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Introducción

La F́ısica del siglo XX ha supuesto un gran avance hacia la comprensión de la Naturaleza a

diferentes escalas. Esto ha venido dado por la consolidación de la teoŕıa de la Relatividad

General (RG) y la Teoŕıa Cuántica de Campos (TCC) como los marcos teóricos en los

que describir los fenómenos naturales a grandes y pequeñas distancias respectivamente.

Mientras que la RG revolucionó la manera de entender la Gravedad, — el espacio-tiempo

adquiŕıa un carácter dinámico en lugar de ser estático — la TCC resultó ser la herra-

mienta adecuada para explorar las leyes que describen la Naturaleza a escalas por debajo

del núcleo atómico ( r ≤ 10−13 cm.).

Hoy en d́ıa tenemos una TCC para describir la f́ısica de las part́ıculas elementales cono-

cida como el Modelo Estándar de la F́ısica de Part́ıculas. Este modelo combina la teoŕıa

de las interacciones electrodébiles de Glashow-Salam-Weimberg con la cromodinámica

cuántica propuesta para describir las interacciones entre los constituyentes del núcleo

atómico. El Modelo Estándar se compone de tres generaciones de fermiones (quarks y

leptones): (u , d ; e , νe) , (c , s ; µ , νµ) , (t , b ; τ , ντ ) con una jerarqúıa de masas entre

ellas y de 12 part́ıculas vectoriales que median sus interacciones. Además, el modelo

también incluye un escalar masivo que aún no ha sido observado, el bosón de Higgs, cuya

masa está relacionada con la ruptura de la simetŕıa electrodébil. Las interacciones de estos

campos vienen dictadas por el grupo de simetŕıa G = SU(3)× SU(2)× U(1) del Modelo

Estándar.

El Modelo Estándar1 ha sido testado en experimentos de altas enerǵıas llevados a

cabo en aceleradores de part́ıculas, resultando ser un marco teórico sólido. Sin embargo

no incorpora una descripción cuántica de la Gravedad. Con este objetivo, y a pesar de

que fuese formulada originalmente para explicar la gran cantidad de hadrones observados,

una nueva teoŕıa en la que los objetos fundamentales tienen extensión (cuerdas) entró en

escena.

1O bien pequeñas variaciones de éste, como la de incluir masas para los neutrinos acordes con las

medidas en experimentos de oscilaciones de neutrinos.
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De cuerdas a teoŕıas de supergravedad

Hasta la fecha, la Teoŕıa de Cuerdas es una de las más firmes candidatas a ser una

descripción unificada de la Naturaleza en tanto en cuanto nos proporciona una teoŕıa

cuántica de la Gravedad consistente. Los objetos que componen esta teoŕıa no son

part́ıculas puntuales sino cuerdas unidimensionales. Al propagarse en el tiempo, una

cuerda dibuja una superficie bidimensional Σ conocida como hoja de mundo. Las cor-

denadas que especifican la manera en la que esta hoja se embebe en un espacio-tiempo

ambiente describen una teoŕıa de campos conforme en dos dimensiones.

La ausencia de taquiones y la presencia de fermiones en el espectro reduce a cinco

las teoŕıas de cuerdas supersimétricas, las cuales se propagan en un espacio-tiempo diez-

dimensional (10d). Éstas son las teoŕıas de supercuerdas Tipo IIA, Tipo IIB, Tipo I,

Heterótica-SO(32) y Heterótica-E8 × E8. Todas ellas son teoŕıas de cuerdas cerradas y

contienen un campo de esṕın 2 gMN el cual se identifica con el gravitón, un tensor anti-

simétrico BMN y un escalar ϕ conocido como dilatón dentro del espectro 10d de campos

sin masa. Estos campos conforman el sector universal de las teoŕıas de supercuerdas.

Las supercuerdas pueden propagarse en presencia de campos de fondo no triviales que

aparecen cuando los campos sin masa del sector universal toman un valor esperado no

nulo en el vaćıo (VEV). Sin considerar términos fermiónicos, la acción para la teoŕıa de

campos en la hoja de mundo descrita por una supercuerda moviéndose en un fondo para

el sector universal viene dada por [1, 2]

S = − 1

4πα′

∫
Σ
d2σ
( √
−hhαβ ∂αXM∂βX

N gMN (X) − εαβ ∂αX
M∂βX

N BMN (X)

− α′
√
−h ϕ(X)R(2)

)
, (1)

donde σα con α = 0, 1 denota las cordenadas en la hoja de mundo, y donde hαβ y

R(2) son, respectivamente, la métrica y el escalar de curvatura de la hoja de mundo. El

parámetro α′ que aparece en la acción está relacionado con la escala de longitud de la

cuerda ls mediante

l2s = 2α′ , (2)

por lo que los estados masivos en el espectro de la supercuerda adquieren una (masa)2

M2 ∝ 1

α′
. (3)

Al cuantizar la acción en (1), el número de campos bosónicos XM en la hoja de mundo

viene determinado por la condición de cancelación de la anomaĺıa conforme de la misma

manera que la cancelación de anomaĺıas gauge condiciona el contenido de campos en las

TCC con simetŕıas gauge. En otras palabras, la dimensión del espacio-tiempo viene fijada

por esta condición resultando ser d = 10 para las teoŕıas de supercuerdas.
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Los campos de fondo gMN , BMN y ϕ correspondientes a excitaciones sin masa de las

cuerdas de alrededor se pueden interpretar como acoplos en la teoŕıa de campos conforme.

La imposición de invariancia conforme se traduce en la cancelación de las funciones β

βMN
g (

√
α′/L) = βMN

B (
√
α′/L) = βϕ(

√
α′/L) = 0 , (4)

donde L es la longitud caracteŕıstica del sistema cuya dinámica se pretende explorar.

Considerando la contribución más baja en el parámetro de expansión
√
α′/L , el conjunto

de ecuaciones (4) reproduce las ecuaciones de Euler-Lagrange que se derivan de la acción

S =
1

2κ2

∫
d10x

√
−G

(
R− 1

2
∂Mϕ∂Mϕ−

1

2
e−ϕ|H3|2

)
, (5)

donde G = e−
ϕ
2 g es la métrica en el marco de Einstein2. Esta acción, válida a nivel árbol

en la expansión en lazos de la cuerda, describe la gravedad acoplada a un campo gauge

BMN (una 2-forma) y a un escalar ϕ. La constante de acoplo de la supercuerda, gs, está

por tanto relacionada con el valor esperado en el vaćıo del campo del dilatón 〈ϕ〉

gs = e〈ϕ〉 , (6)

de ah́ı siendo una cantidad f́ısica que ha de fijarse dinámicamente.

No obstante, es importante matizar que la acción en (5) debe entenderse como una

acción efectiva que se obtiene al tomar la contribución más baja en el parámetro de ex-

pansión
√
α′/L en las ecuaciones (4). Esto equivale a tomar el ĺımite

√
α′/L → 0 o

L � ls en el cual las cuerdas unidimensionales se ven como part́ıculas puntuales, repre-

sentando un ĺımite de bajas enerǵıas (grandes distancias) con respecto a la escala de la

cuerda. En este ĺımite, los modos masivos en el espectro de la supercuerda se desacoplan

de la teoŕıa, i.e., M2 → ∞, dando lugar a una teoŕıa efectiva cuya dinámica se puede

aproximar a una teoŕıa clásica de campos con part́ıculas puntuales sin masa. La acción

efectiva anterior (5) se generaliza a la de las teoŕıas de supergravedad que describen la

dinámica de una teoŕıa clásica de campos supersimétrica con part́ıculas sin masa en diez

dimensiones.

Un punto a destacar es que las teoŕıas de supercuerdas predicen necesariamente la

existencia de dimensiones extra y de supersimetŕıa, dos propiedades de la Naturaleza que

aún no han sido observadas en ningún experimento.

F́ısica en cuatro dimensiones y el problema de los moduli

Al compactificar supergravedades 10d en un espacio interno seis-dimensional con tamaño

caracteŕıstico R � ls, uno obtiene extensiones supersimétricas de la Relatividad Gene-

ral en cuatro dimensiones (4d) que se pueden utilizar para describir escalas de enerǵıa

2El factor 2κ2 = (2π)7 α′4 = (16πG10) e−2ϕ se relaciona con la constante de Newton en diez dimen-

siones G10.



12 Introducción

E � 1/R a las cuales no hay suficiente resolución para ver las dimensiones compactas.

Además, dicha compactificación introduce una gran cantidad de campos escalares φi en

la teoŕıa efectiva que parametrizan la forma y el tamaño del espacio interno al igual que

el dilatón en cuatro dimensiones. Estos campos, conocidos como moduli, resultan ser di-

recciones planas en el potencial efectivo a todo orden en teoŕıa de perturbaciones.

Uno de los principales problemas en Fenomenoloǵıa de Cuerdas es encontrar mecanis-

mos para estabilizar estos moduli, i.e. para que adquieran una masa lo suficientemente

grande como para que no hayan sido detectados experimentalmente hasta ahora. De lo

contrario, estos moduli mediaŕıan interacciones de largo alcance las cuales podŕıan dar

lugar a violaciones del Principio de Equivalencia [3], entrando en conflicto con los tests de

precisión de Gravedad. Tras estabilizarse en el mı́nimo de un potencial efectivo no trivial

V (φi), sus valores esperados en el vaćıo están relacionados con cantidades f́ısicas tales como

la constante de acoplo de la cuerda gs, el volumen del espacio interno Vint o la enerǵıa del

vaćıo/constante cosmológica Λ. Esto tiene importantes implicaciones fenomenológicas en

F́ısica de Part́ıculas y en Cosmoloǵıa. Por tanto, el estudio de la estabilización de moduli

es un paso crucial para establecer una conexión entre la fenomenoloǵıa de bajas enerǵıas,

la cual está a punto de ser explorada minuciosamente en el LHC (Large Hadron Collider),

y construcciones de Teoŕıa de Cuerdas en cuatro dimensiones. En particular, es necesario

entender cómo ocurre la ruptura de supersimetŕıa en este contexto para poder continuar

con este enfoque “desde arriba hacia abajo” a la hora de conectar las cuerdas con la f́ısica

de bajas enerǵıas.

