⊂ E7(7) , and the gauge coupling constant � .

• We can describe the dynamics of the theory by using a (restricted) SL(7)-covariant
tensor hierarchy of 4D fields. Apart from the metric and the scalars, there are
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endowed with duality relations that transfer degrees of freedom among different fields
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• Closed set of Bianchi identities D�(�) and Hodge-duality relations in four dimensions.
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The non-linear embedding of the 4D (restricted) tensor hierarchy into the 10D type IIA
fields reads
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with the purely internal (scalar) components of the 10D fields given by
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We have used a unit radius S6 parameterised as the locus δIJ µI µJ = 1 in R7 , together
with a set of Killing vectors K�IJ = 2 �−2 µ[I∂�µJ ] and tensors K��IJ = 4 �−2 ∂[�µI∂�]µJ .
Using the round S6 metric �̊�� = �−2 δIJ ∂�µI ∂�µJ , we have also defined
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Non-linear embedding into massive IIA on S6 [4]

The Freund-Rubin term F̂(4) = �IJ
(4) µI µJ + ��� , takes the compact form
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There is an AdS4 solution of the 4D theory preserving � = 2 supersymmetry and U(3) ⊂
ISO(7) gauge symmetry, which uplifts to an analytic massive IIA solution of the form
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6 . The angle 0 ≤ α ≤ π locally foliates S6

with S5 leaves regarded as Hopf fibrations over CP2, with fibers squashed as a function of
α . Also, J is the Kähler form of CP2 and η = �ψ + σ with 0 ≤ ψ ≤ 2π a coordinate along
the fiber and �σ = 2J .

A new � = 2 solution of massive IIA [5]

• We propose an � = 2 Chern-Simons-matter theory with simple gauge group SU(N),
level � and only adjoint matter, as the CFT dual of the � = 2 massive IIA solution. The
3d free energy F = − log Z , where Z is the partition function of the CFT on a Euclidean
S3, can be computed via localisation over supersymmetric configurations [6]
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where λ� are the Coulom branch parameters. In the N � � limit, the result for the free
energy is given by
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• The gravitational free energy of the massive IIA solution can be computed in terms of N
using the charge quantisation condition N = −(2π��)−5 �
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for D2-branes. Denoting by �2A the warp factor in the metric of the IIA solution, one finds

F = 16π3
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in exact agreement with the gravitational result provided the 4D/10D/3d identification

� � = F̂(0) = �/(2π��)

CFT candidate and matching of free energies [5]
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While electromagnetic duality is a symmetry of many supergravity theories, this is not the
case for the maximal ( � = 8 ) gauged theory. It was recently shown that this rotation
leads to a one-parameter family of SO(8)� supergravities, with parameter �, and similarly
for other gauge groups, like its contraction ISO(7)� = SO(7) n R7

� . In the latter case,
only the seven tranlations are gauged dyonically and the parameter � turns out to be a
discrete (on/off) deformation [1] .
The questions arise:

Does such an electric/magnetic deformation of maximal supergravity enjoy a string/M-
theory origin, or is it just a four-dimensional feature?

For deformed supergravities with supersymmetric anti-de-Sitter vacua (AdS), are these
AdS4/CFT3-dual to any identifiable three-dimensional superconformal field theory?

Electric/magnetic duality in maximal supergravity

• Using the embedding tensor formalism [3] , the (bosonic) Lagrangian of the dyonic
ISO(7)-gauged theory contains scalars �MN(φ) parameterising E7(7)/SU(8), electric
vectors (�IJ = �[IJ ] � �I) , magnetic vectors �̃I , two-form fields � I and the metric �µν .
It reads
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whereM = 1� ���� 56 and I = 1� ���� 7 are fundamental E7(7) and SL(7) indices, respectively.
The index Λ = 1� ���� 28 collectively runs over the 21+7 electric field strenghts (�IJ

(2)� �I
(2)) .

The covariant derivative takes the form D = � − � �IJ �[I
K δJ ]K + � (δIJ �I − � �̃J) �8J ,

gauging dyonically the R7 ⊂ ISO(7) generators �8J . Finally, the scalar potential reads
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and depends on the scalars �MN , the embedding tensor XMNP(�) specifying the
dyonic gauging of ISO(7) ⊂ E7(7) , and the gauge coupling constant � .

