Holographic \& geometric aspects of electromagnetic duality in supergravity

Adolfo Guarino

University of Oviedo \& ICTEA

$$
\text { Based on } 1907.04177 \text {, } 1907.11681 \text { and } 1910.06866
$$

Electric-magnetic duality in $\mathrm{N}=8$ supergravityM-theoryMassive Type IIA: Flowing to $\mathrm{N}=3$ CS-matter theoryType IIB : S-folds and interface SYM

Electric-magnetic duality in $\mathrm{N}=8$ supergravity

$\mathrm{N}=8$ supergravity in 4D

- SUGRA : metric +8 gravitini +28 vectors +56 dilatini +70 scalars

$$
(s=2) \quad(s=3 / 2) \quad(s=1) \quad(s=1 / 2) \quad(s=0)
$$

Ungauged (abelian) supergravity: Reduction of M-theory on a torus T^{7} down to 4 D produces $N=8$ supergravity with $G=\mathrm{U}(1)^{28}$
[Cremmer, Julia '79]
Gauged (non-abelian) supergravity:

* Reduction of M-theory on a sphere S^{7} down to 4D produces $N=8$ supergravity with $\mathrm{G}=\mathrm{SO}(8)$
[de Wit, Nicolai '82]
* Reduction of M-theory on S^{1} (Type IIA) and subsequently on S^{6} down to 4D produces $N=8$ supergravity with $\mathrm{G}=\mathrm{ISO}(7)=\mathrm{SO}(7) \ltimes \mathbb{R}^{7}$
[Hull '84]
* Reduction of Type IIB on S^{5} and subsequently on S^{1} down to 4D produces $N=8$ supergravity with $\mathrm{G}=[\mathrm{SO}(1,1) \times \mathrm{SO}(6)] \ltimes \mathbb{R}^{12}$
[Inverso, Samtleben, Trigiante '16]
* These gauged supergravities believed to be unique for 30 years...

Electric-magnetic deformations

- Uniqueness historically inherited from the connection with NH geometries of branes and SCFT's

$$
\begin{array}{lll}
\text { Type IIB : } & \mathrm{AdS}_{5} \times \mathrm{S}^{5} \quad(\mathrm{D} 3 \text {-brane } \sim \mathrm{N}=4 \mathrm{SYM} \text { in } 4 \mathrm{~d}) \quad \text { [Maldacena'97] } \\
\text { M-theory : } & \mathrm{AdS}_{4} \times \mathrm{S}^{7} \quad(\text { M2-brane } \sim \mathrm{ABJM} \text { theory in } 3 \mathrm{~d})
\end{array}
$$

[Aharony, Bergman, Jafferis, Maldacena '08]

- $\mathrm{N}=8$ supergravity in 4D admits a deformation parameter c yielding inequivalent theories. It is an electric/magnetic deformation

$$
D=\partial-g\left(A^{\mathrm{elec}}-c \tilde{A}_{\mathrm{mag}}\right)
$$

$$
\begin{aligned}
& g=4 \mathrm{D} \text { gauge coupling } \\
& c=\text { deformation param. }
\end{aligned}
$$

- There are two generic situations :

1) Family of $\mathrm{SO}(8)_{c}$ theories : $c=[0, \sqrt{2}-1]$ is a continuous parameter [similar for $\left.\mathrm{SO}(p, q)_{c}\right]$
2) Family of $\operatorname{CSO}(p, q, r)_{c}$ theories : $c=0$ or 1 is an (on/off) parameter

The questions arise:

- Does such an electric/magnetic deformation of 4D maximal supergravity enjoy a string/M-theory origin, or is it just a 4D feature ?
- For deformed 4D supergravities with supersymmetric AdS_{4} vacua, are these $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$-dual to any identifiable 3d CFT ?

M-theory

$\mathrm{SO}(8)_{c}$ theories : physical meaning in 4D

$$
D=\partial-g\left(A^{\mathrm{elec}}-c \tilde{A}_{\mathrm{mag}}\right)
$$

$\mathrm{SO}(8)_{c}$ theories : physical meaning in 11D ...

$\mathrm{SO}(8)_{c}$ theories : holographic $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ meaning \ldots

Massive Type IIA

electric / magnetic deformation

higher-dimensional
origin

$$
g c=\hat{F}_{(0)}=k /\left(2 \pi \ell_{s}\right)
$$

Why ISO(7)c works ?

