AdS₄/CFT₃ holography from massive IIA

Adolfo Guarino

(Université Libre de Bruxelles)

Geometry, Duality and Strings 2018 Murcia, Spain May 25th

With D. Jafferis , J. Tarrío and O. Varela : arXiv:1504.08009 , arXiv:1508.04432 , arXiv:1509.02526 arXiv:1605.09254 , arXiv:1703.10833 , arXiv:1706.01823 arXiv:1712.09549

Outlook

Holographic RG flows: domain-walls & black holes

Electric-magnetic duality in N=8 supergravity

N=8 supergravity in 4D

• SUGRA : metric + 8 gravitini + 28 vectors + 56 dilatini + 70 scalars (s = 2) (s = 3/2) (s = 1) (s = 1/2) (s = 0)

Ungauged (abelian) supergravity: Reduction of M-theory on a *torus* T^7 down to 4D produces N = 8 supergravity with $G = U(1)^{28}$ [Cremmer, Julia '79]

Gauged (non-abelian) supergravity:

Reduction of M-theory on a *sphere* S^7 down to 4D produces N = 8 supergravity with G = SO(8) [de Wit, Nicolai '82]

Reduction of M-theory on S^1 (Type IIA) and subsequently on S^6 down to 4D produces N = 8 supergravity with $G = ISO(7) = SO(7) \ltimes \mathbb{R}^7$ [Hull '84]

These gauged supergravities believed to be unique for 30 years...

Electric-magnetic deformations

• Uniqueness historically inherited from the connection with NH geometries of branes and SCFT's

Type IIB : $AdS_5 \times S^5$ (D3-brane ~ N = 4 SYM in 4d) [Maldacena '97]

M-theory: $AdS_4 \times S^7$ (M2-brane ~ ABJM theory in 3d)

[Aharony, Bergman, Jafferis, Maldacena '08]

• N=8 supergravity in 4D admits a deformation parameter *c* yielding inequivalent theories. It is an electric/magnetic deformation

 $\left(\begin{array}{c} D = \partial - g \left(A^{\text{elec}} - c \, \tilde{A}_{\text{mag}} \right) \end{array} \right) \qquad \begin{array}{c} g = 4 \text{D gas} \\ c = \text{deform} \end{array}$

g = 4D gauge coupling c = deformation param.

[Dall'Agata, Inverso, Trigiante '12]

• There are two generic situations :

1) Family of SO(8)_c theories : $c = [0, \sqrt{2} - 1]$ is a continuous param [similar for SO(p,q)_c]

2) Family of $ISO(7)_c$ theories : c = 0 or 1 is an (on/off) param [same for $ISO(p,q)_c$]

[Dall'Agata, Inverso, Marrani '14]

 $SO(8)_c$ vs $ISO(7)_c$

Higher-dimensional origin?

Obstruction for $SO(8)_c$, *cf*. [de Wit, Nicolai '13]

[Lee, Strickland-Constable, Waldram '15]

Holographic dual?

A new 10D/4D/3d correspondence

massive IIA on S^6 « ISO(7)_c-gauged sugra » SU(*N*)_k SYM-CS theory

Well-established and independent dualities :

Type IIB on S⁵/N=4 SYM — M-theory on S⁷/ABJM — mIIA on S⁶/SYM-CS

Massive IIA on S⁶ / SYM-CS duality

4D : $ISO(7)_c$ Lagrangian

 $\begin{aligned} \mathbb{M} &= 1, ..., 56 \\ \Lambda &= 1, ..., 28 \\ I &= 1, ..., 7 \end{aligned}$