• We can describe the dynamics of the theory by using a (restricted) SL(7)-covariant
tensor hierarchy of 4D fields. Apart from the metric and the scalars, there are

21� + 7� + 21 + 7 vectors : �IJ � �I � �̃IJ � �̃I �
48 + 7� + 1 two-forms : �I
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endowed with duality relations that transfer degrees of freedom among different fields
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• Closed set of Bianchi identities D�(�) and Hodge-duality relations in four dimensions.
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The non-linear embedding of the 4D (restricted) tensor hierarchy into the 10D type IIA
fields reads
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Â(3) = µI µJ
�
�IJ + �I ∧ � J + 1

6 �IK ∧ �JL ∧ �̃KL + 1
6 �I ∧ �JK ∧ �̃K

�

+ �−1 �
�J

I + 1
2�IK ∧ �̃KJ + 1

2�I ∧ �̃J
�

∧ µI DµJ + 1
2 �−2 �̃IJ ∧ DµI ∧ DµJ

− 1
2 µI B�� �I ∧ D�� ∧ D�� + 1

6 A��� D�� ∧ D�� ∧ D�� �

with the purely internal (scalar) components of the 10D fields given by

��� = 1
4 �2 ∆ �IJ KL K �

IJ K �
KL � B�� = −1

2 ∆ ��� K �
IJ ∂�µK �IJK8 �

A� = 1
2 � ∆ ��� K �

IJ µK �IJ K8 � A��� = 1
8 � ∆ ��� K �

IJ K KL
�� �IJKL + A�B�� �

We have used a unit radius S6 parameterised as the locus δIJ µI µJ = 1 in R7 , together
with a set of Killing vectors K�IJ = 2 �−2 µ[I∂�µJ ] and tensors K��IJ = 4 �−2 ∂[�µI∂�]µJ .
Using the round S6 metric �̊�� = �−2 δIJ ∂�µI ∂�µJ , we have also defined
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Non-linear embedding into massive IIA on S6 [4]

The Freund-Rubin term F̂(4) = �IJ
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There is an AdS4 solution of the 4D theory preserving � = 2 supersymmetry and U(3) ⊂
ISO(7) gauge symmetry, which uplifts to an analytic massive IIA solution of the form
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with S5 leaves regarded as Hopf fibrations over CP2, with fibers squashed as a function of
α . Also, J is the Kähler form of CP2 and η = �ψ + σ with 0 ≤ ψ ≤ 2π a coordinate along
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A new � = 2 solution of massive IIA [5]

• We propose an � = 2 Chern-Simons-matter theory with simple gauge group SU(N),
level � and only adjoint matter, as the CFT dual of the � = 2 massive IIA solution. The
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where λ� are the Coulom branch parameters. In the N � � limit, the result for the free
energy is given by
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• The gravitational free energy of the massive IIA solution can be computed in terms of N
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for D2-branes. Denoting by �2A the warp factor in the metric of the IIA solution, one finds
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in exact agreement with the gravitational result provided the 4D/10D/3d identification

� � = F̂(0) = �/(2π��)

CFT candidate and matching of free energies [5]

provided
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Holographic description of RG flows
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• RG flows are described holographically as non-AdS4 solutions in gravity

r

eφ, eϕ, −χ

r

−β

Figure 4: Plots of the scalars eφ (blue, straight line), eϕ (brown, dashed line) and −χ
(green, dotted line), as well as of the phase −β, as a function of the radial coordinate for a
solution with (c1, c2) = (1.138,−1.68) .

4.4 Non-relativistic UV asymptotics

As previously mentioned, the solutions associated with the points at the boundary of the
shaded region in Figure 1 have a non-relativistic scaling in the UV. An example of this
behaviour is given by the (blue) circle in that figure, for which the BPS solution asymptotes
a scaling solution with broken Lorentz symmetry

e2U ∼ r2 , e2(ψ−U) ∼ r , β ∼ 0 , b0 ∼ r , (4.20)

and constant scalars at large values of the radial coordinate. This corresponds to a non-
relativistic metric of the Lifshitz type with dynamical exponent z = 2. Along the boundary
line that joins the (blue) circle and the (black) rhombus from above (red line), the scaling
solution (4.20) receives some logarithmic corrections that we have not investigated in detail.