Durante la última década, uno de los retos principales en Fenomenoloǵıa de Cuerdas ha

sido el de estabilizar los moduli en un vaćıo no supersimétrico de Sitter, aproximadamente

Minkowski ( Λ ∼ 10−120 en unidades de Planck), que dé lugar a una expansión acelerada

del Universo acorde con las observaciones [4, 5]. En parte, esto ha venido motivado por

el estudio de las compactificaciones de las teoŕıas de cuerdas tipo II en un fondo de flujos

generalizados [6]. Además de las intensidades de campo habituales de Neveu-Schwarz-

Neveu-Schwarz (NS-NS) y de Ramond-Ramond (R-R) asociadas a los potenciales gauge

presentes en el espectro de las supercuerdas de tipo II, los flujos generalizados fueron

propuestos para restablecer la invariancia de los modelos efectivos 4d bajo las relaciones

de dualidad de las supergravedades de tipo II en diez dimensiones. Por ejemplo, ciertos

flujos con estructura tensorial conocidos como flujos no geométricos se introdujeron pare

restablecer T-dualidad entre compactificaciones de las teoŕıas tipo IIA y IIB [7] al igual

que S-dualidad en la teoŕıa tipo IIB [8] a nivel efectivo. A este nivel, los flujos desempeñan

un papel doble:

i) Por un lado determinan la estructura del álgebra de la supergravedad gaugeada que

subyace a la compactificación [9]. Este álgebra involucra las elecciones de gauge del

campo B universal aśı como difeomorfismos de la métrica.
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ii) Por otro lado, los flujos inducen un potencial escalar no trivial V (φi) para los

moduli de la compactificación [10, 11], lo cual puede dar lugar a su estabilización

completa sin necesidad de requerir efectos menos manejables como son los efectos

no perturbativos [12].

Por otra parte se han establecido algunos teoremas de imposibilidad relacionados con la

existencia de vaćıos de Sitter en las compactificationes con flujos [13–15] aśı como mecanis-

mos para evadirlos [16–22]. En este sentido, las compactificaciones con flujos generalizados

han resultado esquivar estos teoremas por lo que, en principio, pueden estabilizar los mo-

duli en un vaćıo de Sitter. Uno esperaŕıa que al aumentar el número de flujos, incluyendo

por ejemplo flujos no geométricos, pudiera favorecerse la estabilización completa de los

moduli [23, 24].

Como se mostrará en esta tesis, es posible obtener vaćıos Minkowski/de Sitter que

rompan supersimetŕıa de forma espontánea y con valores arbitrarios de (gs , Λ) (salvo

restricciones diofánticas sobre los flujos) a partir de compactificaciones en orientifolios de

tipo II sobre orbifolios toroidales en presencia de flujos no geométricos [19]. Estos escena-

rios basados en compactificaciones con flujos generalizados resultan ser muy prometedores

en lo que se refiere a la construcción de modelos. Sin embargo, la falta de un criterio

dinámico para seleccionar un vaćıo espećıfico entre muchos otros (infinitos), ha dado lugar

al concepto del landscape de vaćıos en Teoŕıa de Cuerdas. Llegados a este punto, uno

podŕıa recurrir al Principio Antrópico para excluir aquellas regiones del landscape en las

que la vida humana no hubiera podido desarrollarse [25].

La dinámica de los moduli como origen de inflación

Actualmente, una de las principales afirmaciones del Modelo Estándar Cosmológico es

que nuestro Universo experimentó un peŕıodo de expansión exponencial en sus primeros

instantes inducido por la dinámica un campo escalar (o varios de ellos). Este proceso, cono-

cido como inflación, explicaŕıa de forma elegante la planitud del Universo observada [26] aśı

como la casi invariancia de escala del espectro que se deduce del CMB (Cosmic Microwave

Background) a partir de los datos aportados por la colaboración WMAP [27,28].

Asumiendo un Universo homogéneo e isótropo, la métrica del espacio-tiempo corres-

ponde a una de tipo Friedmann-Robertson-Walker

ds2 = dt2 − a(t)2 d~x 2 , (7)

cuya dinámica se codifica totalmente en la función a(t), conocida como factor de escala. La

cosmoloǵıa inflacionaria se modeliza mediante una teoŕıa de campos escalares acoplados

a la Gravedad, la cual a su vez se describe en términos de un potencial escalar efectivo
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V (φi). Tomando los campos constantes en el espacio, las ecuaciones de movimiento para

el factor de escala a(t) y para los campos escalares φi vienen dadas por

H2 =

(
ȧ

a

)2

=
1

3

[
1

2
Gij φ̇iφ̇j + V

]
,

φ̈i + 3H φ̇i + Γijk φ̇
j φ̇k + Gij ∂V

∂φj
= 0 ,

(8)

donde los puntos denotan derivadas temporales y, como es habitual, Γijk representa los

śımbolos de Christoffel construidos a partir de la métrica Gij (con GijGjk = δik) en el

espacio de campos. Resolver estas ecuaciones de forma general es una tarea complicada.

Ante esto es habitual tomar la aproximación de rodar lento según la cual H ∼
√
V/3 ya

que se desprecian los términos de tipo φ̈i y φ̇iφ̇j en (8).

Los parámetros ε y |η| que determinan la aproximación de rodar lento se definen, en

unidades de Planck, a través de

ε ≡ 1

2V 2
Gij ∂V

∂φi
∂V

∂φj
,

η ≡ min eigenvalue

[
1

V
Gik

(
∂2V

∂φk ∂φj
− Γlkj

∂V

∂φl

)]
.

(9)

De acuerdo con los datos experimentales, estos parámetros han de ser � 1 para que in-

flación tenga lugar en esta aproximación (ver ref. [29]). Esto implica un potencial escalar

V (φi) positivo y “artificialmente” plano (casi constante) en alguna región del espacio de

campos. De lo contrario, la aproximación deja de ser válida.

Debido a que la Teoŕıa de Cuerdas nos proporciona una gran variedad de campos

escalares al compactificarla en un espacio interno, i.e. los moduli, obtener teoŕıas de cam-

pos efectivas que compartan las caracteŕısticas anteriores ha sido una de las ĺıneas de

investigación más importantes en Fenomenoloǵıa de Cuerdas. En los últimos años se ha

dedicado mucho esfuerzo a tratar de obtener escenarios de inflación basados en modelos

de estabilización de moduli en compactificaciones de supercuerdas incluyendo ingredientes

adicionales como flujos de fondo, D-branas y efectos no perturbativos [30]. En consecuen-

cia, la dinámica de los moduli durante el proceso de estabilización resulta ser de máxima

importancia desde un punto de vista cosmológico.

Es lógico pensar que inflación, al tratarse de un proceso cosmológico, debeŕıa poder ser

descrito en un marco teórico que incorpore Gravedad de forma natural. En este sentido, la

Cosmoloǵıa de Cuerdas representa un contexto inigualable en el que las construcciones de

cuerdas en cuatro dimensiones han de hacer frente a los datos cosmológicos experimentales

[31,32].
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Resumen de la tesis

Los contenidos de la presente tesis doctoral se organizan en los siguientes caṕıtulos y

apéndices:

• En el caṕıtulo 1 introducimos los conceptos fundamentales sobre los que esta tesis se

construye. En particular, los relacionados con las teoŕıas de supergravedad de tipo

II, dualidades y branas. Lejos de pretender tratar con los aspectos más formales

de las teoŕıas de supergravedad, este caṕıtulo se incluye en la tesis con la intención

de hacerla lo más autocontenida posible. Los conceptos y resultados que aparecen

en este caṕıtulo introductorio se pueden encontrar en los libros [1, 2, 33] y en las

revisiones [34,35].

• En el caṕıtulo 2 fijamos la notación y las convenciones adoptadas en las refs [36,37]

para describir la geometŕıa del orbifolio toroidal T6/Z2×Z2 aśı como del orientifolio

de tipo IIB con O3/O7-planos construido a partir de él. Además obtenemos la acción

efectiva N = 1 en cuatro dimensiones que describe la dinámica de los moduli en este

orientifolio tras incluir flujos generalizados. Finalmente presentamos las condiciones

de consistencia que involucran estos flujos y particularizamos los resultados para

el caso de modelos isótropos los cuales serán explorados en profundidad durante la

tesis.

• En el caṕıtulo 3 desarrollamos las técnicas necesarias para eliminar grados de li-

bertad superfluos en teoŕıas efectivas N = 1 invariantes bajo transformaciones de

T-dualidad. Este proceso de reducción de parámetros nos permite simplificar los

modelos efectivos de tal manera que podemos obtener anaĺıticamente familias de

vaćıos supersimétricos AdS4 con todos los moduli estabilizados a valores perturba-

tivos de la constante de acoplo de la cuerda. Todos los resultados que aparecen en

este caṕıtulo se pueden encontrar en la ref. [36].

• En el caṕıtulo 4 investigamos escenarios sencillos de estabilización de moduli en

vaćıos de Sitter aproximadamente Minkowski en los que la supersimetŕıa se rompe

de manera espontánea. Estudiaremos estos vaćıos en el contexto de las teoŕıas orien-

tifolios de tipo IIB invariantes bajo T-dualidad las cuales incluyen flujos generaliza-

dos, O3/O7-planos y D3/D7-branas. Este caṕıtulo representa el núcleo central de la

tesis y se corresponde con los trabajos en las refs [18,19].

• En el caṕıtulo 5 estudiamos una teoŕıa de supergravedad construida sobre el orien-

tifolio de tipo IIB con O3/O7-planos la cual resulta invariante bajo transformaciones

de T-dualidad y de S-dualidad. En esta teoŕıa desarrollaremos un método para re-

solver todas las restricciones sobre los flujos que provienen de la estructura de álgebra
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que les subyace. Utilizaremos diversas técnicas de Geometŕıa Algebraica que nos per-

mitirán resolver las ligaduras sobre los flujos y obtener de forma sistemática vaćıos

supersimétricos, centrándonos especialmente en el caso de soluciones Minkowski. Fi-

nalizaremos con una digresión sobre el origen N = 4 de los vaćıos encontrados. A

excepción de ésta, la cual contiene algunos resultados preliminares, el contenido de

este caṕıtulo se puede encontrar en la ref. [37].

• En el caṕıtulo 6 presentamos un modelo de inflación tomando la aproximación de

rodar lento en el contexto de supergravedades de tipo IIB efectivas en presencia de

flujos gauge. La enerǵıa necesaria para elevar el vaćıo a de Sitter (aproximadamente

Minkowski) la proporciona el D-término asociado a un U(1) anómalo formulado

de manera consistente e invariante gauge. Desarrollaremos un modelo mı́nimo que

incorpora inflación topológica eterna ajustándose a las observaciones experimen-

tales. Este modelo evita los problemas habituales que aparecen al intentar obtener

inflación en modelos de supergravedad, i.e. el problema η y el problema de las condi-

ciones iniciales entre otros. Finalmente apuntamos hacia una aparente persistencia

del problema η cuando sólo se considera el efecto de los flujos generalizados como

mecanismo para estabilizar todos los moduli en un vaćıo dS. Los resultados en este

caṕıtulo se pueden encontrar en la ref. [38] junto con la sección 4.3 en la ref. [19].

