Flux vacua from gauged supergravities

Adolfo Guarino

University of Groningen

Potsdam 22nd November 2011

with G. Dibitetto and D. Roest: arXiv:1102.0239

arXiv:1104.3587

arXiv:11xx.xxxx (...in progress)

The footprint of extra dimensions

- Four dimensional supergravity theories appear when compactifying string theory
- Fluctuations of the internal space around a fixed geometry translates into massless 4d scalar fields known as "moduli"

$$\mathcal{L} = \frac{1}{2} R - \frac{1}{2} \partial_{\mu} \phi_i \, \partial^{\mu} \phi^i$$

Deviations from GR !!

massless scalars = long range interactions (precision tests of GR)

Linking strings to observations — Mechanisms to stabilise moduli !!

$$V(\phi) = m_{ij}^2 \, \phi^i \phi^j + \dots$$

* Moduli VEVs $\langle \phi \rangle = \phi_0$ determine 4d physics $\langle g_s \text{ and } \mathrm{Vol}_{int} \rangle$

$$\Lambda_{c.c} \equiv V(\phi_0)$$
 $g_s \ ext{and} \ ext{Vol}_{in}$ fermi masses

How to deform massless theories to have $V(\phi) \neq 0$?

Supersymmetry dictates what deformations are allowed

gaugings = part of the global symmetry is promoted to local (gauge)

Gauged supergravities can be systematically studied

[Nicolai, Samtleben '00]

[de Wit, Samtleben, Trigiante '02 '05 '07]

[Schon, Weidner '06]

embedding tensor formalism

The embedding tensor formalism (I)

- * Reducing 10d supergravities down to 4d yields *ungauged* supergravities with global symmetry $G \implies$ duality group in 4d
- * The scalar sector parameterises the coset space $\mathcal{M} = G/H$ where H is the maximal compact subgroup of G

$$\mathcal{N} = 8$$

$$G = E_7 \quad H = SU(8)$$

$$\mathcal{N} = 4$$

$$G = SL(2) \times SO(6, 6)$$

$$H = SO(2) \times SO(6) \times SO(6)$$

- * Abelian gauge fields $A_{\mu}^{\mathcal{F}}$ in the fundamental rep. of G
- * *Gauging* : a subgroup $G_0 \subset G$ is promoted to local symmetry yielding a *gauged* supergravity

$$abla_{\mu} \longrightarrow \nabla_{\mu} - g \, A_{\mu}^{\mathcal{F}} \, \Theta_{\mathcal{F}}^{\mathcal{A}} \, t_{\mathcal{A}} \qquad \text{where} \quad \begin{cases} \mathcal{F} \equiv \text{fund} \\ \mathcal{A} \equiv \text{adj} \end{cases} \text{ reps of G}$$
embedding tensor

The embedding tensor formalism (II)

 $^{\triangleright}$ The embedding tensor $\Theta_{\mathcal{F}}{}^{\mathcal{A}}$ encodes any possible deformation of the theory (gauging)

$$\mathcal{F} \otimes \mathcal{A} = rep_1 \oplus rep_2 \oplus \dots$$
 of G

- Consistency of the gauging implies
 - *i*) Supersymmetry \implies Linear constraints on Θ (some $r \not\sim q_i$)
 - ii) Gauge algebra \implies Quadratic constraints on Θ
- * The *gauging* also induces a non-trivial scalar potential $V(\Theta, \mathcal{M})$ for the scalar fields $\mathcal{M} = G/H$
- > Stringy features (T-S-... dualities) implemented at the supergravity level!!