A different non-relativistic scaling in the UV occurs for solutions associated with the
points in the boundary line connecting the (blue) circle and the (black) rhombus in Figure 1
from below (brown line). At large values of the radial coordinate, the solutions approach a
behaviour of the form

e2U ∼ r1.7268 , e2(ψ−U) ∼ r1.0484 , b0 ∼ r0.50197 ,

χ ∼ r0.27325 , eφ ∼ r−0.27325 , eϕ ∼ r−0.27325 ,
(4.21)

with β ∼ −1.1597 . A solution featuring this scaling in the UV is the one associated with the
(green) square located at (c1, c2) = (1.138,−1.68) in Figure 1, which we present in Figure 4.
This solution can be written in the form of a non-relativistic metric conformal to a Lifshitz
spacetime, characterised by a dynamical exponent z = 1.86 and a hyperscaling violation
parameter θ = −0.705 .
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Holographic RG flows on the D2-brane
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Figure 1: Plot of the two-dimensional parameter space (c1, c2) of BPS solutions (shaded area)
interpolating between the AdS2 ⇥H2 geometry in the IR and the DW4 solution in the UV.

corresponds to a very special point within a two-dimensional parameter space of configura-
tions. These solutions generically interpolate between an AdS2⇥H2 geometry in the IR and
a DW4 domain-wall geometry governed by the D2-brane in the UV (see Figure 1).

To understand how the UV geometry is dictated by the D2-brane, let us recall the form
of such a solution in massless IIA supergravity. This is given by a metric (in Einstein frame)

and a dilaton e
�̂ of the form
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In addition, there is a four-form flux F̂(4) = 5 g e� e2( �U) sinh ✓ dt ^ dr ^ d✓ ^ d� that is
electrically sourced by the D2-brane. The dependence with the radius of the di↵erent functions
is given by

e
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7
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7
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⇠ r

� 1
4 . (4.16)

The four-dimensional DW4 domain-wall description of the D2-brane in (4.16) is a solution
to the equations of the N = 2 supergravity model considered in this paper only if one sets
the Romans’ mass to zero, i.e. F̂(0) = m = 0 , and restricts the scalars to the SO(7)-invariant

sector: � = 0 and e
' = e

� . When turning on the Romans’ mass, the metric and dilaton
fields in (4.16) are no longer an exact solution of the massive IIA theory. The presence of the
Romans’ mass parameter, F̂(0) = m , necessarily forces a correction to the D2-brane solution,
but this correction is suppressed as one approaches the boundary at r ! 1 [25]. This can
be seen from the potential of the corresponding four-dimensional gauged supergravity or from
the fermion mass terms entering the supersymmetry transformations obtained upon reduction
on S6 . In both cases the Romans’ mass parameter appears dressed up with a function of the
scalars that suppresses its contribution near the boundary. In the presence of non trivial Q

charges, as it is the case in this work, a similar e↵ect occurs: the charges are dressed up with
functions of the scalars that make their induced corrections subleading near the boundary.
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the fermion mass terms entering the supersymmetry transformations obtained upon reduction
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As previously mentioned, the solutions associated with the points at the boundary of the
shaded region in Figure 1 have a non-relativistic scaling in the UV. An example of this
behaviour is given by the (blue) circle in that figure, for which the BPS solution asymptotes
a scaling solution with broken Lorentz symmetry

e2U ∼ r2 , e2(ψ−U) ∼ r , β ∼ 0 , b0 ∼ r , (4.20)

and constant scalars at large values of the radial coordinate. This corresponds to a non-
relativistic metric of the Lifshitz type with dynamical exponent z = 2. Along the boundary
line that joins the (blue) circle and the (black) rhombus from above (red line), the scaling
solution (4.20) receives some logarithmic corrections that we have not investigated in detail.

