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The footprint of extra dimensions

- Four dimensional supergravity theories appear when compactifying

string theory
- Fluctuations of the internal space around a fixed geometry translates
into massless 4d scalar fields known as ““moduli ” &
1 1 Y
L= ) R — ) 8M¢¢ "¢ Deviations
from GR !

massless scalars = long range interactions (precision tests of GR)

Linking strings to observations ‘ Mechanisms to stabilise moduli !!

V(¢) =mi ¢'¢’ + ... W

[ Ac.c = V(¢O)
>Moduli VEVs (¢) = ¢9 determine 4d physics | ¢s and Vol

. fermi masses
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How to deform massless theories to have V(¢) #0 ?

- Supersymmetry dictates what deformations are allowed

4 more
N =1
} possibilities

N:

Possible
deformations

FREEDOM

Number of

N =4 , gaugings

scalar fields

| | N =
N=1 N =2 N =4 N =8

gaugings = part of the global symmetry is promoted to local ( gauge)

- Gauged supergravities can be systematically studied
[Nicolai, Samtleben '00]

[de Wit, Samtleben, Trigiante '02 '05 '07]

embedding tensor formalism
[Schon, Weidner '06]
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The embedding tensor formalism (1)

~ Reducing 10d supergravities down to 4d yields wungauged
supergravities with global symmetry G = duality group in 4d

- The scalar sector parameterises the coset space M = G/H where H is
the maximal compact subgroup of G

N =4
N =38
G =SL(2) x SO(6,6
{G =E; H= SU@)} H = 50(2) x SO(6) x SO(6)

-~ Abelian gauge fields Af in the fundamental rep. of G

- Gauging : asubgroup Gy c G is promoted to local symmetry yielding
a gauged supergravity

F = fund
Vi—V,—gAl 05" ta where {Azalcli? reps of G

embedding tensor

N

==




( The embedding tensor formalism (II')

- The embedding tensor ©r** encodes any possible deformation of
the theory (gauging)

FRA=reps ®repao®d.. of G
- Consistency of the gauging implies
i) Supersymmetry > Linear constraintson ©® (some 7x; )

ii ) Gauge algebra = Quadratic constraints on ©

- The gauging also induces a non-trivial scalar potential V(©, M) for
the scalar fields M =G/H

- Stringy features (T-5-... dualities) implemented at the supergravity level !!

N ——




A chain of theories in 4d

4 N

G = LIy

e.t comp = 912
vectors = 56

scalars = 133

N V=3

g
4 N

G = SL(2) x SO(6, 6)

e.t comp = (2,12) + (2,220)
vectors = (2,12)
scalars = (3,1) + (1,66)

@ N=4

SO(3)

SO(3)

[Dibitetto, A.G, Roest in progress]

4 N

G = SL(Q) X GQ

e.t comp=(2,1) + (4,14) + (2,7)
vectors = (4,1)
scalars = (3,1) + (1,14)

N N2
Z2i

4 G = SL(2) x SL(2) x SL(Z)\

e.t comp = (2,2,2) + (2,4,4)
vectors = ()
scalars = (3,1,1) + (1,3,1)4+(1,1,3)

o N=1 J
*reESOfG




Half-maximal supergravities in 4d

[Schon, Weidner '06]

4 N

G = SL(2) x SO(6,6)

e.t comp =(2,12) + (2,220)
vectors = (2,12)
scalars = (3,1) + (1,66)

N LET

Questions :

> Can the whole vacuum structure be charted in N =4 theories ?

- Are there connections in the landscape of vacua ?




( Half-maximal : symmetry and fields

- Global symmetry (duality) group | G = SL(2) x SO(6,6)

- Field content = supergravity multiplet + six vector multiplets

- Vectors AZ‘M in the fundamental of G
a = 4, — is an electric-magnetic SL(2) index

24 vectors
M=1,..,12 is an SO(6,6) index

- The scalar sector parameterises M = Mup x Mpn

2 —2¢

* 1 axion + 1 dilaton in SL(2) Meyp = e? < X +X€ >1<
. . , 38 scalars

* 30 axions + 6 dilatons in SO(6,6) -1 _o-1p

My = ( BG™' G-BG'B

N
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Half-maximal : gaugings and scalar potential

~ A subgroup G, C SL(2) x SO(6,6) is promoted to local ( gauged )

- Gaugings are classified by the embedding tensor parameters

Sam € (2,12) and farvinpe € (2,220)

- Supersymmetry + gauge invariance determine the scalar potential

1 1 2
vV = 1 faMNP fBQRSMaB g MMQ MNR MPS s (g nMQ L MMQ) 77NRnPS] L
|
. 1 f f 6046 MMNPQRS T 3 fM §N MozBM
144 aMNP JBQRRS 64 > B MN