• En el apéndice A obtenemos el espectro de estados sin masa (contenido de campos

de la supergravedad) para las supercuerdas de tipo II propagándose libremente en

un espacio-tiempo Minkowski en diez dimensiones. Un desarrollo similar se puede

encontrar en cualquiera de los libros de Teoŕıa de Cuerdas [1,2,33] y en la ref. [35]. En

palabras generales, esta tesis es un estudio de la dinámica asociada a estos campos

cuando se tienen en cuenta diferentes efectos de cuerda cerrada/abierta.

• El apéndice B recoge las expresiones para los flujos de R-R en términos de los

parámetros asociados a translaciones axiónicas y a tadpoles en la teoŕıa orien-

tifolio de tipo IIB invariante bajo transformaciones de T-dualidad estudiada en el

caṕıtulo 3.



Introduction

The legacy of the 20th century Physics represents one of the most fascinating attempts

to understand how Nature manifests at different scales. It is commonly identified with

the consolidation of General Relativity (GR) and Quantum Field Theories (QFT’s) as the

suitable frameworks in which to respectively investigate large and short scale phenomena.

As long as GR revolutionised the way in which Gravity was previously understood, — it

abandons the idea of a static spacetime in favour of a dynamical one — QFT’s were found

to be a powerful tool to explore the laws describing Nature at scales below the size of the

atomic nucleus ( r ≤ 10−13 cm.).

Nowadays a well established QFT describing Nature is the Standard Model of Particle

Physics, which combines the Glashow-Salam-Weimberg theory of the electroweak inter-

actions and the quantum chromodynamics describing the interactions between the con-

stituents of the atomic nucleus. According to it, there are three generations of fermions

(quarks and leptons): (u , d ; e , νe) , (c , s ; µ , νµ) , (t , b ; τ , ντ ) at different mass scales,

together with 12 vector particles mediating in the interactions between them. In addition,

the model also includes a scalar massive boson not yet observed, the so-called Higgs field,

whose mass is related to the electroweak symmetry breaking. This field content interacts

accordingly to the Standard Model gauge symmetry group G = SU(3)× SU(2)×U(1)

which basically transforms fermions into one another.

The Standard Model3 has been tested to be a solid framework in which to explain the

experimental data extracted from high energy physics experiments at colliders. Neverthe-

less, it fails when it comes to incorporate a quantum description of Gravity. Although

originally introduced as a proposal to explain the vast set of observed hadrons, a theory

of one-dimensional extended objects, i.e. strings, turns out to serve this purpose.

From strings to supergravity theories

Up to date, String Theory is one of the most promising candidates to be a unified theory

of Nature providing us with a consistent quantum theory of Gravity. The fundamental ob-

3Or some slight modification of it such as that of including masses for the neutrinos in order to fit the

data arising from neutrino oscillation experiments.
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jects making up this theory are no longer point-like particles but one-dimensional strings.

As a one-dimensional object propagating on time, a string draws a two-dimensional surface

Σ known as the worldsheet whose embedding coordinates in a target spacetime determine

a conformal field theory in two dimensions.

The absence of tachyons and the presence of fermions in the spectrum leaves us with

five supersymmetric string theories that propagate in a ten-dimensional (10d) spacetime.

These are the Type IIA, Type IIB, Type I, Heterotic-SO(32) and Heterotic-E8 × E8 su-

perstring theories. They all are theories of closed strings and contain a spin 2 field gMN

which is identified with the graviton, an antisymmetric tensor field BMN and a scalar ϕ

known as dilaton within their 10d massless spectrum. These fields are said to constitute

the universal sector of the superstring theories.

Superstrings can propagate in non-trivial backgrounds arising from non-vanishing vac-

uum expectation values (VEVs) of the massless fields in the universal sector. Without

considering fermi terms, the worldsheet action for a superstring moving in these back-

grounds is given by [1, 2]

S = − 1

4πα′

∫
Σ
d2σ
( √
−hhαβ ∂αXM∂βX

N gMN (X) − εαβ ∂αX
M∂βX

N BMN (X)

− α′
√
−h ϕ(X)R(2)

)
, (10)

where σα with α = 0, 1 denotes worldsheet coordinates, and hαβ and R(2) are the metric

and the curvature scalar of the worldsheet, respectively. The parameter α′ entering the

action is related to the string length scale ls by

l2s = 2α′ , (11)

so massive states in the superstring spectrum result with a (mass)2

M2 ∝ 1

α′
. (12)

When quantising the action in (10), the number of bosonic fields XM in the worldsheet is

fixed by the cancellation of the conformal anomaly in the same way that the cancellation

of the gauge anomalies conditions the field content of quantum field theories with gauge

symmetries. In other words, the dimension of the spacetime is fixed by this condition,

turning out to be d = 10 for superstring theories.

The background fields gMN , BMN and ϕ corresponding to massless excitations of the

strings around can be seen as couplings in the conformal field theory. The requirement of

conformal invariance imposes their β-functions to vanish

βMN
g (

√
α′/L) = βMN

B (
√
α′/L) = βϕ(

√
α′/L) = 0 , (13)
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where L is the typical length scale of the system whose dynamics is to be explored. At the

lowest contribution in the
√
α′/L parameter expansion, the set of equations (13) turns

out to reproduce the Euler-Lagrange equations derived from the spacetime action

S =
1

2κ2

∫
d10x

√
−G

(
R− 1

2
∂Mϕ∂Mϕ−

1

2
e−ϕ|H3|2

)
, (14)

where G = e−
ϕ
2 g is the metric field in the Einstein’s frame4. This action, valid at tree

level in the string loop expansion, describes gravity coupled to a 2-form gauge field BMN

and to a scalar ϕ. The superstring coupling constant, gs, is then related to the vacuum

expectation value of the dilaton field 〈ϕ〉

gs = e〈ϕ〉 , (15)

hence being a physical quantity that is to be fixed dynamically.

Nonetheless, it is worth noticing that the action in (14) must be understood as an

effective action arising when considering the lowest contribution in the
√
α′/L parameter

expansion of the equations (13). Equivalently, when taking the limit of
√
α′/L → 0 or

L� ls in which one-dimensional strings look like point-like objects. This is a limit of low

energies (large distances) with respect to the string energy (length) scale. In this limit the

massive modes in the superstring spectrum are decoupled from the theory, i.e., M2 →∞,

and are integrated out, leading to an effective theory whose dynamics can be approximate

by a classical field theory of massless (zero size) particles. The above effective action in

(14) generalises to that of supergravity theories describing the dynamics of a supersym-

metric classical field theory of massless particles in ten dimensions.

A key point to be highlighted is that superstring theories necessarily predict the exis-

tence of extra dimensions as well as supersymmetry, two properties of Nature that have

not been observed at any experiment yet.

Four-dimensional Physics and the moduli problem

When compactifying 10d supergravities into a six-dimensional internal space with char-

acteristic length R� ls, one obtains supersymmetric extensions of General Relativity in

four dimensions (4d) that can be used to describe energy scales E � 1/R at which there

is no resolution enough to see the compact dimensions. In addition, the compactification

process introduces a plethora of scalar fields φi in the 4d theory parameterising the shape

and size of the internal space as well as the four-dimensional dilaton. These fields, known

as moduli, turn out to be flat directions in the effective scalar potential at all orders in

perturbation theory.

4The factor 2κ2 = (2π)7 α′4 = (16πG10) e−2ϕ relates to the G10 Newton’s constant in ten dimensions.
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One of the main problems in String Phenomenology is to find mechanisms for these

moduli to be stabilised, i.e. to acquire a mass large enough for them to have so far escaped

experimental detection. Otherwise, these moduli would mediate long range interactions

which could lead to violations of the Equivalence Principle [3], clashing with precision

tests of Gravity. After stabilising at the minimum of a non-trivial effective potential

V (φi), their vacuum expectation values relate to physical quantities, such as the string

coupling constant gs, the internal space volume Vint or the vacuum energy/cosmological

constant Λ. This has important phenomenological implications both in Particle Physics

and Cosmology. The study of moduli stabilisation is then a crucial step in establishing

a link between low energy phenomenology, which is about to be thoroughly explored at

the LHC (Large Hadron Collider), and String Theory constructions in four dimensions.

In particular an understanding of how supersymmetry breaking happens in this context

is mandatory, in order to proceed with this “top-bottom” approach to linking strings and

low energy physics.

During the last decade, the challenge of stabilising the moduli in a non-supersymmetric

de Sitter almost Minkowski vacuum ( Λ ∼ 10−120 in Planck units) causing the accelerated

expansion of the present Universe accordingly to observations [4,5], has become of principal

interest in String Phenomenology. This has been partially motivated by the study of type

II superstring compactifications in the presence of generalised flux backgrounds [6]. In ad-

dition to the ordinary Neveu-Schwarz-Neveu-Schwarz (NS-NS) and the Ramond-Ramond

(R-R) field strengths associated to gauge potentials present in the type II superstrings

spectrum, generalised fluxes were proposed to restore the invariance of the 4d effective

models under duality relations of the original ten-dimensional type II supergravities. For

instance, certain tensor fluxes referred to as non-geometric fluxes are introduced to restore

T-duality between compactifications of types IIA and IIB theories [7] as well as type IIB

S-duality [8] at the effective level. At this level, the role played by the fluxes is twofold:

i) On the one hand, they determine the algebra structure of the gauged supergravity

underling the compactification [9]. This algebra accounts for gauge choices on the

universal Neveu-Schwarz B-field and diffeomorphisms on the metric.

ii) On the other hand, the fluxes induce a non-trivial scalar potential V (φi) for the

moduli fields of the compactification [10,11], which can potentially lead to their sta-

bilisation without invoking less manageable non-perturbative effects [12].

In addition, quite restrictive “no-go” theorems concerning the existence of de Sitter

vacua in flux compactifications have been stated [13–15] as well as mechanisms to circum-

vent them [16–22]. To this respect, generalised flux compactifications have been shown to

avoid these no-go theorems and hence can potentially stabilise the moduli in a de Sitter

vacuum. One expects that enlarging the number of fluxes including the non-geometric
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ones could help providing complete moduli stabilisation [23,24].

As it will be shown in this thesis, Minkowski/de Sitter moduli flux vacua with arbitrary

(gs , Λ) values (up to Diophantine restrictions upon fluxes) and breaking supersymmetry

spontaneously can be obtained from type II orientifold compactifications on toroidal orb-

ifolds in the presence of non-geometric fluxes [19]. In this sense, the above scenarios based

on generalised flux compactifications turn out to be very promising as far as model building

is concerned. Nevertheless, the lack of a dynamical criterion for choosing an specific flux

vacuum among many (infinite) others has led to the idea of a landscape of String Theory

vacua. An anthropic reasoning principle would then act as a censorship mechanism for

those regions within the landscape not supporting human life [25].