A different non-relativistic scaling in the UV occurs for solutions associated with the
points in the boundary line connecting the (blue) circle and the (black) rhombus in Figure 1
from below (brown line). At large values of the radial coordinate, the solutions approach a
behaviour of the form

e2U ∼ r1.7268 , e2(ψ−U) ∼ r1.0484 , b0 ∼ r0.50197 ,

χ ∼ r0.27325 , eφ ∼ r−0.27325 , eϕ ∼ r−0.27325 ,
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with β ∼ −1.1597 . A solution featuring this scaling in the UV is the one associated with the
(green) square located at (c1, c2) = (1.138,−1.68) in Figure 1, which we present in Figure 4.
This solution can be written in the form of a non-relativistic metric conformal to a Lifshitz
spacetime, characterised by a dynamical exponent z = 1.86 and a hyperscaling violation
parameter θ = −0.705 .
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geometry in the IR and a DW4 domain-wall geometry governed by the D2-brane in the
UV (see Figure 1).

To understand how the UV geometry is dictated by the D2-brane, let us recall the form
of such a solution in massless IIA supergravity. This is given by a metric (in Einstein frame)

and a dilaton eΦ̂ of the form

dŝ210 = e
3
4φ
(

−e2Udt2 + e−2Udr2 + e2(ψ−U)ds2Σ2

)

+ g−2e−
1
4φds2S6 , eΦ̂ = e

5
2φ . (4.15)

In addition, there is a four-form flux F̂(4) = 5 g eφ e2(ψ−U) dt ∧ dr ∧ dΣ2 that is electrically
sourced by the D2-brane. The leading UV dependence on the radial coordinate of the different
functions is given by

e2U ∼ r
7
4 , e2(ψ−U) ∼ r

7
4 , eφ ∼ r−

1
4 . (4.16)

The four-dimensional DW4 domain-wall description of the D2-brane in (4.16) is an exact
solution to the equations of motion in appendix A only if one sets the charges and the
Romans’ mass to zero, takes Σ2 = R2 , and restricts the scalars to the SO(7)-invariant sector:
χ = 0 and eϕ = eφ . When turning on the Romans’ mass and/or the charges and/or a
non-trivial Σ2 , the metric and dilaton fields in (4.16) are no longer an exact solution of
the theory. Their presence necessarily adds corrections to the behaviour in (4.16) which
are suppressed as one approaches the boundary at r → ∞ (see appendix B for an explicit
expansion). Taking as an example the case of the Romans’ mass, this can be understood from
the potential of the corresponding four-dimensional gauged supergravity or from the fermion
mass terms entering the supersymmetry transformations obtained upon reduction on S6 . In
both cases the Romans’ mass parameter appears dressed up with a function of the scalars
that suppresses its contribution near the boundary. A similar effect occurs in the case of
non-trivial charges: they are dressed up with functions of the scalars that make their induced
corrections subleading near the boundary.
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Holographic RG-flows on the D2-brane

All these supersymmetric AdS4 solutions of massive type IIA string theory should corre-
spond to conformal phases of the D2 brane field theory with distinct flavour symmetries and
supersymmetry. They should arise as the IR endpoints of RG flows triggered by di↵erent
symmetry- and supersymmetry-preserving deformations of N = 8 SYM caused by the Ro-
mans mass. We confirm this expectation for the N = 2 flow discussed in [11] by explicitly
constructing an N = 2 domain wall solution in D = 4 dyonic ISO(7) supergravity that inter-
polates between the N = 2, SU(3) ⇥ U(1) vacuum in the IR and the (corresponding D = 4
description of the) planar D2 brane solution in the UV. More generally, we show that there
exists an N = 1 family of flows that originate in N = 8 SYM and drive the theory towards the
N = 2, SU(3)⇥ U(1)-symmetric IR fixed point. We find a second family of N = 1 RG flows
that drive N = 8 SYM into the supersymmetric IR phase with SU(3) invariance. Both fami-
lies are bounded by a unique flow with IR endpoint into the G2-symmetric phase. Finally, we
are also able to construct two unique domain walls that interpolate between the G2 conformal
phase in the in the UV and either the N = 2, SU(3)⇥ U(1) point or the N = 1 SU(3) point
in the IR. By the generic results of [11, 14] and the specific formulae of [25], these domain
walls uplift to massive type IIA supergravity and link the corresponding AdS4 solutions. See
figure 1 for a schematic sketch of this web of domain walls. ov: Say something about the

SO(4) point and flow. In the remainder of the paper we do this and that.