$$\mathcal{L}_{\text{bos}} = (R - V) \operatorname{vol}_{4} - \frac{1}{48} D\mathcal{M}_{\mathbb{MN}} \wedge * D\mathcal{M}^{\mathbb{MN}} + \frac{1}{2} \mathcal{I}_{\Lambda\Sigma} \mathcal{H}_{(2)}^{\Lambda} \wedge * \mathcal{H}_{(2)}^{\Sigma} - \frac{1}{2} \mathcal{R}_{\Lambda\Sigma} \mathcal{H}_{(2)}^{\Lambda} \wedge \mathcal{H}_{(2)}^{\Sigma} + g \, \mathbf{c} \left[\mathcal{B}^{I} \wedge \left(\tilde{\mathcal{H}}_{(2)I} - \frac{g}{2} \delta_{IJ} \mathcal{B}^{J} \right) - \frac{1}{4} \tilde{\mathcal{A}}_{I} \wedge \tilde{\mathcal{A}}_{J} \wedge \left(d\mathcal{A}^{IJ} + \frac{g}{2} \delta_{KL} \mathcal{A}^{IK} \wedge \mathcal{A}^{JL} \right) \right]$$

• Setting c = 0, all the magnetic pieces in the Lagrangian disappear.

* Ingredients :

- Electric vectors (21+7): $\mathcal{A}^{IJ} = \mathcal{A}^{[IJ]}$ [SO(7)] and \mathcal{A}^{I} [R⁷] with $\mathcal{H}^{\Lambda}_{(2)} = (\mathcal{H}^{IJ}_{(2)}, \mathcal{H}^{I}_{(2)})$
- Auxiliary magnetic vectors (7): \mathcal{A}_I [R⁷] with $\mathcal{H}_{(2)I}$ field strength
- $E_7/SU(8)$ scalars : \mathcal{M}_{MN}
- Auxiliary two-forms (7): \mathcal{B}^{I} [R⁷]
- Topological term : *g c* [...]

• Scalar potential:
$$V(\mathcal{M}) = \frac{g^2}{672} X_{\mathbb{M}\mathbb{N}} {}^{\mathbb{R}} X_{\mathbb{P}\mathbb{Q}} {}^{\mathbb{S}} \mathcal{M}^{\mathbb{M}\mathbb{P}} \left(\mathcal{M}^{\mathbb{N}\mathbb{Q}} \mathcal{M}_{\mathbb{R}\mathbb{S}} + 7 \, \delta_{\mathbb{R}}^{\mathbb{Q}} \, \delta_{\mathbb{S}}^{\mathbb{N}} \right)$$

AdS_4 solutions

\mathcal{N}	G_0	$c^{-1/3}\chi$	$c^{-1/3} e^{-\varphi}$	$c^{-1/3} \rho$	$c^{-1/3} e^{-\phi}$	$\frac{1}{4} g^{-2} c^{1/3} V_0$	$M^2 L^2$
$\mathcal{N} = 1$	G_2	$-\frac{1}{2^{7/3}}$	$\frac{5^{1/2} 3^{1/2}}{2^{7/3}}$	$-\frac{1}{2^{7/3}}$	$\frac{5^{1/2} 3^{1/2}}{2^{7/3}}$	$-\frac{2^{22/3} 3^{1/2}}{5^{5/2}}$	$4 \pm \sqrt{6} , -\frac{1}{6}(11 \pm \sqrt{6})$
$\mathcal{N}=2$	U(3)	$-\frac{1}{2}$	$\frac{3^{1/2}}{2}$	0	$\frac{1}{2^{1/2}}$	$-3^{3/2}$	$3 \pm \sqrt{17} , 2 , 2$
$\mathcal{N} = 1$	SU(3)	$\frac{1}{2^2}$	$\frac{3^{1/2} 5^{1/2}}{2^2}$	$-rac{3^{1/2}}{2^2}$	$\frac{5^{1/2}}{2^2}$	$-rac{2^{6}3^{3/2}}{5^{5/2}}$	$4\pm\sqrt{6}$, $4\pm\sqrt{6}$
$\mathcal{N} = 0$	$SO(6)_+$	0	$2^{1/6}$	0	$\frac{1}{2^{5/6}}$	$-32^{5/6}$	$6,6,-rac{3}{4},0$
$\mathcal{N} = 0$	$SO(7)_+$	0	$\frac{1}{5^{1/6}}$	0	$\frac{1}{5^{1/6}}$	$-rac{35^{7/6}}{2^2}$	$6,-\frac{12}{5},-\frac{6}{5},-\frac{6}{5}$
$\mathcal{N} = 0$	G_2	$\frac{1}{2^{4/3}}$	$\frac{3^{1/2}}{2^{4/3}}$	$\frac{1}{2^{4/3}}$	$\frac{3^{1/2}}{2^{4/3}}$	$-\frac{2^{10/3}}{3^{1/2}}$	6,6,-1,-1
$\mathcal{N} = 0$	SU(3)	0.455	0.838	0.335	0.601	-5.864	6.214,5.925,1.145,-1.284
$\mathcal{N} = 0$	SU(3)	0.270	0.733	0.491	0.662	-5.853	6.230,5.905,1.130,-1.264