A chain of theories in 4d

[Dibitetto, A.G, Roest in progress]

$$G = E_7$$

e.t
$$comp = 912$$

$$vectors = 56$$

$$scalars = 133$$

$$\mathcal{N}=8$$

$$G = SL(2) \times G_2$$

e.t comp =
$$(2,1) + (4,14) + (2,7)$$

vectors =
$$(4,1)$$

$$scalars = (3,1) + (1,14)$$

$$\mathcal{N}=2$$

 \mathbb{Z}_2

$$G = SL(2) \times SO(6,6)$$

e.t comp =
$$(2,12) + (2,220)$$

vectors =
$$(2,12)$$

$$scalars = (3,1) + (1,66)$$

$$\mathcal{N}=4$$

$$G = SL(2) \times SL(2) \times SL(2)$$

e.t comp =
$$(2,2,2) + (2,4,4)$$

 \mathbb{Z}_2

$$vectors = 0$$

scalars =
$$(3,1,1) + (1,3,1) + (1,1,3)$$

$$\mathcal{N}=1$$

Half-maximal supergravities in 4d

[Schon, Weidner '06]

$$G = SL(2) \times SO(6, 6)$$

e.t comp = $(2,12) + (2,220)$
vectors = $(2,12)$
scalars = $(3,1) + (1,66)$
 $\mathcal{N} = 4$

Questions:

- [>] Can the whole vacuum structure be charted in $\mathcal{N}=4$ theories?
- > Are there connections in the landscape of vacua?

Half-maximal: symmetry and fields

Figure 6. Global symmetry (duality) group $G = SL(2) \times SO(6,6)$

$$G = SL(2) \times SO(6,6)$$

- Field content = supergravity multiplet + six vector multiplets
- Vectors $A_{\mu}^{\alpha M}$ in the fundamental of G

$$\alpha = +, -$$
 is an electric-magnetic $SL(2)$ index $M = 1, ..., 12$ is an $SO(6,6)$ index

* The scalar sector parameterises $\mathcal{M} = M_{\alpha\beta} \times M_{MN}$

$$M_{\alpha\beta} \equiv e^{\phi} \begin{pmatrix} \chi^2 + e^{-2\phi} & \chi \\ \chi & 1 \end{pmatrix}$$

$$M_{MN} \equiv \left(\begin{array}{ccc} G^{-1} & -G^{-1} B \\ B G^{-1} & G - B G^{-1} B \end{array} \right)$$

Half-maximal: gaugings and scalar potential

- * A subgroup $G_0 \subset SL(2) \times SO(6,6)$ is promoted to local (*gauged*)
- Gaugings are classified by the embedding tensor parameters

$$\xi_{\alpha M} \in ({f 2},{f 12})$$
 and $f_{\alpha MNP} \in ({f 2},{f 220})$

> Supersymmetry + gauge invariance determine the scalar potential

$$V = \frac{1}{64} f_{\alpha MNP} f_{\beta QRS} M^{\alpha \beta} \left[\frac{1}{3} M^{MQ} M^{NR} M^{PS} + \left(\frac{2}{3} \eta^{MQ} - M^{MQ} \right) \eta^{NR} \eta^{PS} \right] - \frac{1}{144} f_{\alpha MNP} f_{\beta QRS} \epsilon^{\alpha \beta} M^{MNPQRS} + \frac{3}{64} \xi_{\alpha}^{M} \xi_{\beta}^{N} M^{\alpha \beta} M_{MN}$$

To keep in mind: V is quadratic in the emb. tens. parameters

> 464 e.t. components + 38 scalars = TOO MUCH!!

The SO(3) truncation

* Keeping only fields and embedding tensor components invariant under the action of a subgroup $SO(3) \subset SO(6,6)$

$$G = SL(2) \times SO(6,6)$$
e.t comp = (2,12) + (2,220) vectors = (2,12) scalars = (3,1) + (1,66)
$$\mathcal{N} = 4$$

$$SO(3)$$

$$SO(3)$$
e.t comp = (2,2,2) + (2,4,4) vectors = 0 scalars = (3,1,1) + (1,3,1) + (1,1,3)
$$\mathcal{N} = 1$$

R-symmetry group:

$$SU(4) \supset SO(3)$$

$$4 \longrightarrow 1 + 3$$

The SO(3) truncation: fields and gaugings

Symmetry and fields :

[Derendinger, Kounnas, Petropoulos, Zwirner '04]