D2-brane

N=1 & G2

N=1 & SU(3)

N=2 & SU(3)xU(1)

Figure 4
Figures 3 & 5

N=3 & SO(4)

Figure 1: RG flows from SYM (dotted lines) and between CFT’s (solid lines) dual to BPS
domain-wall solutions within the SU(3) and SO(4) invariant sectors of the dyonic ISO(7)-
gauged maximal supergravity.

ag: Say this somewhere at the begining: To generate all the figures in this paper, we
have set g = c = 1 without loss of generality, since all theories with c 6= 0 are equivalent to
each other and g sets the unit of length in the gravitational solution. Note however that the
position of the fixed point in scalar-space, and therefore the domain walls connecting them,

3

RG flows from SYM-CS (dotted lines) and between CFT’s (solid lines) dual to 
BPS domain-wall solutions of the dyonic ISO(7)-gauged supergravity

[ AG, Tarrío, Varela ’16 ] 
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• Black hole Anstaz   :   

•  Attractor equations   :   

degrees of freedom. These fields are not dynamical, as can be seen from the variations of the
Lagrangian (2.18) with respect to them, which produce two first-order differential relations

dB0 = e4φ ∗
[

Da+
1

2

(

ζDζ̃ − ζ̃Dζ
)

]

,

dÃ0 +
1

2
g B0 = I0Λ ∗HΛ +R0Λ HΛ .

(2.19)

The former is a duality relation between the tensor field and the scalars in the universal
hypermultiplet, whereas the later is the duality relation between the graviphoton and its
magnetic dual. As anticipated below (2.12), the introduction of the tensor field comes along
with an additional tensor gauge symmetry given by a one-form gauge parameter Ξ0 . Up to
a total derivative, the Lagrangian (2.18) is invariant under the tensor gauge transformation

B0 → B0 − dΞ0 , A0 → A0 + 1
2 mΞ0 , Ã0 → Ã0 +

1
2 g Ξ

0 . (2.20)

Finally, plugging the embedding tensor (2.15) into the expression of the scalar potential
in (2.14), and making again use of the scalar geometry data, one obtains

Vg =
1

8
g2
[

e4φ−3ϕ
(

1 + e2ϕχ2
)3 − 12 e2φ−ϕ

(

1 + e2ϕχ2
)

− 24 eϕ

+
3

4
e4φ+ϕ

(

ζ2 + ζ̃2
)2
(

1 + 3 e2ϕχ2
)

+ 3 e4φ+ϕ
(

ζ2 + ζ̃2
)

χ2
(

1 + e2ϕχ2
)

−3 e2φ+ϕ
(

ζ2 + ζ̃2
)

(

1− 3 e2ϕχ2
)

]

− 1

8
g mχ e4φ+ϕ

[

3
(

ζ2 + ζ̃2
)

+ 2χ2
]

+
1

8
m2 e4φ+3ϕ .

(2.21)

The full set of equations of motion that follows from the N = 2 supergravity Lagrangian
(2.18) is presented in appendix A.

3 BPS equations in dyonically gauged N = 2 supergravity

The generic Lagrangian (2.13) of dyonically gauged N = 2 supergravity has recently been
considered in [27] to study static BPS flow equations with spherical S2 (κ = 1) or hyperbolic
H2 (κ = −1) symmetry. In this section we make extensive use of the results derived therein,
and simply fetch the main results and equations needed to find BPS solutions in our model.