[AG, Varela '15]

• N = 2 solution will play a central role in holography !!

$$\begin{split} d\hat{s}_{10}^{2} &= \Delta^{-1} ds_{4}^{2} + g_{mn} Dy^{m} Dy^{n} , \\ \hat{A}_{(3)} &= \mu_{I} \mu_{J} \left(\mathcal{C}^{IJ} + \mathcal{A}^{I} \wedge \mathcal{B}^{J} + \frac{1}{6} \mathcal{A}^{IK} \wedge \mathcal{A}^{JL} \wedge \tilde{\mathcal{A}}_{KL} + \frac{1}{6} \mathcal{A}^{I} \wedge \mathcal{A}^{JK} \wedge \tilde{\mathcal{A}}_{K} \right) \\ &\quad + g^{-1} \left(\mathcal{B}_{J}^{I} + \frac{1}{2} \mathcal{A}^{IK} \wedge \tilde{\mathcal{A}}_{KJ} + \frac{1}{2} \mathcal{A}^{I} \wedge \tilde{\mathcal{A}}_{J} \right) \wedge \mu_{I} D \mu^{J} + \frac{1}{2} g^{-2} \tilde{\mathcal{A}}_{IJ} \wedge D \mu^{I} \wedge D \mu^{J} \\ &\quad - \frac{1}{2} \mu_{I} B_{mn} \mathcal{A}^{I} \wedge D y^{m} \wedge D y^{n} + \frac{1}{6} A_{mnp} D y^{m} \wedge D y^{n} \wedge D y^{p} , \\ \hat{B}_{(2)} &= -\mu_{I} \left(\mathcal{B}^{I} + \frac{1}{2} \mathcal{A}^{IJ} \wedge \tilde{\mathcal{A}}_{J} \right) - g^{-1} \tilde{\mathcal{A}}_{I} \wedge D \mu^{I} + \frac{1}{2} B_{mn} D y^{m} \wedge D y^{n} , \\ \hat{A}_{(1)} &= -\mu_{I} \mathcal{A}^{I} + A_{m} D y^{m} . \end{split}$$

where we have defined : $Dy^m \equiv dy^m + \frac{1}{2} g K^m_{IJ} \mathcal{A}^{IJ}$, $D\mu^I \equiv d\mu^I - g \mathcal{A}^{IJ} \mu_J$

The scalars are embedded as

$$g^{mn} = \frac{1}{4} g^2 \Delta \mathcal{M}^{IJ\,KL} K^m_{IJ} K^n_{KL} , \quad B_{mn} = -\frac{1}{2} \Delta g_{mp} K^p_{IJ} \partial_n \mu^K \mathcal{M}^{IJ}_{K8} ,$$

$$A_m = \frac{1}{2} g \Delta g_{mn} K^n_{IJ} \mu_K \mathcal{M}^{IJ\,K8} , \quad A_{mnp} = \frac{1}{8} g \Delta g_{mq} K^q_{IJ} K^{KL}_{np} \mathcal{M}^{IJ}_{KL} + A_m B_{np} .$$