N

To keep in mind : V is quadratic in the emb. tens. parameters

- 464 e.t. components + 38 scalars = TOO MUCH !!
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The SO@@) truncation

- Keeping only fields and embedding tensor components invariant
under the action of a subgroup s50(3) c S0(6,6)

4 N 4 G = SL(2) x SL(2) x SL@)\

G = SL(2) x SO(6, 6)

e.t comp = (2,2,2) + (2,4,4)
> | vectors =0
scalars = (3,1,1) + (1,3,1)+(1,1,3)

et comp = (2,12) + (2,220)  SO(3)
vectors = (2,12)
scalars = (3,1) + (1,66)

K N:4/ \ N:l/

~ R-symmetry group :
SUM4) D SO(3)

4 — 1 + 3




The SO@3) truncation : fields and gaugings ‘

> Symmetry and flelds . [Derendinger, Kounnas, Petropoulos, Zwirner '04] ‘
* global symmetry G = SL(2)s x SL(2)r x SL(2)u

'AZ‘M:O and &, =0

* scalar coset = 3 complex scalars = STU -models !!

S=y+ie® |, T=xi+ie ¥ and U= ys+ie ¥
N
SL(2) SO(6,6)

- The gaugings Go c G and the scalar potential V(S,7,U) are specified
by the embedding tensor

( famnp = 40 components W

——— .
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The SO@3) truncation : gaugings from fluxes

- String embedding as flux compactification

fomnp = generalised fluxes

Example: SO(3) truncation <> type Il orientifolds of TC /7y x Zs

- Type IIB fluxes and embedding tensor

f+mnp — F/mnp ) f+ mnp — Q,mnp ) f—l—mnp - anp ) f+mnp = Fmnp )

I/ P __ I P mn mnp 1
femnp = H'mnp s fomn® = Plmn , J- p_Pmnp S - = H™"P
* . . . _ m
[Dibitetto, Linares, Roest '10] index Spllttlng M = (m , )

- Perfect matching with flux-induced superpotential (up to Q.C)

Wtiue = (Pp — Py S) 4+ 3T (Pg — Pp S) +3T%*(Pg — Ppi S) +T° (Ppr — Pyr S)

\\__ — — e e e




The SO@3) truncation : gaugings consistency

- Closure of the gauge algebra = quadratic constraints on famnp

4 N 4

gaugings Quadratic Constraints
A, = Aij Tonm - e*? furiNR fBPQR =0
[Tont, Ton] = famn” Tsp farpunfspg) =0
/ \ %
- String theory :

B.I. for gauge fields + vanishing of the flux-

quadratic constraints - = induced tadpoles for sources breaking A = 4

Example : Type IIB orientifolds with O3/O7-planes

*(H, F') fluxes: Unconstrained D3-brane flux-induced tadpole
*(H, F, Q) fluxes : Vanishing of D7-brane flux-induced tadpole

*(H,F, Q, P)fluxes: Vanishing of D7 , NS7 and I7 flux-induced tadpoles
° ??




We would like to . . .

1) build all the consistent SO(3)-invariant gaugings specified by famnp
by solving the quadratic constraints

eff=0 and ff=0

2) compute all the SO(3)-invariant extrema of the f-induced scalar
potential V(f, ®) by solving the extremisation conditions

oV

- — 0 ith d=(S5,T,U
5% |, wi ( )

3) check stability of these extrema with respect to fluctuations of all
the 38 scalars of half-maximal supergravity

4) identify the gauge group G, underlying all the different solutions

... but is this doable ?




( Strategy and tools

®\ /® .\ ;r.
> ° \\ /, \\ II
Idea : use the global symmetry o as e
¥ ” M
group (non-compact part) to bring a o . - iy .
any field solution back to the origin !! & ® o ‘e
d-space f-space

- At the origin everything is simply quadratic in the fomyp parameters

V((I)) _ Z ff (I)high degree

terms

so then,

computing the multivariate polynomial system

vacua structure I=(0sV|s, , €ff, fT)

:> Algebraic Geometry techniques !!
N

[Gray, He, Lukas '06]
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Basics of Algebraic Geometry

-~ Algebraic Geometry studies multivariate polynomial system and their
link to geometry

‘z
) = |
Pi(z,y,2) = xz <:> 77777777777777 77777777777777
Pyz,y,2) = y> y
algebraic system X | variety

> GTZ prime decomposition (analogous to integers dec. 30 = 2 x 3 x )

I=JinJy where 4 717 (%) 7 @y-plane — [ Ny s V(1)U V(Jz)}
Jo = (x, y) — z-axis

algebra-geometry dictionary

- Applying the above procedure to our problem involving fluxes

I=(0sVl]y, , €ff, fF) ‘ Splitting of the landscape

I=JiNnJyN...NJ, into n disconnected pieces !
[Singular project, 97]

- = pier R e i et
— e - - .