3.1 Field ansatz and gauge fixing

The most general metric compatible with sphericity/hyperbolicity and staticity is given by

ds2 = −e2U(r)dt2 + e−2U(r)dr2 + e2(ψ(r)−U(r))

(

dθ2 +

(

sin
√
κ θ√
κ

)2

dφ2
)

, (3.1)

where we have partially-fixed diffeomorphisms by imposing that the radial component of the
metric is the inverse of the temporal one. The functions U(r) and ψ(r) are assumed to
depend solely on the radial coordinate r , and the same holds for the scalar fields z(r) and
qu(r) . As we show below (see eq. (4.6)), the existence of a regular horizon in the infrared (IR)
imposes that the scalars ζ and ζ̃ must vanish there. Furthermore, we will impose boundary
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conditions in the ultraviolet (UV) such that ζ and ζ̃ vanish at r → ∞ . Then, by looking
at the equations of motion in (A.4) and at the form of Vg in (2.21), it is consistent to take

ζ(r) = ζ̃(r) = 0 . (3.2)

From now on we restrict our study to configurations where this relation is imposed, which
allows us to simplify the forthcoming discussion. This restriction also implies an enhance-
ment of the residual symmetry of the SU(3)-invariant sector of maximal supergravity to an
SU(3)×U(1) symmetry as a consequence of turning off the scalar fields charged under the
U(1) factor of the gauge group.

Let us consider now the ansatz for the vector and tensor fields. For the vectors, staticity
and spherical/hyperbolic symmetry of the associated field strengths imply that

AΛ = At
Λ(r) dt− pΛ

cos
√
κ θ

κ
dφ , (3.3)

with pΛ being the constant magnetic charges of the electric gauge fields. We work in the
gauge in which the radial components Ar

Λ(r) dr are set to zero. The ansatz for the magnetic
vector and the tensor field are given by

Ã0 = Ãt 0(r) dt− e0
cos

√
κ θ

κ
dφ , B0 = b0(r)

sin
√
κ θ√
κ

dθ ∧ dφ , (3.4)

where e0 can be identified with a constant electric charge of A0 upon the use of the duality
relation between electric and magnetic vectors in (2.19). Furthermore, we have made use of
the tensor gauge transformations in (2.20) to write only the S2/H2 symmetric component1

of B0.
Plugging this ansatz into the first relation of (2.19) implies the following constraints

me0 − g p0 = 0 , b′0 = −e4φ+2ψ−4U
(

gAt
0 −m Ãt 0

)

, a′ = 0 , (3.5)

and we can use the last one to set a = 0 . Furthermore, the U(1) current sourcing the right-
hand-side of the Maxwell equation (A.2) for the A1 vector vanishes whenever ζ = ζ̃ = 0 .
This allows to introduce the dual magnetic vector to Ã1

Ã1 = Ãt 1(r)dt− e1
cos

√
κ θ

κ
dφ , (3.6)

satisfying

dÃ1 = I1Λ ∗HΛ +R1ΛHΛ , (3.7)

such that the charge e1 is a constant of motion. Combining (3.7) with the second equation in
(2.19) we can then write duality relations between electric and magnetic vectors of the form

dÃΛ +
1

2
g B0 δ0Λ = IΛΣ ∗HΣ +RΛΣ HΣ . (3.8)

1In ref. [27], the ansatz for the tensor field was of the form B
0
[27] = B

0
(3.4) + dΞ0 = b′0(r)

cos
√
κ θ

κ
dr∧dφ with

Ξ0 = b0(r)
cos

√
κ θ

κ
dφ . By performing the gauge transformation (2.20) the vector charges in the two gauge

choices are related as p0(r)[27] = p0(3.3) +
1
2mb0(r) and e0(r)[27] = e0(3.4) +

1
2g b0(r) . We prefer to work with

the spherically/hyperbolic symmetric form for B
0 in (3.4), which is consistent with constant charges for the

vector fields.
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κ
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κ
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√
κ θ√
κ
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where e0 can be identified with a constant electric charge of A0 upon the use of the duality
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0 −m Ãt 0
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dφ . By performing the gauge transformation (2.20) the vector charges in the two gauge
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2mb0(r) and e0(r)[27] = e0(3.4) +

1
2g b0(r) . We prefer to work with

the spherically/hyperbolic symmetric form for B
0 in (3.4), which is consistent with constant charges for the

vector fields.
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Ã⇤ = Ãt⇤(r)dt� e⇤
cos

p
 ✓


d�

⇤ = 0, 1

As a closing remark, the set of BPS equations (3.17) is invariant under a constant shift of
the radial coordinate, as well as under a rescaling of the radial coordinate and metric functions
of the form

r → λ r , eU → λ eU , eψ−U → eψ−U . (3.19)