4D : Supersymmetric AdS_{4} solutions

SUSY	bos. sym.	$M^{2} L^{2}$
$\mathcal{N}=3$	$\mathrm{SO}(4)$	$\begin{gathered} 3(1 \pm \sqrt{3})^{(1)},(1 \pm \sqrt{3})^{(6)},-\frac{9}{4}^{(4)},-2^{(18)},-\frac{5}{4}^{(12)}, 0^{(22)} \\ (3 \pm \sqrt{3})^{(3)}, \frac{15}{4}^{(4)}, \frac{3}{4}^{(12)}, 0^{(6)} \end{gathered}$
$\mathcal{N}=2$	U(3)	$\begin{gathered} (3 \pm \sqrt{17})^{(1)},-\frac{20}{9}^{(12)},-2^{(16)},-\frac{14}{9}^{(18)}, 2^{(3)}, 0^{(19)} \\ 4^{(1)}, \frac{28}{9}^{(6)}, \frac{4}{9}^{(12)}, 0^{(9)} \end{gathered}$
$\mathcal{N}=1$	G_{2}	$\begin{gathered} (4 \pm \sqrt{6})^{(1)},-\frac{1}{6}(11 \pm \sqrt{6})^{(27)}, 0^{(14)} \\ \frac{1}{2}(3 \pm \sqrt{6})^{(7)}, 0^{(14)} \end{gathered}$
$\mathcal{N}=1$	SU(3)	$\begin{gathered} (4 \pm \sqrt{6})^{(2)},-\frac{20}{9}^{(12)},-2^{(8)},-\frac{8}{9}^{(12)}, \frac{7}{9}^{(6)}, 0^{(28)} \\ 6^{(1)}, \frac{\frac{28}{9}^{(6)}}{} \frac{25}{9}^{(6)}, 2^{(1)}, \frac{4}{9}^{(6)}, 0^{(8)} \end{gathered}$

$\downarrow \mathcal{N}=2 \& \mathcal{N}=3$ solutions will play a central role in holography !! [Continuous R-symmetry]

10D: $\mathrm{ISO}(7)_{c}$ into type IIA supergravity

$$
\begin{aligned}
d \hat{s}_{10}^{2}= & \Delta^{-1} d s_{4}^{2}+g_{m n} D y^{m} D y^{n} \\
\hat{A}_{(3)}= & \mu_{I} \mu_{J}\left(\mathcal{C}^{I J}+\mathcal{A}^{I} \wedge \mathcal{B}^{J}+\frac{1}{6} \mathcal{A}^{I K} \wedge \mathcal{A}^{J L} \wedge \tilde{\mathcal{A}}_{K L}+\frac{1}{6} \mathcal{A}^{I} \wedge \mathcal{A}^{J K} \wedge \tilde{\mathcal{A}}_{K}\right) \\
& +g^{-1}\left(\mathcal{B}_{J}^{I}+\frac{1}{2} \mathcal{A}^{I K} \wedge \tilde{\mathcal{A}}_{K J}+\frac{1}{2} \mathcal{A}^{I} \wedge \tilde{\mathcal{A}}_{J}\right) \wedge \mu_{I} D \mu^{J}+\frac{1}{2} g^{-2} \tilde{\mathcal{A}}_{I J} \wedge D \mu^{I} \wedge D \mu^{J} \\
& -\frac{1}{2} \mu_{I} B_{m n} \mathcal{A}^{I} \wedge D y^{m} \wedge D y^{n}+\frac{1}{6} A_{m n p} D y^{m} \wedge D y^{n} \wedge D y^{p} \\
\hat{B}_{(2)}= & -\mu_{I}\left(\mathcal{B}^{I}+\frac{1}{2} \mathcal{A}^{I J} \wedge \tilde{\mathcal{A}}_{J}\right)-g^{-1} \tilde{\mathcal{A}}_{I} \wedge D \mu^{I}+\frac{1}{2} B_{m n} D y^{m} \wedge D y^{n}, \\
\hat{A}_{(1)}= & -\mu_{I} \mathcal{A}^{I}+A_{m} D y^{m} .
\end{aligned}
$$

where we have defined: $\quad D y^{m} \equiv d y^{m}+\frac{1}{2} g K_{I J}^{m} \mathcal{A}^{I J} \quad, \quad D \mu^{I} \equiv d \mu^{I}-g \mathcal{A}^{I J} \mu_{J}$