Moduli dynamics as a seed for inflation

Nowadays, one of the main statements of the Cosmological Standard Model is that our

Universe experienced an epoch of exponential cosmic expansion at its initial stages guided

by some scalar field(s). This process, known as inflation, nicely explains the observed flat-

ness of the Universe [26] as well as the almost scale-invariant spectrum inferred from the

CMB (Cosmic Microwave Background) data released by the WMAP collaboration [27,28].

Assuming an homogeneous and isotropic Universe, the spacetime metric corresponds

to that of the Friedmann-Robertson-Walker type

ds2 = dt2 − a(t)2 d~x 2 , (16)

whose dynamics is totally encoded within the time dependent function a(t) referred to as

the scale factor. Inflationary cosmology is commonly modelled by a scalar field(s) theory

coupled to Gravity, which in turn is characterised by an effective scalar potential V (φi).

Provided fields are constant in space, the equations of motion for the scale factor a(t)

and the (real) scalar fields φi are given by

H2 =

(
ȧ

a

)2

=
1

3

[
1

2
Gij φ̇iφ̇j + V

]
,

φ̈i + 3H φ̇i + Γijk φ̇
j φ̇k + Gij ∂V

∂φj
= 0 ,

(17)

where dots denote time derivatives and, as usual, Γijk are the Christoffel symbols derived

from the Gij field-space metric satisfying GijGjk = δik. Solving these equations in a general

way is a difficult task, so, at this point, it is common to use the so-called slow-roll ap-

proximation according to which φ̈i and φ̇iφ̇j terms in (17) are neglected and H ∼
√
V/3.

In this approximation, the two slow-roll parameters ε and |η| defined (in Planck units)
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through

ε ≡ 1

2V 2
Gij ∂V

∂φi
∂V

∂φj
,

η ≡ min eigenvalue

[
1

V
Gik

(
∂2V

∂φk ∂φj
− Γlkj

∂V

∂φl

)]
,

(18)

are demanded to be � 1 for inflation to occur. For a good review see ref. [29]. This

implies the scalar potential V (φi) to be positive and “artificially” flat (almost constant)

somewhere in field space in order to fit the experimental data. Otherwise the approxima-

tion is no longer valid.

How to get scalar effective field theories sharing the aforementioned features from

string-inspired scenarios has been intensively pursued in String Phenomenology research

since String Theory provides us with such scalar fields once it is compactified into an

internal manifold, i.e., with moduli fields. In the last years, a lot of effort has been done

in trying to derive suitable inflationary scenarios based on moduli stabilisation in super-

string compactifications including additional ingredients as background fluxes, D-branes

and non-perturbative effects, among others [30]. As a result, the dynamics of the moduli

during the stabilisation process becomes of utmost importance from a cosmological view-

point.

It makes sense to think that inflation, as a cosmological process, should be accom-

modated within a framework that incorporates Gravity in a natural way. In this respect

String Cosmology could serve as the arena in which four-dimensional string constructions

and cosmological data confront each other [31,32].

Outline of the thesis

The contents of the present thesis are organised in the following chapters and appendices:

• Chapter 1 is devoted to introduce the fundamental concepts this thesis is built upon.

Specifically those concerning type II supergravity theories, dualities and branes.

Far from trying to deal with the more formal aspects of supergravity theories, this

chapter is included in order to make the thesis project as self-consistent as possible.

The ideas and results appearing in this chapter can be found in the textbooks of

refs [1, 2, 33] and the nice reviews of refs [34,35]

• In chapter 2 we set the notation and conventions adopted in refs [36,37] to describe

the geometry of the T6/Z2 × Z2 toroidal orbifold as well as of the IIB orientifold

theory with O3/O7-planes built from it. In addition, we work out the N = 1 four-

dimensional effective action describing the moduli dynamics in this orientifold when

generalised fluxes are included, derive the set of consistency conditions on such fluxes
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and particularise the results to the case of isotropic models which will be extensively

explored along the thesis.

• In chapter 3 we develop the techniques needed to remove superfluous degrees of

freedom when it comes to build T-duality invariant effective theories with N = 1

supersymmetry. This procedure of reducing parameters allows us to rather simplify

the resulting effective models such that families of supersymmetric AdS4 vacua can

be analytically obtained with all moduli stabilised at perturbative values of the string

coupling constant. All the results appearing in this chapter can be found in ref. [36].

• Chapter 4 is concerned with the task of building minimal scenarios of moduli sta-

bilisation in a de Sitter almost Minkowski vacuum breaking supersymmetry spon-

taneously. We are dealing with this problem in the previous context of T-duality

invariant IIB orientifold theories including generalised fluxes, O3/O7-planes and

D3/D7-branes. This chapter represents the central block of the thesis and corre-

sponds with refs [18,19].

• In chapter 5 we study a simple T and S-duality invariant supergravity theory built

upon the IIB orientifold allowing for O3/O7-planes and succeed in developing a

systematic method for solving all the flux constraints based on the algebra structure

underlying the fluxes. Algebraic geometry techniques are extensively used to solve

these constraints and supersymmetric vacua, centering our attention on Minkowski

solutions, become systematically computable and are also provided to clarify the

methods. We conclude with a digression on the potential N = 4 lifting of the

moduli solutions found. With the exception of this digression, which contains some

preliminary results, the content of this chapter can be found in ref. [37].

• In chapter 6 we present a model of slow-roll inflation in the context of effective

IIB supergravities with gauge fluxes. The uplifting of the potential to generate a

de Sitter (almost Minkowski) vacuum is provided by the D-term associated to an

anomalous U(1), in a fully consistent and gauge invariant formulation. We develop a

minimal working model which incorporates eternal topological inflation and complies

with observational constraints, avoiding the usual obstacles to implement successful

inflation, i.e. η problem and initial condition problem among others. Finally we

point to the apparent persistence of the η problem when considering only the effect

of generalised fluxes as the mechanism for stabilising the entire set of moduli in a

dS, almost Minkowski, vacuum. The results in this chapter can be found in ref. [38]

together with section 4.3 in ref. [19].

• The appendix A contains a derivation of the supergravity massless spectrum (field

content) of type II superstrings freely moving in a ten-dimensional Minkowski space-

time. A similar derivation can be found in any of the String Theory textbooks of
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refs [1, 2, 33] and in ref. [35]. Roughly speaking this thesis is an exploration of the

dynamics associated to these fields when different closed/open string ingredients are

taken into account, so we have included this derivation for the sake of completeness.

• The appendix B collects the expressions for the R-R fluxes in terms of the axionic

shifts and tadpole parameters for the T-duality invariant IIB orientifold theory stud-

ied in chapter 3.



Chapter 1

Basics of Type II Superstrings,

Dualities and Branes

At large distances L� ls, supergravity theories in ten dimensions turn out to be a good

approximation to describe the dynamics of systems of characteristic size L in an effective

manner.

1.1 Type II supergravity theories in ten dimensions

In this section we introduce the 10d supergravities describing the low energy (large dis-

tance) limit of the type II superstring theories at tree level. These effective theories come

out with N = 2 supersymmetry in ten dimensions. A derivation of their massless spec-

trum entering the supergravity action is presented in the appendix A. It contains the

graviton field GMN , the antisymmetric tensor field BMN and the dilaton ϕ furnishing

the universal sector of the superstring theories, together with an additional set of p-form

gauge fields Cp which depends on considering either the IIA (p odd) or the IIB (p even)

theory. Consequently, the massless spectrum also includes the supersymmetric fermionic

partners of these bosonic fields. However, we will focus on the bosonic part of the su-

pergravity action which becomes the relevant piece when studying vacuum configurations.

Specifically when exploring how supersymmetry breaks down spontaneously in 4d effective

theories as well as the relation between the moduli VEVs and the vacuum energy in such

theories.

1.1.1 Massive type IIA bosonic supergravity action

Apart from the universal sector common to all superstring theories, the type IIA su-

perstring theory incorporates a 1-form C1 and a 3-form C3 gauge potentials within its

bosonic massless spectrum. The massive [39] type IIA 10d supergravity action for the
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bosonic fields in the Einstein’s frame consists of three pieces

Sbos = SNS-NS + SR-R + SCS . (1.1)

The first term SNS-NS involves the fields in the universal sector of the spectrum which

corresponds to the Neveu-Schwarz-Neveu-Schwarz (NS-NS) sector shown in (A.12). This

piece was already introduced in (14),

SNS-NS =
1

2κ2

∫
d10x

√
−G

(
R− 1

2
∂Mϕ∂Mϕ−

1

2
e−ϕ|H3|2

)
, (1.2)

where the factor 2κ2 = (2π)7 α′4 = (16πG10) e−2ϕ relates to the G10 Newton’s constant

and H3 = dB2 denotes de field strength of the NS-NS 2-form gauge potential BMN . We

use the convention that

|Fp|2 ≡
1

p!
GM1N1 · · ·GMpNp FM1 ···Mp FN1 ···Np , (1.3)

for a generic p-form Fp.

The second term SR-R accounts for the fields in the Ramond-Ramond (R-R) sector of

the IIA theory as well as for the Romans’s mass parameter m . This term is given by

SR-R = − 1

4κ2

∫
d10x

√
−G

(
e
ϕ
2 |F̃4|2 + e

3
2
ϕ|F̃2|2 + e

5ϕ
2 m2

)
, (1.4)

where the tilded field strengths appearing in the R-R action are defined as

F̃2 = F2 +mB2 ,

F̃4 = F4 + C1 ∧H3 +
m

2
B2 ∧B2 ,

(1.5)

in terms of the standard ones H3 = dB2 and Fp+1 = dCp.

The last term SCS does not involve a factor of
√
−G and corresponds to a topological

Chern-Simons term,

SCS = − 1

4κ2

∫
B2∧F4∧F4 +

m

3
B2∧B2∧B2∧F4 +

m2

20
B2∧B2∧B2∧B2∧B2 . (1.6)

Finally, the ordinary type IIA supergravity is recovered by setting m = 0. In this case

the type IIA supergravity can be obtained by dimensional reduction of 11d supergravity

on a circle of radius R. The string coupling constant is then related to R by gs = eϕ =

R/
√
α′. Since M-Theory has the 11d supergravity as its low energy effective action, it can

be thought of as a strong-coupling (large R) completion of type IIA superstring theory.
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1.1.2 Bosonic action of type IIB supergravity

The bosonic massless spectrum of type IIB superstring theory contains, besides the uni-

versal NS-NS sector, a set of even p-forms in the R-R sector. In particular, a fourth-rank

antisymmetric self-dual tensor form C4, a 2-form C2 and a scalar C0. Compared to the

previous type IIA theory, an additional issue appears when it comes to build a super-

gravity type IIB action that implements the self-duality condition upon the field strength

F5 = dC4. Nevertheless, the field equations and the supersymmetry transformations of

type IIB supergravity can be worked out in a tricky manner [1]. With the equations of

motion identified, one looks at the supergravity action that reproduces these equations of

motion and complements them with the self-duality condition.