4 Black holes and BPS flows

In this section we present the attractor equations for the the near-horizon region of BPS
black holes in the N = 2 supergravity model we are investigating. Then we find BPS
black hole solutions for which the scalar fields both in the vector multiplet and the universal
hypermultiplet vary along the radial coordinate. The generic solutions interpolate between
a unique AdS2 × H2 geometry in the near-horizon region and the domain-wall DW4 (four-
dimensional) description of the D2-brane at r → ∞ . However, special behaviours at r → ∞
also occur when the boundary conditions at the horizon are fine tuned. All the plots presented
in this section have been generated with g = m = 1 , which can always be achieved by a
rescaling of the fields.

4.1 Near-horizon region and attractor equations

The near-horizon geometry of an extremal four-dimensional black hole is given by AdS2×Σ2 ,
with Σ2 = {S2, H2} . The functions eU(r) and eψ(r) in the metric (3.1) take the form

e2U =
r2

L2
AdS2

, e2(ψ−U) = L2
Σ2

, (4.1)

where LAdS2 and LΣ2 are the curvature radii of the AdS2 and Σ2 factors of the AdS2 ×Σ2

near-horizon geometry. In the parameterisation (4.1) we have shifted the radial coordinate r
to place the horizon at rh = 0 . Using the equations for U ′ and ψ′ in (3.17), and plugging
in the functions (4.1), one obtains e−U (Z + iκL2

Σ2
L) = 0 . Since this equality has to hold

for any value of the radius in the AdS2 × Σ2 fixed point, it follows that

Z + iκL2
Σ2

L = 0 . (4.2)

Assuming that the scalars enter the horizon as constants, i.e. z′ = qu′ = 0 , it follows from
(3.17) that β′ = 0 and Q′ = 0 . Moreover, it can be shown from (4.2) and the first relation in
(3.18) that ⟨Ku,V⟩ = 0 . All these consequences of the AdS2 × Σ2 form of the metric imply
that the BPS equations (3.17) can be rewritten as the set attractor equations derived in [27]

Q = κL2
Σ2

ΩMQx Px − 4 Im(Z̄ V) ,
L2
Σ2

LAdS2
= −2Z e−iβ ,

⟨Ku,V⟩ = 0 ,

(4.3)

where it is understood that all scalars and b0 are evaluated at the horizon. As for the general
BPS equations, the charge quantisation condition (3.15) and the additional constraints (3.18)
must be imposed. The latter constraint also imposes HΩAt = 0 , implying that in the
AdS2 × Σ2 region gAt

0 = m Ãt 0 and At
1 = 0 .
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•  Unique  AdS2 x H2   :

Let us characterise the near-horizon geometries in the model arising from the reduction
of the massive IIA theory on the six-sphere. First of all, since Q′(rh) = 0 , it follows from
(3.12) that

b0
′(rh) = 0 . (4.4)

The (quadratic) charge quantisation condition (3.15) reduces in this case to

p1
[

1 +
e2φ

4

(

ζ2 + ζ̃2
)

]

= ± 1

3g
, (4.5)

where we have made use of the first constraint in (3.5). Here we are reinstating temporarily
the scalars ζ and ζ̃ to show explicitly how the attractor equations set them to zero. This is
seen from the last expression in (4.3), which in particular does not involve the charges Q . In
our specific model this equation imposes

eϕh =
2√
3

( g

m

)
1
3
, χh = −1

2

( g

m

)− 1
3
, ζh = ζ̃h = 0 , (4.6)

and fixes all the values of the scalars at the horizon but φh in terms of the gauging parameters.
Substituting (4.6) into the charge quantisation condition (4.5) gives

p1 = ± 1

3g
. (4.7)

Plugging these results into the first and second equations in (4.3) produces a set of algebraic
relations. The system has a solution only if κ = −1 (hyperbolic horizon) and the scalars,
charges and radii take the values

eϕh =
2√
3

( g

m

)
1
3
, χh = −1

2

( g

m

)− 1
3
, eφh =

√
2
( g

m

)
1
3
, ah = ζh = ζ̃h = 0 ,

p0 +
1

2
mbh0 = ± 1

6
m

2
3 g−

5
3 , e0 +

1

2
g bh0 = ± 1

6
m− 1

3 g−
2
3 ,

p1 = ∓ 1

3
g−1 , e1 = ± 1

2
m

1
3 g−

4
3 ,

L2
AdS2 =

1

4
√
3
m

1
3 g−

7
3 , L2

H2 =
1

2
√
3
m

1
3 g−

7
3 .