- global symmetry $G = SL(2)_S \times SL(2)_T \times SL(2)_U$
- $A_{\mu}^{\alpha M} = 0$ and $\xi_{\alpha M} = 0$
- scalar coset = 3 complex scalars = STU models!!

$$S \equiv \chi + i e^{-\phi}$$
 , $T \equiv \chi_1 + i e^{-\varphi_1}$ and $U \equiv \chi_2 + i e^{-\varphi_2}$

$$SL(2)$$

$$SO(6,6)$$

* The *gaugings* $G_0 \subset G$ and the scalar potential V(S,T,U) are specified by the embedding tensor

$$f_{\alpha MNP} = 40$$
 components

The SO(3) truncation: gaugings from fluxes

String embedding as flux compactification

$$f_{\alpha MNP}$$
 = generalised fluxes

Example: SO(3) truncation \Leftrightarrow type II orientifolds of $\mathbb{T}^6/\mathbb{Z}_2 \times \mathbb{Z}_2$

> Type IIB fluxes and embedding tensor

$$f_{+mnp} = \tilde{F'}_{mnp}$$
 , $f_{+mn}^{\ p} = {Q'}_{mn}^{\ p}$, $f_{+mn}^{\ mn} = {Q}_{p}^{\ mn}$, $f_{+mn}^{\ mn} = \tilde{F}^{mnp}$, $f_{-mnp} = \tilde{H'}_{mnp}$, $f_{-mn}^{\ p} = P'_{mn}^{\ p}$, $f_{-mn}^{\ mn} = P^{mn}_{\ p}$, $f_{-mnp}^{\ mn} = \tilde{H}^{mnp}$,

[Dibitetto, Linares, Roest '10]

* index splitting M = (m, m)

Perfect matching with flux-induced superpotential (up to Q.C)

$$W_{flux} = (P_F - P_H S) + 3T(P_Q - P_P S) + 3T^2(P_{Q'} - P_{P'} S) + T^3(P_{F'} - P_{H'} S)$$

The SO(3) truncation: gaugings consistency

• Closure of the gauge algebra = quadratic constraints on $f_{\alpha MNP}$

$$gaugings$$

$$A_{\mu} = A_{\mu}^{\alpha M} T_{\alpha M}$$

$$[T_{\alpha M}, T_{\beta N}] = f_{\alpha MN}^{P} T_{\beta P}$$

$$Quadratic Constraints$$

$$\epsilon^{\alpha \beta} f_{\alpha MNR} f_{\beta PQ}^{R} = 0$$

$$f_{\alpha R[MN} f_{\beta PQ]}^{R} = 0$$

> String theory :

quadratic constraints =
$$\frac{\text{B.I. for gauge fields} + \text{vanishing of the flux-induced tadpoles for sources breaking } \mathcal{N} = 4$$

Example: Type IIB orientifolds with O3/O7-planes

- \bullet (H, F) fluxes: Unconstrained D3-brane flux-induced tadpole
- (H, F, Q) fluxes : Vanishing of D7-brane flux-induced tadpole
- \bullet (H $\,,\,F$ $,\,Q$ $,\,P)$ fluxes : Vanishing of D7 $,\,NS7$ and I7 flux-induced tadpoles
- ??

We would like to . . .

1) build all the consistent SO(3)-invariant gaugings specified by $f_{\alpha MNP}$ by solving the quadratic constraints

$$\epsilon f f = 0$$
 and $f f = 0$

2) compute all the SO(3)-invariant extrema of the f-induced scalar potential $V(f,\Phi)$ by solving the extremisation conditions

$$\left. \frac{\partial V}{\partial \Phi} \right|_{\Phi_0} = 0 \qquad \text{with} \qquad \Phi \equiv (S, T, U)$$

- 3) check stability of these extrema with respect to fluctuations of all the 38 scalars of half-maximal supergravity
- 4) identify the gauge group G_0 underlying all the different solutions

... but is this doable?

Strategy and tools

Idea: use the global symmetry group (non-compact part) to bring any field solution back to the origin!!