The scalars are embedded as

$$
\begin{array}{ll}
g^{m n}=\frac{1}{4} g^{2} \Delta \mathcal{M}^{I J} K L & K_{I J}^{m} K_{K L}^{n} \\
A_{m}=\frac{1}{2} g \Delta g_{m n} K_{I J}^{n} \mu_{K} \mathcal{M}^{I J} K_{8} & , \quad B_{m n}=-\frac{1}{2} \Delta g_{m p} K_{I J}^{p} \partial_{n} \mu^{K} \mathcal{M}^{I J}{ }_{K 8}, \\
=\frac{1}{8} g \Delta g_{m q} K_{I J}^{q} K_{n p}^{K L} \mathcal{M}^{I J}{ }_{K L}+A_{m} B_{n p} .
\end{array}
$$

$\mathcal{N}=2$ solution of massive type IIA

- $\mathcal{N}=2 \& \mathrm{SU}(3)_{\mathrm{F}} \times \mathrm{U}(1)_{\psi} \quad \mathrm{AdS}_{4}$ point of the $\mathrm{ISO}(7)_{c}$ theory

$$
\begin{aligned}
& d \hat{s}_{10}^{2}=L^{2} \frac{(3+\cos 2 \alpha)^{\frac{1}{2}}}{(5+\cos 2 \alpha)^{-\frac{1}{8}}}\left[d s^{2}\left(\operatorname{AdS}_{4}\right)+\frac{3}{2} d \alpha^{2}+\frac{6 \sin ^{2} \alpha}{3+\cos 2 \alpha} d s^{2}\left(\mathbb{C P}^{2}\right)+\frac{9 \sin ^{2} \alpha}{5+\cos 2 \alpha} \boldsymbol{\eta}^{2}\right], \\
& e^{\hat{\phi}}=e^{\phi_{0}} \frac{(5+\cos 2 \alpha)^{3 / 4}}{3+\cos 2 \alpha} \quad, \quad \hat{H}_{(3)}=24 \sqrt{2} L^{2} e^{\frac{1}{2} \phi_{0}} \frac{\sin ^{3} \alpha}{(3+\cos 2 \alpha)^{2}} \boldsymbol{J} \wedge d \alpha, \\
& L^{-1} e^{\frac{3}{4} \phi_{0}} \hat{F}_{(2)}=-4 \sqrt{6} \frac{\sin ^{2} \alpha \cos \alpha}{(3+\cos 2 \alpha)(5+\cos 2 \alpha)} \boldsymbol{J}-3 \sqrt{6} \frac{(3-\cos 2 \alpha)}{(5+\cos 2 \alpha)^{2}} \sin \alpha d \alpha \wedge \boldsymbol{\eta}, \\
& L^{-3} e^{\frac{1}{4} \phi_{0}} \hat{F}_{(4)}=6 \operatorname{vol}_{4} \\
& \quad+12 \sqrt{3} \frac{7+3 \cos 2 \alpha}{(3+\cos 2 \alpha)^{2}} \sin ^{4} \alpha \operatorname{vol}_{\mathbb{C P}^{2}}+18 \sqrt{3} \frac{(9+\cos 2 \alpha) \sin ^{3} \alpha \cos \alpha}{(3+\cos 2 \alpha)(5+\cos 2 \alpha)} \boldsymbol{J} \wedge d \alpha \wedge \boldsymbol{\eta},
\end{aligned}
$$

where we have introduced the quantities $L^{2} \equiv 2^{-\frac{5}{8}} 3^{-1} g^{-2} c^{\frac{1}{12}}$ and $e^{\phi_{0}} \equiv 2^{\frac{1}{4}} c^{-\frac{5}{6}}$

The angle $0 \leq \alpha \leq \pi$ locally foliates S^{6} with S^{5} regarded as Hopf fibrations over $\mathbb{C P}^{2}$

$\mathcal{N}=3$ solution of massive type IIA

- $\mathcal{N}=3 \& \mathrm{SU}(2)_{\mathrm{F}} \times \mathrm{SO}(3)_{d} \quad \mathrm{AdS}_{4}$ point of the $\operatorname{ISO}(7)_{c}$ theory