(4.8)

These are related to each other by an overall change in the sign of the charges Qh → −Qh .
Moreover, using the definition of the phase β given in (3.16), one finds that βh = π

3 ∓ π
2 .

From now on we select the first of these solutions, namely, the one with βh = −π/6 .

4.2 Asymptotically AdS4 solutions with charges

The same configuration of the scalar fields that we have found in the analysis of the attractor
equations can be seen to extremise the scalar potential Vg in (2.21). In absence of charges,
this configuration supports an AdS4 × S6 solution of massive IIA supergravity preserving
N = 2 supersymmetry and SU(3) × U(1) symmetry [23]. As a consequence of the spheri-
cal/hyperbolic symmetry, the metric functions depend explicitly on κ and take the form

e2U = κ+
r̃2

L2
AdS4

, e2(ψ−U) = r̃2 , (4.9)
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( N=2 & U(3)  AdS4  vev’s )

[ Dall'Agata, Gnecchi ’10 ]
[ Klemm, Petri, Rabbiosi ’16 ] 

[ AG, Tarrío ’17 ] 

Black holes (I)

•  N=2 model with  1 vector  +  1 hyper  (universal)



[ AG, Tarrío ’17 ] 
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RG flows across dimension from  SYM-CS  or  CFT3  or  non-relativistic  to  CFT1

c1

c2

                          :  AdS2 x H2  to  DW4 

                                       :  AdS2 x H2  to  AdS4 

                                       :  AdS2 x H2  to Lifshitz  (z=2) 

                                       :  AdS2 x H2  to  conf-Lifshitz

• Two irrelevant modes                 when perturbing around the AdS2 x H2  solution in the IR (c1, c2)

Black holes (II)

[ AG  ’17 ] 

• AdS2 x Σg   horizons for mIIA on H(p,q)  :   STU-models  with   3 vectors  + 1 hyper 

Universal (constant scalars) RG flow (   )  CFT3  to  CFT1 [ Caldarelli, Klemm ’98 ]

[ Dall'Agata, Gnecchi ’10 ]
[ Klemm, Petri, Rabbiosi ’16 ] 



Summary

• Dyonic	N	=	8	supergravity	with	ISO(7)

c		

gauging	connected	to	massive	IIA	reductions	on	S6
.

• CFT

3

	dual	for	the	N	=	2	AdS

4

	x	S6
	solution	of	mIIA	based	on	the	D2-brane	field	theory	(SYM-CS).

• Any	4D	configuration	(AdS,	DW,	BH)	is	embedded	into	10D	via	the	uplifting	formulas.	

		Example	:		AdS

4

	x	S6
	solution	of	massive	IIA	based	on	an	N	=	2	&	U(3)	AdS

4	

vacuum.
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• Holographic	study	of	RG	flows	on	D2-brane	:			DW	solutions	(	CFT

3	

/	CFT

3

		&		SYM-CS	/	CFT

3

	)						

																																																												BH	solutions	(	CFT

3	

/	CFT

1

		&		SYM-CS	/	CFT

1

	)	

• Recent	progress	in	the	holographic	counting	of	BH	microstates

 [ Benini, Hristov, Zaffaroni ’16 ]
[ Azzurli, Bobev, Crichigno, Min, Zaffaroni ’17 ]

[ Hosseini, Hristov, Passias ’17 ] [ Benini, Khachatryan, Milan ’17 ] 

• Generalisation	&	further	tests/conjectures	on	the	duality	(semiclassical	observables,	level-rank	duality,	…)

[ Fluder, Sparks ’15 ]   [ Passias, Prins, Tomasiello ’18 ]  
[ Araujo, Nastase ’16 ]   [ Araujo, Itsios, Nastase, Ó Colgáin ’17 ]

• SO(8)

c		

theories?

 [ work  in progress… ]
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