The bosonic part of the 10d type IIB supergravity action in the Einstein’s frame

consists again of the three terms

Sbos = SNS-NS + SR-R + SCS . (1.7)

It contains a term SNS-NS accounting for the fields in the universal sector. This is again

that of eq.(14), namely,

SNS-NS =
1

2κ2

∫
d10x

√
−G

(
R− 1

2
∂Mϕ∂Mϕ−

1

2
e−ϕ|H3|2

)
. (1.8)

The SR-R term in the action controlling the dynamics of the R-R fields C0, C2 and C4

is this time given by

SR-R = − 1

4κ2

∫
d10x

√
−G

(
e2ϕ|F1|2 + eϕ|F̃3|2 +

1

2
|F̃5|2

)
, (1.9)

where the tilded field strengths appearing in the action are now defined as

F̃3 = F3 −H3 ∧ C0 ,

F̃5 = F5 +
1

2
(B2 ∧ F3 − C2 ∧H3) ,

(1.10)

in terms of the standard ones H3 = dB2 and Fn+1 = dCn . Additionally, the self-duality

condition

F̃5 = ?F̃5 , (1.11)

with (?F̃ )MNOPQM ≡ 1

5!
√−g ε

MNOPQM ′N ′O′P ′Q′ F̃M ′N ′O′P ′Q′ has to be supplemented

by hand in order to have the correct number of bosonic degrees of freedom.

The type IIB theory also incorporates a topological Chern-Simons term SCS in the action

given by

SCS = − 1

4κ2

∫
C4 ∧H3 ∧ F3 . (1.12)
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Unlike its type IIA counterpart, the type IIB supergravity can not be obtained by

dimensional reduction of 11d supergravity on a circle, namely, from the low energy limit

of M-Theory. Nonetheless, a strong-coupling completion of certain type IIB supergravity

theories (IIB orientifolds to be introduced later) in ten dimensions is known. It is referred

to as F-Theory, is formulated in twelve dimensions and makes extensive use of the non-

perturbative SL(2,Z) self-duality of type IIB superstring theory.

1.2 Symmetries of IIB superstring theory

Along this thesis, we will mostly deal with effective four-dimensional supergravities de-

scending from type IIB superstring compactifications. Learning about the symmetries of

the ten-dimensional theory they descend from is then essential for a proper understanding

of these lower dimensional theories. For this purpose, this section is devoted to briefly in-

troduce the perturbative and non-perturbative symmetries of type IIB superstring theory.

In the Green-Schwarz formalism in the light-cone gauge, the worldsheet action of a

type IIB superstring freely moving in a ten-dimensional Minkowski spacetime M1,9 is

schematically given by [1]

SIIB
l.c = − 1

4πα′

∫
Σ
d2σ

(
∂Xi

)2
+
i

π

∫
Σ
d2σ

(
Sa∂Sa + S̃a∂S̃a

)
. (1.13)

The action (1.13) involves not only bosonic fields Xi = Xi
R+Xi

L with i = 1, . . . , 8 describ-

ing right-moving (R) and left-moving (L) excitations of the string along the transverse

space, but also fermionic ones Sa (right-moving) and S̃a (left-moving) with the same

chirality in eight dimensions1.

After quantising this free field theory imposing closed-string boundary conditions in

both bosonic and fermionic worldsheet fields, the massless states in the perturbative spec-

trum of the type IIB superstring theory turn out to be given by the tensor product of

the right-moving Sa0 and the left-moving fermionic zero modes S̃a0 . These massless states

become the field content entering the type IIB supergravity theory introduced in section

1.1.2. See appendix A for a detailed derivation of these statements.

1.2.1 Perturbative discrete symmetries

Bearing in mind all the aforementioned, the set of discrete transformations on the Sa and

S̃a spinors leaving the fermionic part of the action in (1.13),

S IIB
ferm =

i

π

∫
Σ
d2σ

(
Sa∂Sa + S̃a∂S̃a

)
, (1.14)

1The index i refers to transforming as a vector 8v under the SO(8) transverse group of rotations.

Additionally, the index a refers to transforming in the spinorial representation 8s of SO(8), while that of

ȧ will refer to transforming in its conjugate representation 8c of SO(8).
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invariant, will give rise to perturbative discrete symmetries of the type IIB superstring

theory and, therefore, of the type IIB supergravity theory alike. By a perturbative sym-

metry we refer to a symmetry that occurs order by order in perturbation theory, but which

is believed to be unbroken even non-perturbatively [35].

Worldsheet parity Ωp

Type IIB superstring theory contains right-moving Sa and left-moving S̃a spinors with the

same spacetime chirality in the action (1.14). Therefore, it comes out with the symmetry

of exchanging its right-moving and left-moving sectors

Ωp : Sa ←→ S̃a

Xi
R ←→ Xi

L

(1.15)

This symmetry can equivalently be viewed as an orientation-reversal parity transformation

σ → 2π − σ on the worldsheet coordinate along the string. Under this right↔ left sectors

swapping, the massless bosons in the IIB spectrum acquire a parity: half of them, namely

g, C2 and ϕ, are even under Ωp whereas C4, B2 and C0 result odd.

even odd

Ωp g , C2 , ϕ C0 , B2 , C4

(1.16)

For the fermionic NS-R and R-NS states, Ωp takes the former into the latter and vice

versa. Then, one combination of the two gravitinos (and equivalently for the dilatinos

χ’s) is even and the other is odd.

Modding out a theory by a discrete symmetry that involves the worldsheet orientation-

reversal transformation Ωp, is commonly referred to as an orientifold. Truncating the type

IIB spectrum to those Ωp-even states, i.e. the g and ϕ NS-NS fields together with the R-R

2-form C2 field, then the closed-string sector of type I supergravity is reproduced. This

symmetrisation restriction upon the IIB spectrum gives rise to N = 1 supergravity in ten

dimension [1]. Notice that the 2-form C2 in the type I theory comes from the R-R sector

unlike the 2-form B2 appearing in the universal type II bosonic sector. We will be back to

this point in section 5.4 when studying the N = 4 origin of some gauged supergravities

arising from flux compactifications of type IIB superstring theory.

Fermion number (−1)FR and (−1)FL

The type IIB fermionic action in (1.14) is also invariant under the discrete symmetries

(−1)FR : Sa −→ −Sa ,
(−1)FL : S̃a −→ −S̃a ,

(1.17)



30 Basics of Type II Superstrings, Dualities and Branes

where FR and FL denote the fermion number in the right-moving and left-moving sectors,

respectively2. This occurs independently for both right- and left-moving sectors, so the

massless fields in the IIB spectrum result with the following parities under the (−1)FR and

(−1)FL discrete transformations,

even odd

(−1)FR g , B2 , ϕ , χ1 , ψ1 C0 , C2 , C4 , χ2 , ψ2

(−1)FL g , B2 , ϕ , χ2 , ψ2 C0 , C2 , C4 , χ1 , ψ1

(1.18)

Because of the non-commutativity between the worldsheet parity and the fermion

number transformations,

(−1)FR Ωp = Ωp (−1)FL (1.19)

the complete set of discrete perturbative symmetries of the type IIB theory consists of the

eight-element non-abelian dihedral group D4, i.e. the group of symmetries of a square.

1.2.2 Non-perturbative SL(2,Z) self-duality

Together with the perturbative symmetries introduced above, namely, the worldsheet

orientation-reversal and the fermion number symmetries, the full type IIB superstring

theory has been conjectured to have an additional SL(2,Z) self-duality [40,41]. This con-

jecture stems from the invariance of the effective field theory describing the IIB massless

spectrum, i.e. type IIB ten-dimensional supergravity, under a non-compact global sym-

metry SL(2,R) [1].

This symmetry transforms the axion-dilaton field defined by S ≡ C0 + i e−ϕ in a

non-linear manner

S → aS + b

c S + d
with a d− b c = 1 , (1.20)

so that a weakly-coupled region of the moduli space having gs = (ImS)−1 < 1, see eq.(15),

can be mapped to a strongly-coupled one with gs > 1 by means of an SL(2,R) transforma-

tion. Therefore, the SL(2,Z) self-duality of type IIB superstring theory acts on the moduli

space of the theory3. This fact makes this self-duality impossible to be checked order by

order in perturbation expansion since perturbative states (oscillation states) at one point

in the moduli space of the theory may map to perturbative and non-perturbative ones, as

solitons or bound states, not corresponding to oscillation states of the string in the dual

theory.

2The bosonic states with an even number of creation operators in the NS sector of (A.8) are then even,

while those fermionic states in the R sector of (A.9) result odd.
3This will be no longer the case for other dualities in String Theory. As we will see, type IIA superstring

theory compactified on a circle of radius R is dual to IIB superstring theory compactified on a circle of

radius R−1 at the same value of the string coupling constant gs.
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The action of the SL(2,Z) self-duality on the rest of the massless bosonic fields in the

IIB spectrum is given by(
B2

C2

)
→
(
d c

b a

)(
B2

C2

)
, G → G , C4 → C4 , (1.21)

where GMN = e−
ϕ
2 gMN is the metric field in the Einstein’s frame. This group is generated

by the transformations

T =

(
1 1

0 1

)
⇒ S → S + 1 and S =

(
0 −1

1 0

)
⇒ S → −1

S
, (1.22)

together with a reflection that leaves the axiodilaton invariant

R =

(
−1 0

0 −1

)
⇒ S → S . (1.23)

The SL(2,Z) reflection in (1.23) acts upon the type IIB 2-forms as (B2, C2)→ −(B2, C2)

so, according to (1.16) and (1.18), such an action can be identified with that of an orien-

tifold R = (−1)FL Ωp.

The above self-duality of the type IIB theory is commonly referred to in the literature

as S-duality.

SL(2,R) covariant formulation of type IIB supergravity

The IIB bosonic action in (1.7) defined in terms of equations (1.8), (1.9) and (1.12) is not

manifestly covariant under the SL(2,R) symmetry previously discussed. For it to be, let

us define a doublet of 2-form gauge potentials B2 with field strength H3 = dB2 , together

with a symmetric SL(2,R) matrix M made up of scalars

B2 =

(
B2

C2

)
, M = eϕ

(
|S|2 −C0

−C0 1

)
. (1.24)

Under a constant SL(2,R) transformation given by

Λ =

(
d c

b a

)
, (1.25)

the fields appearing in (1.24) will be transformed according to

B2 −→ ΛB2 and M −→
(
Λ−1

)t M Λ−1 . (1.26)

Using these quantities, the IIB bosonic action in (1.1) can be rewritten in a manifestly

SL(2,R) covariant form

Sbos =
1

2κ2

∫
d10x

√
−G

(
R− 1

12
Ht
MNP MHMNP +

1

4
Tr
(
∂MM ∂MM−1

))

− 1

8κ2

(∫
d10x

√
−G |F̃5|2 +

∫
εij C4 ∧H(i)

3 ∧H(j)
3

)
, (1.27)
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since the Einstein-frame metric G and the 4-form C4 are SL(2,R) invariant, and then, also

the F̃5 field strength of eq.(1.10).