$$
\begin{aligned}
& d \hat{s}_{10}^{2}=L^{2}(3+\cos 2 \alpha)^{1 / 8}\left(3 \cos ^{4} \alpha+3 \cos ^{2} \alpha+2\right)^{1 / 4}\left[d s^{2}\left(\mathrm{AdS}_{4}\right)+\frac{2(3+\cos 2 \alpha) \cos ^{2} \alpha}{3 \cos ^{4} \alpha+3 \cos ^{2} \alpha+2} \delta_{i j} D \tilde{\mu}^{i} D \tilde{\mu}^{j}+2 d \alpha^{2}+\frac{8 \sin ^{2} \alpha}{3+\cos 2 \alpha} d \tilde{s}^{2}\left(S^{3}\right)\right] \\
& e^{\hat{\phi}}=e^{\phi_{0}} \frac{(3+\cos 2 \alpha)^{3 / 4}}{\left(3 \cos ^{4} \alpha+3 \cos ^{2} \alpha+2\right)^{1 / 2}} \\
& L^{-2} e^{-\frac{1}{2} \phi_{0}} \hat{B}_{(2)}=-\frac{2}{\sqrt{3}} \sin \alpha d \alpha \wedge \tilde{\mu}_{i} \rho^{i}+\frac{(5+3 \cos 2 \alpha) \cos ^{3} \alpha}{\sqrt{3}\left(3 \cos ^{4} \alpha+3 \cos ^{2} \alpha+2\right)} \epsilon_{i j k} \tilde{\mu}^{i} D \tilde{\mu}^{j} \wedge D \tilde{\mu}^{k} \\
& +\frac{4 \sin ^{2} \alpha \cos \alpha}{\sqrt{3}(3+\cos 2 \alpha)} D \tilde{\mu}_{i} \wedge \rho^{i}+\frac{(7+\cos 2 \alpha) \sin ^{2} \alpha \cos \alpha}{\sqrt{3}(3+\cos 2 \alpha)^{2}} \epsilon_{i j k} \tilde{\mu}^{i} \rho^{j} \wedge \rho^{k}, \\
& L^{-3} e^{\frac{1}{4} \phi_{0}} \hat{A}_{(3)}=\frac{2 \sqrt{2}}{\sqrt{3}} \sin \alpha \cos \alpha d \alpha \wedge \epsilon_{i j k} \tilde{\mu}^{i} D \tilde{\mu}^{j} \wedge \rho^{k} \\
& -\frac{2 \sqrt{2} \sin ^{2} \alpha \cos ^{2} \alpha}{\sqrt{3}\left(3 \cos ^{4} \alpha+3 \cos ^{2} \alpha+2\right)} \epsilon_{i j k} D \tilde{\mu}^{i} \wedge D \tilde{\mu}^{j} \wedge \rho^{k} \\
& +\frac{4 \sqrt{2} \sin ^{2} \alpha \cos ^{2} \alpha}{\sqrt{3}(3+\cos 2 \alpha)} \tilde{\mu}_{i} D \tilde{\mu}_{j} \wedge \rho^{i} \wedge \rho^{j} \quad \quad L^{-1} e^{\frac{3}{4} \phi_{0}} \hat{A}_{(1)}=\sqrt{2} \frac{\sin ^{2} \alpha \cos \alpha}{3+\cos 2 \alpha} \tilde{\mu}_{i} \rho^{i} . \\
& -\frac{2 \sqrt{2}(2+\cos 2 \alpha) \sin ^{4} \alpha}{3 \sqrt{3}(3+\cos 2 \alpha)^{2}} \epsilon_{i j k} \rho^{i} \wedge \rho^{j} \wedge \rho^{k},
\end{aligned}
$$

where we have introduced the quantities $L^{2} \equiv 2^{-\frac{31}{12}} 3^{\frac{3}{8}} g^{-2} c^{\frac{1}{12}} \quad$ and $\quad e^{\phi_{0}} \equiv 2^{-\frac{1}{6}} 3^{\frac{1}{4}} c^{-\frac{5}{6}}$
\downarrow The angle $0 \leq \alpha \leq \pi / 2$ so that S^{6} is topologically described as the join of S^{2} and S^{3} with S^{3} regarded as a Hopf fibration over $\mathbb{C P}^{1}$

- 3d SYM with simple group $\mathrm{SU}(N)+\mathrm{CS}$ term (level k) \longmapsto super CS-matter theory !!
[$N_{f}=3$ chiral fields]
$\mathcal{N}=2 \& \operatorname{SU}(3)_{\mathrm{F}}$
$\mathcal{W}_{\mathcal{N}=2}=\operatorname{tr}\left(\left[\Phi^{1}, \Phi^{2}\right] \Phi^{3}\right)$
[$N_{f}=2$ chiral fields]

$$
\begin{gathered}
\mathcal{N}=3 \& \mathrm{SU}(2)_{\mathrm{F}} \\
\mathcal{W}_{\mathcal{N}=3}=\frac{2 \pi}{k} \operatorname{tr}\left(\left[\Phi^{1}, \Phi^{2}\right]\right)^{2}
\end{gathered}
$$