* At the origin everything is simply quadratic in the $f_{\alpha MNP}$ parameters

$$V(\Phi) = \sum_{\text{terms}} f f \Phi^{\text{high degree}}$$

so then,

multivariate polynomial system
$$I = \langle \; \partial_\Phi V |_{\Phi_0} \;\;,\; \epsilon \, f \, f \;,\; f \, f \; \rangle$$

Algebraic Geometry techniques!!

Basics of Algebraic Geometry

Algebraic Geometry studies multivariate polynomial system and their link to geometry

$$I = \langle P_1 \, , \, P_2 \rangle$$
 $P_1(x,y,z) = x z$
 $P_2(x,y,z) = y z$

algebraic system variety

Fig. GTZ prime decomposition (analogous to integers dec. $30 = 2 \times 3 \times 5$)

$$I = J_1 \cap J_2$$
 where
$$\begin{cases} J_1 = \langle z \rangle \longrightarrow xy\text{-plane} \\ J_2 = \langle x, y \rangle \longrightarrow z\text{-axis} \end{cases}$$

$$J_1 \cap J_2 \longleftrightarrow V(J_1) \cup V(J_2)$$

algebra-geometry dictionary

Applying the above procedure to our problem involving fluxes

$$I = \langle \partial_{\Phi} V |_{\Phi_0}$$
, $\epsilon f f$, $f f \rangle$ Splitting of the landscape into n disconnected pieces

into n disconnected pieces!!

An example: type IIA with metric fluxes

> Testing the method with type IIA orientifold models including gauge fluxes and a metric flux [Dall'Agatta, Villadoro, Zwirner '09]

$$\left(\left(F_{p=0,2,4,6} , H_3 \right) + \omega \subset f_{\alpha MNP} \right)$$

Q.C. of gaugings = B.I. + tadpoles cancellation

- \triangleright Subset of embedding tensor components closed under $G_{n.c}$
 - Fields can still be set at the origin without lost of generality
 - Stability with respect to fluctuations around the origin can be computed [Borghese, Roest '10]

Vacua structure of these type IIA orientifolds

The 16 critical points

An AdS₄ landscape

$$16 = 4 + 4 + 4 + 4$$

Extra vanishing of ALL the flux-induced tadpoles!!

$1_{(\pm,\pm)}$	$2_{(\pm,\pm)}$	$3_{(\pm,\pm)}$	$4_{(\pm,\pm)}$
$\mathcal{N} = 1 \mathrm{SUSY}$ & FAKE SUSY	SUSY	SUSY	SUSY
stable	unstable	stable	stable
$m^2 = -2/3$	$m^2 = -4/5$	$m^2 > 0$	$m^2 > 0$
V= -1		V= -8/15	
v — -1	V = -32/27		V = -32/27

(*) $m^2 \equiv \text{lightest mode (B.F. bound} = -3/4)$

* All the solutions are connected and correspond to $\omega \equiv SU(2) \times SU(2)$

[Caviezel, Koerber, Körs, Lüst, Tsimpis/Wrase, Zagermann '08, '08]

Unique gauging

Unique theory

with 4 different vacua!!

Lifting to maximal supergravity?

$$G = E_7$$
e.t comp = 912
vectors = 56
scalars = 133
$$\mathcal{N} = 8$$

$$G = SL(2) \times SO(6,6)$$
 e.t comp = $(2,12) + (2,220)$ vectors = $(2,12)$ scalars = $(3,1) + (1,66)$ $\mathcal{N} = 4$

Question:

Is the vanishing of ALL the flux-induced tadpoles enough for the geometric IIA solutions to lift to a maximal supergravity theory?

When half-becomes maximal supergravity (I)

[Dibitetto, A.G., Roest '11]

See the maximal theory with the half-maximal ''glasses' and then modding out by a \mathbb{Z}_2 orientifold

 $^{\flat}$ Gauge algebra of the maximal theory with embedding tensor $X(f,\xi)$

$$[A_B, A_B] = X_{BB}{}^B A_B + X_{BB}{}^F A_F$$

$$[A_B, A_F] = X_{BF}{}^B A_B + X_{BF}{}^F A_F$$

$$[A_F, A_F] = X_{FF}{}^B A_B + X_{FF}{}^F A_F$$
Jacobi identities = $QC_{\mathcal{N}=8}$

Components with an odd number of fermionic indices projected out !!