N=2 solution of massive type IIA

• N=2 & U(3) AdS₄ point of the $ISO(7)_c$ theory

$$\begin{split} d\hat{s}_{10}^{2} &= L^{2} \frac{\left(3 + \cos 2\alpha\right)^{\frac{1}{2}}}{\left(5 + \cos 2\alpha\right)^{-\frac{1}{8}}} \left[ds^{2} (\mathrm{AdS}_{4}) + \frac{3}{2} d\alpha^{2} + \frac{6\sin^{2}\alpha}{3 + \cos 2\alpha} ds^{2} (\mathbb{CP}^{2}) + \frac{9\sin^{2}\alpha}{5 + \cos 2\alpha} \eta^{2} \right], \\ e^{\hat{\phi}} &= e^{\phi_{0}} \frac{\left(5 + \cos 2\alpha\right)^{3/4}}{3 + \cos 2\alpha} , \qquad \hat{H}_{(3)} = 24\sqrt{2} \ L^{2} \ e^{\frac{1}{2}\phi_{0}} \frac{\sin^{3}\alpha}{\left(3 + \cos 2\alpha\right)^{2}} \ \mathbf{J} \wedge d\alpha , \\ L^{-1} \ e^{\frac{3}{4}\phi_{0}} \ \hat{F}_{(2)} &= -4\sqrt{6} \frac{\sin^{2}\alpha\cos\alpha}{\left(3 + \cos 2\alpha\right)\left(5 + \cos 2\alpha\right)} \ \mathbf{J} - 3\sqrt{6} \frac{\left(3 - \cos 2\alpha\right)}{\left(5 + \cos 2\alpha\right)^{2}} \sin\alpha \ d\alpha \wedge \boldsymbol{\eta} , \\ L^{-3} \ e^{\frac{1}{4}\phi_{0}} \ \hat{F}_{(4)} &= 6 \operatorname{vol}_{4} \\ &+ 12\sqrt{3} \frac{7 + 3\cos 2\alpha}{\left(3 + \cos 2\alpha\right)^{2}} \sin^{4}\alpha \ \operatorname{vol}_{\mathbb{CP}^{2}} + 18\sqrt{3} \frac{\left(9 + \cos 2\alpha\right)\sin^{3}\alpha\cos\alpha}{\left(3 + \cos 2\alpha\right)\left(5 + \cos 2\alpha\right)} \ \mathbf{J} \wedge d\alpha \wedge \boldsymbol{\eta} , \end{split}$$

where we have introduced the quantities $L^2 \equiv 2^{-\frac{5}{8}} 3^{-1} g^{-2} c^{\frac{1}{12}}$ and $e^{\phi_0} \equiv 2^{\frac{1}{4}} c^{-\frac{5}{6}}$

• The angle $0 \le \alpha \le \pi$ locally foliates S₆ with S₅ regarded as Hopf fibrations over \mathbb{CP}^2

3D : CFT₃ dual & matching of free energies

- 3d SYM + (N=2) Chern-Simons with simple group SU(N), level k, three adjoint matter and a cubic superpotential W = Tr(X[Y,Z])
- The 3d free energy F = -Log(Z), where Z is the partition function of the CFT on a Euclidean S₃, can be computed via localisation over supersymmetric configurations $N \gg k$

$$F = \frac{3^{13/6}\pi}{40} \left(\frac{32}{27}\right)^{2/3} k^{1/3} N^{5/3}$$
[Pestun '07] [Kapustin, Willett, Yaakov '09]
[Jafferis '10] [Jafferis, Klebanov, Pufu, Safdi '11]
[Closset, Dumitrescu, Festuccia, Komargodski '12 '13]