- Perfect matching : 3d field theory vs gravitations free energy

3d free energy $F=-\log (Z)$ computed via localisation

$$
(N \gg k)
$$

gravitational free energy computed from the warp factor in the massive IIA solutions
[Emparan, Johnson, Myers '99]
$\mathbf{N}=2$: [AG, Jafferis, Varela '15]
N=3: [Pang, Rong '15]

- 3d SYM with simple group $\operatorname{SU}(N)+$ CS term (level k)
\leadsto super CS-matter theory !!
[$N_{f}=3$ chiral fields]
$\mathcal{N}=2 \& \operatorname{SU}(3)_{\mathrm{F}}$
$\mathcal{W}_{\mathcal{N}=2}=\operatorname{tr}\left(\left[\Phi^{1}, \Phi^{2}\right] \Phi^{3}\right)$
[$N_{f}=2$ chiral fields]

Gaiotto-Yin type
[Gaiotto, Yin '07]

$$
\mathcal{N}=3 \& \operatorname{SU}(2)_{\mathrm{F}}
$$

$$
\mathcal{W}_{\mathcal{N}=3}=\frac{2 \pi}{k} \operatorname{tr}\left(\left[\Phi^{1}, \Phi^{2}\right]\right)^{2}
$$

- Perfect matching : 3d field theory vs gravitations free energy

3d free energy $F=-\log (Z)$ computed via localisation

$$
(N \gg k)
$$

gravitational free energy computed from the warp factor in the massive IIA solutions
[Emparan, Johnson, Myers '99]

N=2: [AG, Jafferis, Varela '15]
N=3: [Pang, Rong '15]

Holographic description of RG flows

- RG flows are described holographically as non-AdS4 ${ }_{4}$ solutions in gravity
- RG flows on M2-brane : SO(8)-gauged sugra from M-theory on S^{7}

- RG flows on D3-brane: SO(6)-gauged sugra from type IIB on S^{5} and $\mathrm{N}=4$ SYM in 4D

Holographic RG flows on the D2-brane

- D2-brane :

$$
\begin{aligned}
d \hat{s}_{10}^{2} & =e^{\frac{3}{4} \phi}\left(-e^{2 U} d t^{2}+e^{-2 U} d r^{2}+e^{2(\psi-U)} d s_{\Sigma_{2}}^{2}\right)+g^{-2} e^{-\frac{1}{4} \phi} d s_{S^{6}}^{2} \\
e^{\hat{\Phi}} & =e^{\frac{5}{2} \phi} \\
\hat{F}_{(4)} & =5 g e^{\phi} e^{2(\psi-U)} d t \wedge d r \wedge d \Sigma_{2}
\end{aligned}
$$

$$
\text { with } \quad e^{2 U} \sim r^{\frac{7}{4}}, \quad e^{2(\psi-U)} \sim r^{\frac{7}{4}} \quad \text { and } \quad e^{\phi} \sim r^{-\frac{1}{4}}
$$

DW_{4}
domain-wall (SYM)

- RG flows on D2-brane : ISO(7)c-gauged sugra from mIIA on S 6

subsectors

- BPS domain-wall solutions of the dyonic ISO(7)-gauged supergravity dual to RG flows from SYM-CS (dashed lines) and between CFT's (solid lines)
subsectors

- BPS domain-wall solutions of the dyonic ISO(7)-gauged supergravity dual to RG flows from SYM-CS (dashed lines) and between CFT's (solid lines)

GY flow: field theory side

- Free energy as a function of Δ_{a} for the chiral fields Φ^{a}

$$
F=\frac{3 \sqrt{3} \pi}{20 \cdot 2^{1 / 3}}\left[1+\sum_{a=1}^{N_{f}}\left(1-\Delta_{a}\right)\left[1-2\left(1-\Delta_{a}\right)^{2}\right]\right]^{2 / 3} k^{1 / 3} N^{5 / 3}
$$

[Jafferis '10]
[Jafferis, Klebanov, Pufu, Safdi '11]
[Fluder, Sparks '15]

- Marginality of $\mathcal{W}+F$-extremisation

$$
N_{f}=3 \text { chiral fields : } \quad \Delta_{1}+\Delta_{2}+\Delta_{3}=2
$$

$$
\mathcal{N}=2 \& \mathrm{SU}(3)_{\mathrm{F}}
$$

$$
\mathcal{W}_{\mathcal{N}=2}=\operatorname{tr}\left(\left[\Phi^{1}, \Phi^{2}\right] \Phi^{3}\right)
$$

$$
\text { F-extremisation: } \quad \Delta_{1}=\Delta_{2}=\Delta_{3}=\frac{2}{3}
$$