An example : type IIA with metric fluxes

- Testing the method with type IIA orientifold models including
gauge fluxes and a metriC flux [Dall'Agatta, Villadoro, Zwirner '09]

(Fp=0,2,4,6 , H3> + w C  faMmnNP

Q.C. of gaugings = B.I. + tadpoles cancellation

- Subset of embedding tensor components closed under G,

v Fields can still be set at the origin without lost of generality

v Stability with respect to fluctuations around the origin can be computed
I [Borghese, Roest '10]

~ Vacua structure of these type IIA orientifolds

16 AdS,
critical points

+ \ GKP after

three T-dualities
[Giddings, Kachru, Polchinski '02]

— S s S,




The 16 critical points lgs) | 2as | S@s | 4y
N =1SUSY
~ An AdS, landscape e SB5¥Y SB5Y 585Y
FAKE SUSY
16=4+4+4+4 stable unstable stable stable
- Extra vanishing of ALL the m=-2/3 | m=-4/5 | m'>0 m=>0
flux-induced tadpoles !! Ve 1 V= -8/15
V=-32/27 V=-32/27
s PR PO %33 B (¥) m* = lightest mode (B.F. bound = —3/4)
®©@—0© G, . ®e—@©
CL,_,CL l,_,l - All the solutions are connected
T o T s Ty & D
B I and correspond to w = SU(2) x SU(2)
[Caviezel, Koerber, Kors, Liist, Tsimpis/Wrase, Zagermann '08, '08]
G Go = 1SO(3) x U(1)° G , ,
~ Unique gauging
B ¥ don ! e Unique theory
l . l Gh.c l — l with 4 different vacua !
iy B i A
\\—_ e — i T e
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Lifting to maximal supergravity ?

4 N

G = Er

e.t comp = 912
vectors = 56

scalars = 133

N=8 /
' 2

G = SL(2) x SO(6,6)

e.t comp = (2,12) + (2,220)
vectors = (2,12)
scalars = (3,1) + (1,66)

N w=1

Question :

- Is the vanishing of ALL the flux-induced tadpoles enough for the
geometric IIA solutions to lift to a maximal supergravity theory?

———— e —




When half- becomes maximal supergravity (I)

[Dibitetto, A.G., Roest '11]

- See the maximal theory with the half-maximal "'glasses’” and then
modding out by a 7, orientifold

B S5 SL(2) x SO(6, 6)
7
vectors : 56 — (2,12) 4+ (1,32) | bos (B) 2
rep = 08 —  even
scalars : 133 — (3,1) +(1,66) + (2,32 S ep = fermi (F) —  odd
e.t: 012 —  (2,12) + (2,220) + (1, 352') + (3,32) SO
/ \ )\ ) - S0(6,6)
X Samt JaMmNP

- Gauge algebra of the maximal theory with embedding tensor X(f,¢)

Ap,Ag] = Xpp” Ap + Xgpp' Ar
Ap,Ar] = Xgr®” Ap + Xprp' Ap - Jacobiidentities = QChr—g
:AFaAF: — XFFB Ap + XFFF Ap

- Components with an odd number of fermionic indices projected out !!

e I e o e




‘ When half- becomes maximal supergravity (II)

- For a half-maximal to be embeddable in a maximal theory

E QCrn=s = QCyn—4 + extra conditions for the liftingJ

> The extra conditions are

NP:()

farinp f5™ and e’ fapmnp fsors) |gp =0

(3,1) (1,462’)
- Type IIB : flux-induced tadpoles for dual sources ?

Hs N\ F3 C (1,462 :> which objects fill the rep ?
\ﬁ/_/
D3-brane tadpole




An example : lifting of geometric type IIA

- All the 16 geom. IIA solutions
litt to maximal supergravity

> Fake SUSY becomes SUSY

SU(8) — SU(4) x SU(4)

NI NI -
N =38 N =4 N =4
SUSY SUSY FAKE

L) 26,0 | S | 4w
N =1 SUSY SHSY¥ SHSY¥ SHSY¥
stable unstable stable unstable
m?>=-2/3 | m?>=-4/5 m? > 0 m?=-4/3
V=-8/15
=l
V=-32/27 V=-32/27

(¥) m? = lightest mode (B.F. bound = —3/4)

- Computing the mass of the 70 scalars —> SUSY and stable minimum !!

[Le Diffon, Samtleben, Trigiante '11]

» Underlying gaugings in maximal supergravity (28 vectors) ??

(...in progress)

pier R e i et




Conclusions

- Some progress towards disentangling the landscape of extended
supergravities can still be done without performing statistics of vacua

~ The approach relies on the combined use of global symmetries and of
algebraic geometry techniques

~ As a warming-up, the complete vacua structure of simple type IIA
orientifold theories can be worked out revealing some odd features :

i) connections between vacua
ii) N =8 lifting of the entire vacua structure
iii) stability without supersymmetry

> For the future :

- Beyond the geometric limit : non-geometric backgrounds, dual branes . . .
- de Sitter in extended supergravity (maybe N =2 ) and links to Cosmology

- Higher dimensional origin of gaugings : DFT, Generalised Geometry . . .