• The gravitational free energy can be computed from the warp factor in the N=2 massive IIA solution. Using the charge quantisation condition $N = -(2\pi\ell_s)^{-5} \int_{S^6} e^{\frac{1}{2}\phi} \hat{F}_{(4)} + \hat{B}_{(2)} \wedge d\hat{A}_{(3)} + \frac{1}{6}\hat{F}_{(0)}\hat{B}_{(2)}^3$ for the D2-brane, one finds

$$F = \frac{16\pi^3}{(2\pi\ell_s)^8} \int_{S^6} e^{8A} \operatorname{vol}_6 = \frac{\pi}{5} 2^{1/3} 3^{1/6} k^{1/3} N^{5/3}$$
 provided

$$g c = \hat{F}_{(0)} = k/(2\pi\ell_s)$$

[Emparan, Johnson, Myers '99]

Holographic RG flows: domain-walls & black holes

Holographic description of RG flows

- RG flows are described holographically as non-AdS₄ solutions in gravity
- RG flows on M2-brane : SO(8)-gauged sugra from M-theory on S⁷

• RG flows on D3-brane : SO(6)-gauged sugra from type IIB on S⁵ and N=4 SYM in 4D

[Freedman, Gubser, Pilch, Warner '99] [Pilch, Warner '00] [Benini, Bobev '12,'13]

Holographic RG flows on the D2-brane

• D2-brane :

$$\begin{aligned}
d\hat{s}_{10}^{2} &= e^{\frac{3}{4}\phi} \left(-e^{2U}dt^{2} + e^{-2U}dr^{2} + e^{2(\psi-U)}ds_{\Sigma_{2}}^{2} \right) + g^{-2}e^{-\frac{1}{4}\phi}ds_{S^{6}}^{2} \\
e^{\hat{\Phi}} &= e^{\frac{5}{2}\phi} \\
\hat{F}_{(4)} &= 5 g e^{\phi} e^{2(\psi-U)} dt \wedge dr \wedge d\Sigma_{2}
\end{aligned}$$
with $e^{2U} \sim r^{\frac{7}{4}}$, $e^{2(\psi-U)} \sim r^{\frac{7}{4}}$ and $e^{\phi} \sim r^{-\frac{1}{4}} \longrightarrow$

$$\begin{aligned}
\mathsf{DW}_{4} \\
\mathsf{domain-wall} \\
\mathsf{(SYM-CS)}
\end{aligned}$$

• RG flows on D2-brane : $ISO(7)_c$ -gauged sugra from mIIA on S⁶

 RG flows from SYM-CS (dotted lines) and between CFT's (solid lines) dual to BPS domain-wall solutions of the dyonic ISO(7)-gauged supergravity

Black holes (I)

 $\Lambda = 0, 1$

• N=2 model with 1 vector + 1 hyper (universal)

• Black hole Anstaz :

$$ds^{2} = -e^{2U(r)}dt^{2} + e^{-2U(r)}dr^{2} + e^{2(\psi(r) - U(r))} \left(d\theta^{2} + \left(\frac{\sin\sqrt{\kappa}\theta}{\sqrt{\kappa}}\right)^{2} d\phi^{2} \right)$$
$$\mathcal{A}^{\Lambda} = \mathcal{A}_{t}^{\Lambda}(r) dt - p^{\Lambda} \frac{\cos\sqrt{\kappa}\theta}{\kappa} d\phi$$
$$\tilde{\mathcal{A}}_{\Lambda} = \tilde{\mathcal{A}}_{t\Lambda}(r) dt - e_{\Lambda} \frac{\cos\sqrt{\kappa}\theta}{\kappa} d\phi$$
$$\mathcal{B}^{0} = b_{0}(r) \frac{\sin\sqrt{\kappa}\theta}{\sqrt{\kappa}} d\theta \wedge d\phi$$