1.3 Toroidal compactifications and target space dualities

In this section we introduce the basics of a closed string that propagates in a ten-dimensional

Minkowski spacetime M1,9 in which one of the spacial directions, say the j-th one, is taken

to be a circle of radius R . In other words, it has been compactified.

Following the conventions in appendix A, the embedding of a closed string propagating

in M1,9 is encoded into the bosonic fields

XM (τ, σ) = XM
R (τ − σ) +XM

L (τ + σ) with M = 0, . . . , 9 . (1.28)

The coordinate τ is the worldsheet time coordinate whereas σ denotes the coordinate

along the string 0 ≤ σ < π.

The bosonic field Xj(τ, σ) describing the propagation of the string along the com-

pact j-th direction can have a periodic boundary condition with a non vanishing winding

number w,

Xj(τ, σ + π) = Xj(τ, σ) + 2πRw with w ∈ Z , (1.29)

counting the number of times that the string winds around the circle. The momentum

along this direction results also quantised in terms of an integer k named the Kaluza-Klein

excitation number, i.e. p = k/R.

When imposing the boundary condition (1.29) upon the j-th spacial dimension, the

corresponding bosonic field has the mode expansion of

Xj
R =

xj

2
+ α′ pR (τ − σ) + αj-oscillators , Xj

L =
xj

2
+ α′ pL (τ + σ) + α̃j-oscillators

(1.30)

with right- and left-moving momenta given by

pR =
k

R
− wR

α′
, pL =

k

R
+
wR

α′
. (1.31)

The mode expansion for the rest of bosonic fields Xi (with i 6= j-th) describing the prop-

agation along the non-compact coordinates is shown in (A.5).

At distance scales L� R, it is not possible to resolve the compact dimension so we are

left with a 9-dimensional effective theory involving a tower of states whose mass depends

on the momenta (pR, pL) in the compactified j-th dimension. This mass is given by

α′M2 =
α′

2
(p2
R + p2

L) + 2 (N + Ñ) =

(
k
√
α′

R

)2

+

(
wR√
α′

)2

+ 2 (N + Ñ) , (1.32)
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where N and Ñ account for the bosonic and fermionic oscillators in the mode expansion

of the worldsheet fields.

For a generic value of the ratio R/
√
α′, the massless states correspond to k = w = 0.

However, at the limit case of R/
√
α′ → ∞

(
R/
√
α′ → 0

)
we are left with a tower of

light states with zero winding (momentum) and arbitrary momentum (winding) which

would enter the lower dimensional physics. We will be back to this question when study-

ing non-geometric flux compactifications of type IIB superstring theory on T-fold spaces4.

Specifically, when discussing the large internal volume commonly assumed to neglect α′

corrections, i.e., the radius of the internal space R is larger than the string length scale

ls =
√

2α′ rendering field theories a good approximation to study the dynamics of String

Theory. For a large internal volume, R/
√
α′ � 1, the stringy winding modes acquire a

large mass and are decoupled from the light spectrum.

Transforming simultaneously

R↔ α′

R
and k ↔ w , (1.33)

the αj-oscillators change their sign while the α̃j-oscillators are left invariant. Then, the j-

th right-moving and left-moving fields do it as Xj
R → −X

j
R and Xj

L → Xj
L , representing

a target-space duality of the theory known as T-duality [34].

By spacetime supersymmetry, the chirality of the right-moving worldsheet fermion is

changed when applying a T-duality transformation in the j-th direction5. This translates

into the fact that: T-duality takes the type IIB (chiral) theory on a circle of radius RB to

a type IIA (non-chiral) theory on the dual circle of radius RA = α′/RB and vice versa.

It is worth noticing that the mass formula in (1.32), and hence the spectrum, is in-

variant under the T-duality transformation of (1.33). This illustrates how target-space

dualities can emerge at the effective level when compactifying String Theory to obtain

lower dimensional physics.

1.3.1 Moduli space and T-duality in toroidal backgrounds

Let us now describe the propagation of a type II superstring in a more general spacetime

geometry M . In particular we will consider the case of a ten-dimensional spacetime of the

form

M = M(1,9−d) × Td . (1.35)

4The geometry of these T-fold spaces incorporates circles of size R as well as their duals of size 1/R.
5The right-moving Sa and left-moving S̃a(ȧ) worldsheet fermions in type II theories transform as

IIB : Sa → Γj
aḃ
S ḃ , S̃a → S̃a

IIA : Sa → Γj
aḃ
S ḃ , S̃ȧ → S̃ȧ

(1.34)

where the Γ’s are the eight-dimensional Dirac matrices satisfying (Γj)2 = 1.
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M(1,9−d) denotes (10 − d)-dimensional Minkowski spacetime with coordinates xµ where

µ = 0, . . . , 9 − d, whereas Td is a d-dimensional torus with coordinates xi ' xi + 2πR

where i = 1, . . . , d.

Turning on a background for the metric Gij as well as for the antisymmetric tensor

Bij on Td, gives rise to more generic string backgrounds known as toroidal backgrounds.

As it was stated in the introduction, these background fields can be introduced into the

worldsheet action in a consistent manner, provided it has conformal symmetry.

Including them, the bosonic fields describing the propagation of the string along the d

compact dimensions in Td now have periodic boundary conditions

Xi(τ, σ + π) = Xi(τ, σ) + 2πRwi with wi ∈ Z and i = 1, . . . d , (1.36)

leading to the mode expansion of the bosonic fields along the toroidal directions of

Xi
R =

xi

2
+ α′ piR (τ − σ) + αi-oscillators , Xi

L =
xi

2
+ α′ piL (τ + σ) + α̃i-oscillators

(1.37)

where this time the right- and left-moving momenta are given by

pR, i =
ki
R
− R

α′
(Gij +Bij)w

j , pL, i =
ki
R

+
R

α′
(Gij −Bij)wj . (1.38)

Once more, at distance scales L � R, the theory looks like a (10 − d)-dimensional

theory where the mass of a state with momenta
(
piR, p

i
L

)
in the compactified dimensions

is given by

α′M2 = ZtHZ + 2 (N + Ñ) , Z =

(
wiR√
α′
,
ki
√
α′

R

)
, (1.39)

with N and Ñ accounting again for bosonic and fermionic oscillators.

The matrix H(G,B) ∈ O(d, d;R) that determines the mass of the states according to

(1.39),

H(G,B) =

(
G−BG−1B BG−1

−G−1B G−1

)
, (1.40)

is a 2d× 2d generalised metric built from the NS-NS background fields. This matrix can

be interpreted as the metric of a doubled internal space [42]. Even a generalised worldsheet

action has been proposed [43,44] to describe strings propagating in a doubled torus T2d.

Notice this time that if inverting the size of the circles in Td, i.e. R ↔ α′

R
, the mass

formula in (1.39) is invariant under the transformation

H ↔ H−1 with ki ↔ wi , (1.41)
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which is the natural generalisation of (1.33). Furthermore the right- and left-moving

momenta in (1.38) are invariant under

Bij ↔ Bij +
α′

R2
Nij with ki ↔ ki +Nij w

j , (1.42)

where Nij is an arbitrary antisymmetric matrix. This B-shift symmetry is new in the

sense that it only appears when d > 1 because of the antisymmetry of Nij .

The two transformations in (1.41) and (1.42) are symmetries of the spectrum and

jointly generate the O(d, d;Z) group6, although the T-duality group of the effective theory

in (10 − d) dimensions is reduced to the subgroup G = SO(d, d;Z) which preserves the

chirality of the spinors. At this stage, there is no longer difference between IIA and IIB

theories once they have been compactified on Td. This underlies the idea of introducing

the so-called generalised fluxes to restore T-duality at the level of the effective action in

the lower dimensional theory.

The Gij and Bij background fields specifying the generalised metric H ∈ O(d, d;R)

are understood, after compactifying to (10 − d) dimensions, as d2 degrees of freedom

appearing as scalar fields in the lower dimensional theory. These scalars play the roll of

parameters connecting between different theories and are referred to as the moduli space

of the compactification. The moduli space contains d(d + 1)/2 parameters coming from

the internal components of the metric together with d(d − 1)/2 ones coming from the

internal components of the antisymmetric B-field. The only restriction to be imposed is

the positiveness of the symmetric part of the matrix Gij+Bij . This determines the moduli

space to be the coset space

M0 =
O(d, d;R)

O(d;R)×O(d;R)
. (1.43)

This is the moduli space of toroidal compactifications to (10 − d) dimensions. The

isotropy group O(d;R) × O(d;R) in the above coset space reflects the invariance of the

theory under separate rotations of the piR and piL momenta. Two different points in the

moduli space associated to O(d, d;R) elements which are related by an element of the

isotropy group give rise to the same term p2
R + p2

L entering the mass spectrum7, so they

must be identified as physically equivalent. Therefore, the set of inequivalent toroidal com-

pactifications of type II superstrings will be given by the quotient M =M0/SO(d, d;Z).

Finally, the simplest toroidal background is that consisting on a square torus G = Id×d
together with a vanishing B-field background, this is H = I2d×2d. In this case, the

6The inversion transformation in (1.41) changes the relative chirality between the right- and left-moving

fermions S and S̃ in type II theories.
7Two generic points in the moduli space connected by a O(d, d;R) rotation give rise to the same

p2
R − p2

L quantity since the momenta (piR, p
i
L) in toroidal compactifications live on an (Lorentzian) even

and self-dual lattice Γd,d with Lorentzian signature, i.e., a Narain lattice.
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massless d-dimensional spectrum in the lower dimensional theory can be obtained by

decomposing the SO(8) representations of the 10d massless fields with respect to the

surviving Lorentz group. In going from ten dimensions to 4d effective theories by means

of compactifying on T6 one obtains the non-chiral N = 8 , d = 4 supergravity field theory

at energies E � 1/R� 1/
√
α′. As we will see in the next sections, and although chirality

is mandatory in order to relate four-dimensional strings to the real world, six-dimensional

toroidal backgrounds provide us with simple 4d supergravity models in which to explore

the dynamics of the moduli fields.

1.3.2 Toroidal orbifolds

Compactifications of type II superstrings on T6 preserve all the 32 supercharges of the

original supergravity in ten dimensions and produce effective theories with N = 8 super-

symmetry in four dimensions. Due to the large amount of supersymmetry, the structure

of these 4d effective theories is very rigid. For instance, the scalar potential generated by

SO(p, q, r) gaugings with p+ q + r = 8 possesses de Sitter extrema which turn out to be

unstable (see [45] and references therein). As we reduce the number of supersymmetries

during the compactification process, the structure of the resulting 4d effective theories

becomes richer and their associated phenomenology more attractive [46].