$N_{f}=2$ chiral fields : $\Delta_{1}+\Delta_{2}=1$

$$
\begin{gathered}
\mathcal{N}=3 \& \mathrm{SU}(2)_{\mathrm{F}} \\
\mathcal{W}_{\mathcal{N}=3}=\frac{2 \pi}{k} \operatorname{tr}\left(\left[\Phi^{1}, \Phi^{2}\right]\right)^{2}
\end{gathered}
$$

F-extremisation : $\Delta_{1}=\Delta_{2}=\frac{1}{2}$

- Mass deforming $\mathcal{N}=2 \& \operatorname{SU}(3)_{F}$

$$
\mathcal{W}_{\mathcal{N}=2, \operatorname{def}}=\operatorname{tr}\left(\left[\Phi^{1}, \Phi^{2}\right] \Phi^{3}+\underset{\left.2 \Delta_{3}=\frac{4}{3}<2\left(\Phi^{3}\right)^{2}\right)}{ } \quad \underset{\mu \ll 1}{\text { UV to IR }}\right.
$$

GY flow: gravity side (I)

- Domain-wall solution

IR: AdS4
$\mathcal{N}=3 \& \mathrm{SU}(2)_{\mathrm{F}} \times \mathrm{SO}(3)_{d}$

- Subsector of the $\operatorname{ISO}(7)$ theory capturing relevant/irrelevant deformations

Flavour	R-symmetry		Flavour	R-symmetry
$\begin{gathered} \mathrm{SU}(3)_{\mathrm{F}} \quad \times \\ \mathrm{SU}(2)_{\mathrm{F}} \times \mathrm{U}(1)_{\tau} \end{gathered}$	$\begin{array}{r} \mathrm{U}(1)_{\psi} \\ \times \mathrm{U}(1)_{\psi} \end{array}$		$\mathrm{SU}(2) \mathrm{F}$	$\times \mathrm{SO}(3)_{\mathrm{d}}$
$\mathrm{SU}(2)_{\mathrm{F}} \times$	$\mathrm{U}(1)_{\mathrm{d}}$	$\mathrm{SU}(2)_{\mathrm{F}} \times \mathrm{U}(1)_{\mathrm{d}}$	$\mathrm{SU}(2) \mathrm{F}$	$\times \mathrm{U}(1)_{\mathrm{d}}$
UV		RG flow		IR

- Minimal model with 4 chirals [+ identifications]

$$
\mathrm{SU}(2)_{\mathrm{F}} \times \mathrm{U}(1)_{\mathrm{d}} \subset \operatorname{ISO}(7)
$$

$$
\begin{aligned}
K & =-2 \sum_{i=1}^{3} \log \left[-i\left(z_{i}-\bar{z}_{i}\right)\right]-\log \left[-i\left(z_{4}-\bar{z}_{4}\right)\right] \\
W & =g\left[c+4 z_{1} z_{2} z_{3}+\left(z_{1}^{2}+z_{2}^{2}+z_{3}^{2}\right) z_{4}\right]
\end{aligned}
$$

GY flow : gravity side (II)

- Domain-wall Ansatz: $d s^{2}=e^{2 A(\rho)} \eta_{\mu \nu} d x^{\mu} d x^{\nu}+d \rho^{2}$
- BPS equations : $\partial_{\rho} A=2 \mathcal{W} \quad, \quad \partial_{\rho} z^{I}=-4 K^{I \bar{J}} \partial_{\bar{z}_{\bar{J}}} \mathcal{W} \quad$ with $\quad \mathcal{W}=\frac{1}{2} e^{K / 2}(W \bar{W})^{1 / 2}$

Holographic dual of GY flow (numerical) \longrightarrow Interpolating massive IIA background

■ $\mathcal{N}=2 \& \operatorname{SU}(3)_{\mathrm{F}} \times \mathrm{U}(1)_{\psi}$

- $\mathcal{N}=3 \& \operatorname{SU}(2)_{\mathrm{F}}$

Type IIB

electric/magnetic deformation

$\sqrt{ }$

Holographic
$\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ dual ?