When half-becomes maximal supergravity (II)

For a half-maximal to be embeddable in a maximal theory

$$QC_{\mathcal{N}=8} = QC_{\mathcal{N}=4} + \text{extra conditions for the lifting}$$

The extra conditions are

$$f_{\alpha MNP} f_{\beta}^{MNP} = 0 \quad \text{and} \quad \epsilon^{\alpha \beta} f_{\alpha [MNP} f_{\beta QRS]} \Big|_{SD} = 0$$

$$(3,1) \quad (1,462')$$

> Type IIB : flux-induced tadpoles for dual sources ?

$$H_3 \wedge F_3 \subset (1,462')$$
 which objects fill the rep?

D3-brane tadpole

An example: lifting of geometric type IIA

All the 16 geom. IIA solutions lift to maximal supergravity

Fake SUSY becomes SUSY

$$SU(8) \rightarrow SU(4) \times SU(4)$$
 $\mathcal{N}=8$
 $\mathcal{N}=4$
 $SUSY$
 $\mathcal{N}=4$
 $\mathcal{N}=4$
 $\mathcal{N}=4$
 $\mathcal{N}=4$
 $\mathcal{N}=4$

$\boxed{1_{(\pm,\pm)}}$	$2_{(\pm,\pm)}$	$3_{(\pm,\pm)}$	$4_{(\pm,\pm)}$
$\mathcal{N} = 1$ SUSY	SUSY	SUSY	SUSY
stable	unstable	stable	unstable
$m^2 = -2/3$	$m^2 = -4/5$	$m^2 > 0$	$m^2 = -4/3$
T7 1		V= -8/15	
V= -1	V = -32/27		V = -32/27

(*) $m^2 \equiv \text{lightest mode (B.F. bound} = -3/4)$

Computing the mass of the 70 scalars SUSY and stable minimum !!

Underlying gaugings in maximal supergravity (28 vectors) ??

(...in progress)

Conclusions

- > Some progress towards disentangling the landscape of extended supergravities can still be done without performing statistics of vacua
- The approach relies on the combined use of global symmetries and of algebraic geometry techniques
- As a warming-up, the complete vacua structure of simple type IIA orientifold theories can be worked out revealing some odd features:
 - *i)* connections between vacua
 - *ii)* $\mathcal{N} = 8$ lifting of the entire vacua structure
 - *iii*) stability without supersymmetry

For the future :

- Beyond the geometric limit: non-geometric backgrounds, dual branes . . .
- de Sitter in extended supergravity (maybe $\mathcal{N}=2$) and links to Cosmology
- Higher dimensional origin of gaugings : DFT, Generalised Geometry . . .

Thanks!!

Extra material...

Internal geometries and massless theories . . .

30108

Gaugings and their higher-dimensional origin

 $^{\triangleright} \mathcal{N} = 8$: Gauging a subgroup of the global symmetry $G = E_7$

Internal space extension

Exceptional Generalised Geometry?

[Pacheco, Waldram '08, Grana, Louis, Sim, Waldram '09]

[Aldazabal, Andrés, Cámara, Grana '10]

 * $\mathcal{N}=4$: Gauging a subgroup of the global symmetry $\mathit{G}=\mathit{SL}(2)\times\mathit{SO}(6,6)$

Internal space extension

Doubled/Generalised Geometry?

[Hitchin '02, Gualtieri '04] [Hull '04, '06]

String compactifications including generalised flux backgrounds !!