N




Thanks !!




Extra material . ..
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Internal geometries and massless theories . . .

“maximal”’ | o
(70 scalars)
“minimally extended”’
4 N
Orientifolds of T° Type II 10d CYz = X
N =4 (38 scalars) ST N =2
scalars < (h(l’l), h(l’z))
“half-maximal "’ o 7/
Orientifolds of (Y3 S
Lower bound on minima
topologically distinct C'Ys N =1 scalars < (h(l’l),h(1’2)>

30108
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( Gaugings and their higher-dimensional origin

- N =8 Gauging a subgroup of the global symmetry G = E7

Internal space extension <= Exceptional Generalised Geometry ?

[Pacheco, Waldram '08 , Grana, Louis, Sim, Waldram '09]

[Aldazabal, Andrés, Camara, Grana '10]

- N =4 : Gauging a subgroup of the global symmetry G = SL(2) x SO(6,6)

Internal space extension =~ 4=  Doubled /Generalised Geometry ?

[Hitchin '02, Gualtieri '04]

[Hull '04, '06]
.& String compactifications including
pathological generalised flux backgrounds !
internal spaces
= S SR




( The SO@3) truncation : fields and gaugings

> Symmetry and fields :

* global symmetry G = SL(2)s x SL(2)r x SL(2)u

° A;O;M — 0 and gaM — 0 [Derendinger, Kounnas, Petropoulos, Zwirner '04]

* scalar coset = 3 complex scalars = STU - models !!

S=y+ie?® |, T=xi+ie ¥ and U=yg+ie ¥
N
SL(2) SO(6,6)
SSO(6,6) 1 G (2T ) o B‘( w0 )®]I
Y * _XQ 1 3 ) _Xl 0 3

- The gaugings G, c ¢ and the scalar potential V(5,17,U) are specified
by the embedding tensor

famnp = 40 components

\\_-— e ———— —— S e A e et




De Sitter in extended supergravity

- N =8 : unstable dS solutions with SO(4,4) and SO(5,3) gaugings

[Hull, Warner '85]

- N'=4 : unstable dS solutions with gaugings at angles

[De Roo, Wagemans '85]
/

G;=50(pi,qi) , pPi+tq =4
i) Gi1x G2 gaugings with -
G; =CSO(pi,qi,ri) , pitq+ri=4

[De Roo, Westra, Panda, (Trigiante) '02, '03, '06]

ii) SO(3,1) x U(1)® gauging [Dibitetto, A.G, Roest '11]

o

( non-geometric fluxes in string theory !! }

[Dibitetto, Linares, Roest '10]

- N =2 : stable dS solutions with SO(2,1) x SO(3) gauging plus
Fayet—lliopoulos terms [Fré, Trigiante, Van Proeyen '03]

unclear origin in string theory !!

— o Lo S,




( De Sitter in minimal supergravity

- No-go theorems forbidding dS solutions in A = 1 compactifications with

=——ZF2<O ) AdS!

[Hertzberg, Kachru, Taylor, Tegmark '07]

gauge fluxes

- Including more general fluxes : (metric + non-geometric )
1 _
Vo — _5 Z F2 + Avaetric + Aanon-geom

a) metric fluxes <=y unstable dS in type IIA models

[Caviezel, Koerber, Kors, Lust, Wrase, Zagerman '08]

b) non-geometric fluxes <=y stable dS in type IIA models

[de Carlos, A.G, Moreno '09, '10]

- Including D-branes to uplift an AdS solution

[Kachru, Kallosh, Linde, Trivedi '03]

a) D-terms from D-branes <= stable dS in type IIB models

[Burgess, Kallosh, Quevedo '03]

b) non-perturbative effects from D-branes <= stable dS in type IIB

[Achtcarro, de Carlos, Casas, Doplicher '06]

N ——




Cosmology from moduli ?

- slow-roll inflation requires an almost flat

V(@)
dS saddle point of V(¢) from which to
start rolling down
V//
n= M (7> <1 ?

- dS saddle points suffering from eta-problem, i.e. 1 ~ O(1)

i) gaugings in extended supergravity [Kallosh, Linde, Prokushkin, Shmakova 01]
ii ) general fluxes in minimal supergravity [Flauger, Paban, Robbings, Wrase '08]

[de Carlos, A.G, Moreno '10]

~dS saddle points with 7 < 1 in minimal supergravity including

non-perturbative effects =) axion inflation !!
[Dimopoulos, Kachru, McGreevy, Wacker '05]
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