Dyonically-gauged [$\mathrm{SO}(1,1) \times \mathrm{SO}(6)] \ltimes \mathrm{R}^{12}$ supergravity

* Higher-dimensional origin as Type IIB on $S^{1} \times S^{5}$
[Inverso, Samtleben, Trigiante '16]
[Gallerati, Samtleben, Trigiante '14]
* New AdS_{4} vacuum with $\mathrm{N}=4 \& \mathrm{SO}(4)$ symmetry
* Holographic expectation: N=4 interface SYM theory with SO(4) symmetry \& Janus solutions
[Bak, Gutperle, Hirano '03 ($\mathbf{N}=0$)]
[Clark, Freedman, Karch, Schnabl '04]
[D'Hoker, Ester, Gutperle '07,'07 ($\mathbf{N}=4$)]
[Gaiotto, Witten '08]
* Classification of (original) interface SYM theories
[Assel, Tomasiello '18 ($\mathbf{N}=3,4$)]

$$
\mathrm{N}=4 \& \mathrm{SO}(4) \quad \mathrm{N}=2 \& \mathrm{SU}(2) \times \mathrm{U}(1) \quad \mathrm{N}=1 \& \mathrm{SU}(3) \quad \mathrm{N}=0 \text { \& } \mathrm{SO}(6)
$$

[D'Hoker, Ester, Gutperle '06 ($\mathbf{N}=\mathbf{1}, \mathbf{2}, 4$)]

Question : Simple analytic holographic duals for the $\mathrm{N}=0,1,2$ interface SYM theories with $\mathrm{SO}(6), \mathrm{SU}(3)$ and $\mathrm{SU}(2) \times \mathrm{U}(1)$ internal symmetry using a bottom-up approach ?

A truncation: $\operatorname{SU}(3)$ invariant subsector

- Truncation : Retaining the fields and couplings which are invariant (singlets) under the action of a subgroup $G_{0} \subset[\mathrm{SO}(1,1) \times \mathrm{SO}(6)] \ltimes \mathbb{R}^{12}$
- SU(8) R-symmetry branching: gravitini $\quad \mathbf{8} \rightarrow \mathbf{1}+\mathbf{1}+\mathbf{3}+\overline{\mathbf{3}} \Rightarrow \mathrm{N}=2$ SUSY
- Scalars fields: $\quad \mathbf{7 0} \rightarrow \mathbf{1}(\times 6)+$ non-singlets $\quad \Rightarrow \quad 6$ real scalars $(\varphi, \chi, \phi, \sigma, \zeta, \tilde{\zeta})$
- Vector fields : $\quad \mathbf{5 6} \rightarrow \mathbf{1}(\times 4)+$ non-singlets \Rightarrow vectors $\quad\left(A^{0}, A^{1} ; \tilde{A}_{0}, \tilde{A}_{1}\right)$
- $\mathrm{N}=2$ gauged supergravity with $\mathrm{G}=\mathrm{SO}(1,1)_{m} \times \mathrm{U}(1)_{e}$ with 1 vector \& 1 hypermultiplet

$$
\mathcal{M}_{\text {scalar }}=\frac{\mathrm{SU}(1,1)}{\mathrm{U}(1)} \times \frac{\mathrm{SU}(2,1)}{\mathrm{U}(2)}
$$

* $\mathrm{N}=0$ \& $\mathrm{SO}(6)$ vacuum [1 free parameter]

$$
\chi=\text { free } \quad, \quad e^{-\varphi}=\frac{c}{\sqrt{2}}, \quad e^{2 \phi}=\frac{1}{\sqrt{1-\sigma^{2}}} \quad, \quad \sigma \in(-1,1) \quad, \quad|\vec{\zeta}|^{2}=0
$$

... it turns out to be perturbatively unstable !!

* $\mathrm{N}=1$ \& $\mathrm{SU}(3)$ vacuum [2 free parameters]

$$
\chi=0 \quad, \quad e^{-\varphi}=\frac{\sqrt{5} c}{3}, \quad e^{2 \phi}=\frac{6}{5} \frac{1}{\sqrt{1-\sigma^{2}}} \quad, \quad \sigma \in(-1,1) \quad, \quad|\vec{\zeta}|^{2}=\frac{2}{3} \sqrt{1-\sigma^{2}}
$$

... the compact $\mathrm{U}(1)_{\mathrm{e}}$ symmetry broken by $|\vec{\zeta}|^{2} \neq 0$ (charged)