• Attractor equations :

$$\begin{aligned} \mathcal{Q} &= \kappa \, L_{\Sigma_2}^2 \, \Omega \, \mathcal{M} \, \mathcal{Q}^x \, \mathcal{P}^x - 4 \, \mathrm{Im}(\bar{\mathcal{Z}} \, \mathcal{V}) \, , \\ \frac{L_{\Sigma_2}^2}{L_{\mathrm{AdS}_2}} &= -2 \, \mathcal{Z} \, e^{-i\beta} \, , \\ \mathcal{K}^u, \mathcal{V} \rangle &= 0 \, , \end{aligned}$$

[Dall'Agata, Gnecchi '10] [Klemm, Petri, Rabbiosi '16]

• Unique $AdS_2 \times H^2$:

(N=2 & U(3) AdS₄ vev's)

[AG, Tarrío '17]

$$e^{\varphi_{h}} = \frac{2}{\sqrt{3}} \left(\frac{g}{m}\right)^{\frac{1}{3}}, \quad \chi_{h} = -\frac{1}{2} \left(\frac{g}{m}\right)^{-\frac{1}{3}}, \quad e^{\phi_{h}} = \sqrt{2} \left(\frac{g}{m}\right)^{\frac{1}{3}}, \quad a_{h} = \zeta_{h} = \tilde{\zeta}_{h} = 0,$$

$$p^{0} + \frac{1}{2} m b_{0}^{h} = \pm \frac{1}{6} m^{\frac{2}{3}} g^{-\frac{5}{3}}, \quad e_{0} + \frac{1}{2} g b_{0}^{h} = \pm \frac{1}{6} m^{-\frac{1}{3}} g^{-\frac{2}{3}},$$

$$p^{1} = \mp \frac{1}{3} g^{-1}, \quad e_{1} = \pm \frac{1}{2} m^{\frac{1}{3}} g^{-\frac{4}{3}},$$

$$L_{AdS_{2}}^{2} = \frac{1}{4\sqrt{3}} m^{\frac{1}{3}} g^{-\frac{7}{3}}, \quad L_{H^{2}}^{2} = \frac{1}{2\sqrt{3}} m^{\frac{1}{3}} g^{-\frac{7}{3}}.$$

Black holes (II)

• Two irrelevant modes (c_1, c_2) when perturbing around the AdS₂ x H² solution in the IR

- RG flows across dimension from SYM-CS or CFT₃ or non-relativistic to CFT₁
- Universal (constant scalars) RG flow (\blacklozenge) CFT₃ to CFT₁
- $AdS_2 \times \Sigma_g$ horizons for mIIA on $H^{(p,q)}$: STU-models with 3 vectors + 1 hyper

[Caldarelli, Klemm '98]

Summary

- Dyonic N = 8 supergravity with ISO(7)_c gauging connected to massive IIA reductions on S⁶.
- Any 4D configuration (AdS, DW, BH) is embedded into 10D via the uplifting formulas. Example : $AdS_4 \times S^6$ solution of massive IIA based on an N = 2 & U(3) AdS_4 vacuum.
- CFT₃ dual for the N = 2 AdS₄ x S⁶ solution of mIIA based on the D2-brane field theory (SYM-CS).
- Holographic study of RG flows on D2-brane : DW solutions (CFT₃ / CFT₃ & SYM-CS / CFT₃) BH solutions (CFT₃ / CFT₁ & SYM-CS / CFT₁)
- Generalisation & further tests/conjectures on the duality (semiclassical observables, level-rank duality, ...)

[Fluder, Sparks '15] [Passias, Prins, Tomasiello '18]

[Araujo, Nastase '16] [Araujo, Itsios, Nastase, Ó Colgáin '17]

• Recent progress in the holographic counting of BH microstates

[Benini, Hristov, Zaffaroni '16]

[Azzurli, Bobev, Crichigno, Min, Zaffaroni '17]

[Hosseini, Hristov, Passias '17] [Benini, Khachatryan, Milan '17]

• SO(8)_c theories? [work in progress...]

i Muchas gracías!