The SO(3) truncation: fields and gaugings

Symmetry and fields :

- global symmetry $G = SL(2)_S \times SL(2)_T \times SL(2)_U$
- $A_{\mu}^{\alpha M} = 0$ and $\xi_{\alpha M} = 0$

[Derendinger, Kounnas, Petropoulos, Zwirner '04]

• scalar coset = 3 complex scalars = STU - models !!

$$S \equiv \chi + i e^{-\phi}$$
 , $T \equiv \chi_1 + i e^{-\varphi_1}$ and $U \equiv \chi_2 + i e^{-\varphi_2}$

$$SL(2)$$

$$SO(6,6)$$

-SO(6,6):
$$G = e^{\varphi_2 - \varphi_1} \begin{pmatrix} \chi_2^2 + e^{-2\varphi_2} & -\chi_2 \\ -\chi_2 & 1 \end{pmatrix} \otimes \mathbb{I}_3$$
, $B = \begin{pmatrix} 0 & \chi_1 \\ -\chi_1 & 0 \end{pmatrix} \otimes \mathbb{I}_3$

 $^{\triangleright}$ The *gaugings* $G_0 \subset G$ and the scalar potential V(S,T,U) are specified by the embedding tensor

$$f_{\alpha MNP} = 40$$
 components

De Sitter in extended supergravity

> $\mathcal{N}=8$: unstable dS solutions with SO(4,4) and SO(5,3) gaugings [Hull, Warner '85]

 $^{\triangleright} \mathcal{N} = 4$: unstable dS solutions with gaugings at angles

[De Roo, Wagemans '85]

$$i$$
) $G_1 imes G_2$ gaugings with $\begin{cases} G_i = SO(p_i,q_i) &, p_i+q_i=4 \ \\ G_i = CSO(p_i,q_i,r_i) &, p_i+q_i+r_i=4 \end{cases}$

ii) $SO(3,1) \ltimes U(1)^6$ gauging

[De Roo, Westra, Panda, (Trigiante) '02, '03, '06]

[Dibitetto, A.G, Roest '11]

non-geometric fluxes in string theory!!

[Dibitetto, Linares, Roest '10]

> $\mathcal{N}=2$: stable dS solutions with $SO(2,1)\times SO(3)$ gauging plus Fayet-Iliopoulos terms [Fré, Trigiante, Van Proeyen '03]

unclear origin in string theory!!

De Sitter in minimal supergravity

> No-go theorems forbidding dS solutions in $\mathcal{N}=1$ compactifications with gauge fluxes

$$V_o = -\frac{1}{9} \sum \bar{F}^2 \le 0$$
 AdS!!

[Hertzberg, Kachru, Taylor, Tegmark '07]

> Including more general fluxes : (metric + non-geometric)

$$V_o = -\frac{1}{9} \sum \bar{F}^2 + \Delta V_{\text{metric}} + \Delta V_{\text{non-geom}}$$

a) metric fluxes **\ unstable** dS in type IIA models

[Caviezel, Koerber, Kors, Lust, Wrase, Zagerman '08]

b) non-geometric fluxes \longleftrightarrow stable dS in type IIA models

[de Carlos, A.G, Moreno '09, '10]

> Including D-branes to uplift an AdS solution

[Kachru, Kallosh, Linde, Trivedi '03]

a) D-terms from D-branes \iff stable dS in type IIB models

[Burgess, Kallosh, Quevedo '03]

b) non-perturbative effects from D-branes \iff stable dS in type IIB

[Achúcarro, de Carlos, Casas, Doplicher '06]

Cosmology from moduli?

' slow-roll inflation requires an almost flat dS saddle point of $\,V(\phi)\,$ from which to start rolling down

$$\eta \equiv M_p^2 \left(\frac{V''}{V}\right) \ll 1$$

- $^{\flat}$ dS saddle points suffering from eta-problem, *i.e.* $\eta \sim \mathcal{O}(1)$
 - i) gaugings in extended supergravity

[Kallosh, Linde, Prokushkin, Shmakova '01]

ii) general fluxes in minimal supergravity

[Flauger, Paban, Robbings, Wrase '08] [de Carlos, A.G, Moreno '10]

 $^{>}$ dS saddle points with $\eta \ll 1$ in minimal supergravity including non-perturbative effects \implies axion inflation !!

[Dimopoulos, Kachru, McGreevy, Wacker '05]