A simple possibility to obtain 4d effective theories with a less number of unbroken

supersymmetries is to compactify String Theory on 6d toroidal orbifolds. Given a toroidal

internal space T6, an orbifold T6/G can be constructed quoting it by a finite symmetry

group G acting on the target space. After the action of G on T6, different points in the

original (ambient) torus result identified and some singularities may appear associated

to the fixed points of the orbifold group action. Toroidal orbifolds can be interpreted as

singular limits of Calabi-Yau spaces. Even though there are singularities, strings prop-

agate consistently in these spaces provided that a twisted sector is taken into account

together with the untwisted (invariant under the action of G) one. Far from the singu-

larities, toroidal orbifolds represent smooth target spaces whose local structure is directly

inherited from the ambient space T6. A nice property of toroidal orbifolds is that they

are as simple as tori but after compactifying String Theory on them one obtains effective

theories with reduced supersymmetry8.

Let us say a few comments about the twisted sector in toroidal orbifold compactifica-

tions. This sector arises from oscillations of strings that are open strings in the ambient

space T6 but become closed strings in the orbifold T6/G. In other words, open strings

starting and ending at points in T6 that are identified under the action of an element of

the orbifold group. These “closed” strings are localised necessarily around the fixed points

8The amount of unbroken supersymmetry corresponds to the components of the original supercharge

that are invariant under the action of the orbifold group G.
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of the orbifold group action and the twisted spectrum they produce simply contains the

moduli associated to blowing up these singularities.

1.3.3 Toroidal orientifolds

As we stated in the previous section, toroidal orbifolds T6/G can be viewed as singu-

lar limits of Calabi-Yau 3-folds (CY3). Compactification of type II superstrings on these

CY3 spaces gives rise to four-dimensional supergravity with N = 2 supersymmetry. This

amount of supersymmetry is still large from a phenomenological viewpoint. However, it

can be further reduce to N = 1 by modding out the theory with the orientation-reversal

parity transformation Ωp, the fermion number projector for left-moving fermions (−1)FL

and an internal space involution σ which has to be an isometry of CY3. The resulting

theory is referred to as a Calabi-Yau orientifold and comes out with N = 1 supersymme-

try in four dimensions.

The space involution σ leaves the non-compact 4d spacetime invariant. Apart from

it, the action of σ may also leave invariant certain submanifolds of the internal space.

The product of one of these submanifolds with the ordinary 4d spacetime is referred to

as an Op-plane, where the label p denotes the number of spacial dimensions filled by the

O-plane. The main features of an O-plane are that it has a negative tension and couples

to a R-R gauge potential Cp+1, although it does not have an associated dynamics.

There exist three sorts of (type II) CY3 orientifold theories depending on how does

the pullback σ∗ of the orientifold involution σ act upon the Kähler form J and the

holomorphic 3-form Ω encoding the geometry of the CY3 space [47,48]:

i) Type IIB with O3/O7-planes −→ σ∗ J = J , σ∗Ω = −Ω ,

ii) Type IIA with O6-planes −→ σ∗ J = −J , σ∗Ω = Ω̄ ,

iii) Type IIB with O9/O5-planes −→ σ∗ J = J , σ∗Ω = Ω .

Specially in the case of toroidal orbifolds with (generalised) fluxes [7,8], the above type II

orientifold theories have been shown to be related one to another by a chain of T-duality

transformations (mirror symmetry) [49,50], so we will often refer to them, with some abuse

of language, as (T-) duality frames.

1.4 D-branes in type II superstring theory

Even though String Theory was conceived as a theory of fundamental one-dimensional ob-

jects, it was eventually found to also contain higher dimensional objects called D-branes.

These extended objects can be understood from two approaches: the microscopic approach

according to which D-branes correspond to the place where the open strings can termi-
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nate and the macroscopic one where D-branes emerge as 1/2-BPS solitonic solutions of

the supergravity equations of motion.

In the microscopic description, a Dp-brane fills a (p+ 1) region within the 10d space-

time (p spacial directions plus time) where the ends of an open string can move. In other

words, the open string carries momentum along these directions (Neumann boundary

conditions). On the contrary, an open string has a specified position (Dirichlet boundary

conditions) along the (9− p) coordinates in the space transverse to the Dp-brane9. After

quantisation, an open string ending on a Dp-brane gives rise to a set of massless states

that consists of a U(1) gauge boson, (9−p) real scalars and a set of fermion superpartners

confined to the worldvolume of the Dp-brane. These massless states furnish a U(1) vector

supermultiplet with respect to 32/2 = 16 supercharges in (p+1) dimensions. Additionally,

Dp-branes can emit/absorb closed strings that propagate in the whole 10d spacetime, also

known as the “bulk”.

From a macroscopic approach, Dp-branes in type II superstring theories represent cer-

tain non-trivial vacuum configurations for the fields entering the type II supergravities. A

Dp-brane admits the interpretation of an extended 1/2-BPS object located in the back-

ground which breaks half of the supersymmetry and couples to the bosonic closed-string

modes propagating in the “bulk”. In other words, Dp-branes interact via the exchange of

bosonic fields belonging to the type II massless spectrum. These are fields in the universal

NS-NS sector, i.e., g, B2 and ϕ, together with p-forms Cp in the R-R sector.

It will result useful to use the 10d democratic formulation according to which one

defines additional R-R gauge potentials C8−p in such a way that the equations of motion

of the original Cp gauge fields become the Bianchi identities of the new C8−p ones and

vice versa. This is

d ? Fp+1 = dF9−p = ? jp ,

dFp+1 = d ? F9−p = ? j8−p ,
(1.44)

where jp and j8−p are the electric (magnetic) and the magnetic (electric) currents that

couple to the gauge potential Cp (C8−p). These currents are then sourced by D(p − 1)-

branes and D(7− p)-branes, respectively.

In the static gauge, the bosonic Dp-brane action consists of two parts

SDp = SDBI + SCS . (1.45)

• The Dirac-Born-Infeld action: It describes how the Dp-brane couples to the universal

NS-NS closed-string sector. Denoting ξ the (p + 1) worldvolume coordinates, the

9An open string has no a non-trivial dynamics along these (9− p) coordinates, but only an oscillatory

motion.
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DBI action is written as10

SDBI = −TDp

∫
dp+1ξ

√
−det

(
g +B2 + (2πα′)F + (2πα′)2 ( ∂~φ )2

)
, (1.46)

where F = dA is the field strength for the U(1) gauge boson living on the worldvol-

ume of the Dp-brane and ~φ accounts for the (9− p) scalars (moduli fields) parame-

terising the position of the Dp-brane in the transverse space. In the string frame, the

tension TDp for a Dp-brane relates to the string coupling constant as TDp ∝ g−1
s .

Therefore, Dp-branes are non perturbative states that become very heavy at weak

coupling and behave as rigid objects.

• The Chern-Simons action: A Dp-brane is a R-R charged extended object that couples

to the set of p-form fields in the R-R closed-string sector. The CS piece in the bosonic

action accounts for these couplings and, in a flat spacetime, is given by

SCS = µp

∫ (
C eB2+(2πα′)F

)
p+1

= µp

∫
Cp+1 + . . . , (1.47)

where µp is the Dp-brane electric charge under the R-R gauge potential Cp+1. The

field C denotes the formal sum over all the R-R p-form potentials in the theory.

Only the (p+ 1)-form piece of the integrand is kept at each step in the expansion of

eB2+(2πα′)F . Therefore, in the presence of a non vanishing B2+(2πα′)F background,

a Dp-brane also has induced charges corresponding to less dimensional D(p − 2n)-

branes with n being a positive integer.

In the 10d democratic formulation of type IIB (type IIA) superstring theory there

will be D-branes coupling to the set of C2p (C2p+1) R-R fields with p = 0, . . . , 4 ( p =

0, . . . , 3 ). More specifically,

• Type IIB theory: The C2p with p = 0, . . . , 4 R-R gauge potential has D(2p − 1)-

branes as electric sources and D(7− 2p)-branes as magnetic sources,

R-R potential electric source magnetic source

C0 D(−1)-brane D7-brane

C2 D1-brane D5-brane

C4 D3-brane D3-brane

C6 D5-brane D1-brane

C8 D7-brane D(−1)-brane

(1.48)

The D(−1)-brane is an object that is localised in time as well as in space, so it has

the interpretation of a D-instanton.

10All the tensors are understood to be pulled back to the worldvolume of the Dp-brane.
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• Type IIA theory: The C2p+1 with p = 0, . . . , 3 R-R gauge potential has D(2p)-

branes as electric sources and D(6− 2p)-branes as magnetic sources.

R-R potential electric source magnetic source

C1 D0-brane D6-brane

C3 D2-brane D4-brane

C5 D4-brane D2-brane

C7 D6-brane D0-brane

(1.49)

Additionally, one could consider D8-branes which would couple electrically to a C9

R-R gauge potential with field strength F10 = dC9. In ten dimensions, this field

strength is non dynamical and relates to the Romans’s mass parameter F10 = ?m

of the type IIA massive supergravity presented in section 1.1.1.

With the discover of the D-branes as non perturbative states in type II superstring

theories, new possibilities to obtain non-abelian gauge theories in which to embed the

Standard Model gauge group popped up. An important result is that, as well as the DBI

piece (1.46) of the action can be regarded as a “gravitational” interaction for the Dp-brane,

the CS piece (1.47) represents a “gauge” interaction. In this sense Dp-branes were found

to be BPS-saturated states of the theory. This implies that a Dp-brane preserves one half

of the original supersymmetry and that TDp = µp g
−1
s , namely, its mass equals its charge.

Roughly speaking, as an outcome of this matching, the gravitational force and the gauge

force between two Dp-branes do exactly cancel each other. This is commonly referred

to as the no-force condition and allows us to put N Dp-branes together without falling

into problems of stability. The field theory in the worldvolume of a stack of N coincident

Dp-branes enjoys an enhanced U(N) non-abelian gauge symmetry. In order to account

for the non-abelian structure, the bosonic effective action results slightly modified with

respect to that of the single Dp-brane we have introduced in this section.

The fact of being able to obtain non-abelian gauge theories from D-branes gave rise

to a model building revolution trying to obtain the Standard Model of Particle Physics

and Cosmology from type II superstring compactifications including D-branes. In order to

derive four-dimensional semi-realistic effective models from type II superstring construc-

tions, they should encompass, among many others, the following aspects of Supertring

Phenomenology:

i) To obtain the Standard Model gauge group G = SU(3)× SU(2)×U(1) with three

chiral quark-lepton generations. Most of the effort in this direction has been focused

on four scenarios: 1) D3/D7-brane systems at singularities [51–54]. 2) Intersect-

ing D6-brane models [55–69]. 3) D-branes with worldvolume magnetic fields (mag-

netised) and background fluxes [70–73]. 4) F-Theory Grand Unification Theories

(GUT’s) [74–78].
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ii) To stabilise the moduli fields of the compactification [6–8, 10, 11, 49, 73, 79–100].