S-folds and (non-) supersymmetric Janus

$$
\begin{aligned}
d s_{10}^{2} & =\frac{1}{2} \sqrt{Y} e^{\varphi} d s_{\mathrm{AdS}_{4}}^{2}+\sqrt{Y} e^{-2 \varphi} d \eta^{2}+\frac{1}{\sqrt{Y}}\left[d s_{\mathbb{C P}^{2}}^{2}+Y \boldsymbol{\eta}^{2}\right] \\
\widetilde{F}_{5} & =d C+\frac{1}{2} \epsilon_{\alpha \beta} \mathbb{B}^{\alpha} \wedge \mathbb{H}^{\beta}=\left(4+\frac{6(1-Y)}{Y}\right) Y^{\frac{3}{4}}(1+\star) \operatorname{vol}_{5} \\
\mathbb{B}^{\alpha} & =A^{\alpha}{ }_{\beta} \mathfrak{b}^{\beta}=-\frac{1}{2} Y^{-1} A^{\alpha}{ }_{\beta} \epsilon^{\beta \gamma} H_{\gamma \delta} \boldsymbol{\Omega}^{\delta} \\
m_{\alpha \beta} & =\left(A^{-t}\right)_{\alpha}{ }^{\gamma} \mathfrak{m}_{\gamma \delta}\left(A^{-1}\right)^{\delta}{ }_{\beta}
\end{aligned}
$$

with $\quad Y=1+\frac{1}{4} e^{2 \phi}|\vec{\zeta}|^{2} \quad$ and $\quad A^{\alpha}{ }_{\beta} \equiv\left(\begin{array}{cc}\sqrt{1+\tilde{y}^{2}} & \tilde{y} \\ \tilde{y} & \sqrt{1+\tilde{y}^{2}}\end{array}\right)=\left(\begin{array}{cc}\cosh \eta & \sinh \eta \\ \sinh \eta & \cosh \eta\end{array}\right)$
[Bak, Gutperle, Hirano '03] unstable !!

$$
\mathrm{N}=0 \& \mathrm{SO}(6)
$$

$$
\begin{gathered}
\mathfrak{m}_{\gamma \delta}=\frac{1}{\sqrt{1-\sigma^{2}}}\left(\begin{array}{ll}
1 & -\sigma \\
-\sigma & 1
\end{array}\right) \\
\mathfrak{b}^{\beta}=0 \quad Y=1
\end{gathered}
$$

[(hyperbolic) SO(1,1)-twist over $\mathrm{S}^{1} \leftrightarrow-S T^{k}$ monodromy $(k>2)$]

No untwisted limit !!
(genuinely dyonic)

$$
\begin{gathered}
\mathbf{N}=\mathbf{1} \& \mathbf{S U}(3) \\
\mathfrak{m}_{\gamma \delta}=\frac{1}{\sqrt{1-\sigma^{2}}}\left(\begin{array}{ll}
1 & -\sigma \\
-\sigma & 1
\end{array}\right) \\
\mathfrak{b}^{\beta} \neq 0 \quad Y=\frac{6}{5}
\end{gathered}
$$

Summary

* Dyonic $\mathrm{N}=8$ supergravity with $\mathrm{ISO}(7)$ and $[\mathrm{SO}(1,1) \times \mathrm{SO}(6)] \ltimes \mathrm{R}^{12}$ gaugings connected to massive IIA reductions on S^{6} and type IIB reductions on $\mathrm{R} \times \mathrm{S}^{5}$
* massive IIA: 3d CS-matter theories with simple gauge group $\mathrm{SU}(\mathrm{N})$ and adjoint matter

$$
\begin{gathered}
{\left[N_{f}=3 \text { chiral fields }\right]} \\
\mathcal{N}=2 \& \operatorname{SU}(3)_{\mathrm{F}} \\
\mathcal{W}_{\mathcal{N}=2}=\operatorname{tr}\left(\left[\Phi^{1}, \Phi^{2}\right] \Phi^{3}\right)
\end{gathered}
$$

Holographic dual of GY flow
[$N_{f}=2$ chiral fields]
$\mathcal{N}=3 \& \operatorname{SU}(2)_{\mathrm{F}}$
$\mathcal{W}_{\mathcal{N}=3}=\frac{2 \pi}{k} \operatorname{tr}\left(\left[\Phi^{1}, \Phi^{2}\right]\right)^{2}$

* Type IIB (S-folds): 3d interface SYM theories with various (super) symmetries [-ST ${ }^{k}$ monodromy $\left.(k>2)\right]$

$$
\begin{gathered}
\mathcal{N}=0 \& \operatorname{SO}(6) \\
\text { unstable }!!
\end{gathered}
$$

$$
\mathcal{N}=1 \& \operatorname{SU}(3)
$$

[see also Bobev, Gautason, Pilch, Suh, van Muiden '19]

* Brane set-up? , N=2 interface SYM? , RG flows?

Danke schön!

Thank you !