Specially the case of having moduli stabilisation in a de Sitter (dS) almost Minkowski

(Mkw) vacuum breaking supersymmetry spontaneously. Type II toroidal orientifolds

including D-branes, O-planes and (generalised) flux backgrounds are simple scenarios

in which this goal seems to be more affordable [12,13,16–23,37,98,101–110].

iii) To reproduce an inflationary regimen at the first stages of the Universe [26]. Some at-

tempts to get inflation from string-based scenarios [30,31] have based on: 1) D-brane

inflation [111–127], where the inflaton field corresponds to a modulus parameterising

the distance between branes. 2) Modular inflation [13–15, 29, 128–137], where the

role of the inflaton is played by some of the geometry/structure moduli fields of the

internal space.

This thesis goes along the lines of ii ) and iii) . Although most of it will be about

moduli stabilisation in generalised flux compactifications, other related topics as gauged

supergravities and modular inflation will also be directly or indirectly explored.

1.4.1 T-duality and D-branes

The fact of having a D-brane wrapping some compact dimension of the internal space is

intimately linked to having applied a T-duality trasformation upon an open string which

originally did not propagate along such a dimension but wound itself around it.

When applied to open strings, T-duality maps a Neumann boundary condition carry-

ing momentum p = k/R along a circle of radius R into a Dirichlet boundary condition

carrying a winding number w = k along a circle of radius R̃ = α′/R in the T-dual ge-

ometry (and vice versa). Starting with an open string that propagates in ten dimensions,

which can be understood as having a D9-brane wrapping the whole (compact) internal

space, and by applying successive T-dualities along the six internal space coordinates,

we will end up with a D3-brane localised at a point of the internal space in the T-dual

geometry.

Finally, Dp-branes can also be helpful when it comes to break part of the supersym-

metry of the type II superstring vacua. In the absence of Dp-branes, T-duality exchanges

between the type IIA and type IIB theories without breaking their N = 2 supersymme-

try in ten dimensions. This will be no longer the case once Dp-branes are added. Due to

their 1/2-BPS state nature, at least half of the supersymmetry will be broken in type II

superstring vacua that include Dp-branes.

1.4.2 S-duality and (p, q)-branes

The SL(2,Z) self-duality of the type IIB supergravity acts upon the BPS branes of the

type IIB theory in a much more complicated manner. Recall that it represents a strong-
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weak coupling self-duality of the IIB theory.

According to the S-duality transformation of the C4 and (B2, C2) gauge potentials in

(1.21), one has that:

• D3-branes are singlets under S-duality transformations since they are the electric

and magnetic sources of the R-R field C4, which is an SL(2,Z) singlet.

• D1-branes are transformed into (p, q) 1-branes, commonly referred to as (p, q)-

strings, under S-duality transformations. A (p, q)-string has charges (p, q) with

respect to the gauge fields (B2, C2), which form an SL(2,Z) doublet. The (0, 1)-

string is then identified with the D1-string whereas the (1, 0)-string is known as the

fundamental F1-string.

• S-duality transforms D5-branes into (p, q) 5-branes which are the magnetic duals of

the (p, q)-strings. The (0, 1) and (1, 0) 5-branes are identified with the D5-branes

and NS5-branes respectively.

7-branes

A classification of the 7-brane supergravity solutions can be found in [138,139]. According

to (1.48), the D7-branes are magnetic sources of the C0 gauge potential entering the type

IIB axiodilaton field S ≡ C0 + i e−ϕ whose transformation under S-duality is displayed

in (1.20). Additionally, the D7-branes are electric sources of the R-R gauge potential C8

which is one of the components of an SL(2,Z) triplet (C8, C
′
8, C̃8) of 8-forms [139–141].

Generically, a 7-brane couples (electrically) to the triplet of 8-forms (C8, C
′
8, C̃8) with

charges p2, r and q2, respectively. These charges determine the SL(2,Z) monodromy

matrix

eQ = cosh
(√

detQ
)
I2×2 +

sinh
(√

detQ
)

√
detQ

Q with Q ≡
(
r/2 p2

−q2 −r/2

)
,

(1.50)

experienced by the axiodilaton, i.e., S → eQ S, when circling once around the location of

the 7-brane in its two-dimensional transverse space.

The set of SL(2,Z) orbits is then characterised by the value of detQ. The orbit

including the (1, 0, 0) and (0, 0, 1) 7-branes, which are identified with the D7-brane and

the NS7-brane respectively, is that of

detQ = p2 q2 − r2

4
= 0 . (1.51)

This implies that a 7-brane lying on the orbit (1.51) has r = ± 2 p q. This 7-brane is

referred to as a (p, q) 7-brane and induces the SL(2,Z) monodromy matrix

M(p,q) =

(
1± p q p2

−q2 1∓ p q

)
(1.52)
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upon the axiodilaton S. The point to be highlighted is that if applying an SL(2,Z) self-

duality transformation upon a D7-brane we will end up with a (p, q) 7-brane. This fact

plays a central role in F-Theory [142].

F-Theory

The original observation questioned the perturbative limit gs � 1 of type IIB supergravity

when D7-branes are present. In the D7-brane supergravity solution [143], the axiodilaton

field S(z) depends on the single complex coordinate z parameterising the position of the

D7-brane in its two-dimensional transverse space. The field equation of the axiodilaton

admits the solution

S(z) ∼ 1

2πi
log(z − z0) , (1.53)

near the location z = z0 of the D7-brane. When circling around it, the axiodilaton

(1.53) experiences the monodromy S → S + 1 obtained from (1.52) by fixing p = 1 and

r = q = 0. Even though gs � 1 close to the D7-brane, the theory will necessarily become

strongly coupled in some region of the transverse space, rendering the weak coupling limit

no longer valid.

Based on the ideas introduced in [144, 145], an auxiliary twelve-dimensional theory

known as F-Theory has been developed as a geometrisation of the type IIB SL(2,Z) self-

duality. This strong-weak coupling duality of the type IIB theory is identified with the

SL(2,Z) modular group of an auxiliar T2 in F-Theory. It is in this sense that F-Theory

appears as a non-perturbative completion of the type IIB theory.

Compactifications of F-Theory on a complex Calabi-Yau (n+1)-fold that admits elliptic

fibration, i.e. it has the structure of a fiber bundle with a complex compact n-dimensional

manifold Bn as the base and a real T2 as the fiber, correspond by definition to type

IIB compactifications on Bn with general (p, q) 7-branes wrapping real codimension two

cycles of Bn. The axiodilaton field is identified with the modular parameter in the fiber of

the F-Theory construction, so it varies when moving along the basis Bn. In this picture,

the (p, q) 7-branes correspond to real codimension two loci of Bn where the elliptic fibra-

tion degenerates into an A-D-E singularity. The local geometry around such a singularity

is encoded into the SL(2,Z) monodromy suffered by the axiodilaton when cycling around

it.

In the case of F-Theory compactified on K3 elliptic fibrations, it was shown by Sen [146]

that there exists a weak coupling limit in which the axiodilaton turns out to be constant.

In this limit, known as the Sen’s limit, each of the singularities of the elliptic fibration

comes out with a multiplicity and corresponds to a stack of (p, q) 7-branes. The SL(2,Z)

monodromy induced upon the axiodilaton when circling around one of these singularities
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is given by

M = (MA)4 (MBMC) = −I2×2 , (1.54)

so it results in the reflection R = (−1)FL Ωp of (1.23) and gives rise to an orientifold the-

ory [146,147]. The MA, MB and MC matrices can be read from (1.52) taking A = (1, 0),

B = (1,−1) and C = (1, 1). The above stack A4BC of 7-branes then manifests as four

D7-branes (A4) together with a single O7-plane (a bound state BC of 7-branes). There-

fore, the Sen’s construction of F-Theory compactified on K3 represents a special point in

the moduli space that admits a description in terms of a perturbative type IIB orientifold

theory. The above derivation was further generalised to F-Theory compactifications on

complex Calabi-Yau (n+ 1)-folds in [148].

One of the most appealing features of F-Theory from a Particle Physics point of view

is its suitability when it comes to obtain exceptional Lie groups in which to achieve the

spinorial (matter) representation for an SO(10) GUT as well as the top-quark Yukawa

coupling 10 10 5H for an SU(5) GUT, two properties that can not be obtained in pertur-

bative type IIB orientifold models [74, 76, 142, 149, 150]. This is precisely because of the

existence of a wider set of (p, q) 7-branes configurations in F-Theory which lead to the

realization of these exceptional Lie groups as non-abelian gauge symmetries of the theory.



Chapter 2

T6/Z2 × Z2 IIB Orientifold with

O3/O7-planes

In the chapter 1 we have briefly introduced the background material needed to go along

this thesis, such as the basics of the type II supergravity theories, the duality relations

and the non-perturbative O-planes and D-branes objects present in these theories.

This thesis explores the closed-string moduli dynamics in N = 1 type IIB orien-

tifold models including O3-planes and O7-planes, arising from compactifications on the

T6/Z2 × Z2 toroidal orbifold in the presence of generalised flux backgrounds. These gen-

eralised fluxes are needed to achieve invariance of the four-dimensional effective models

under T-duality and S-duality transformations.

For this reason we devote the present chapter to introduce the geometrical aspects of

the T6/Z2×Z2 toroidal orbifold as well as of the type IIB orientifold with O3/O7-planes

built upon it. Next we derive the four-dimensional supergravity effective action describing

the moduli dynamics in this orientifold when generalised flux backgrounds are included

and also work out the set of constraints that the fluxes must satisfy in order to obtain

consistent effective models. Finally we will restrict ourselves to the simplified case of

isotropic flux configurations in order to obtain more tractable supergravity models which

will be deeply analysed in the forthcoming chapters of the thesis.

2.1 The Z2 × Z2 toroidal orbifold

The orbifold geometric action G = Z2 × Z2 automatically leads to the factorised six-torus

of figure 2.1 whose basis of 1-forms is denoted ηa with a = 1, . . . , 6. In the following we

will use Greek indices α, β, γ for horizontal “ − ” x-like directions (η1, η3, η5) and Latin

indices i, j, k for vertical “|” y-like directions (η2, η4, η6) in the 2-tori.
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η1

η2

η3

η4

η5

η6× ×

Figure 2.1: T6 = T2
1 × T2

2 × T2
3 torus factorisation and the basis of 1-forms.

The orbifold quotient group generators act on the tangent 1-forms ηa as

θ1 : (η1 , η2 , η3 , η4 , η5 , η6) → (η1 , η2 , −η3 , −η4 , −η5 , −η6) , (2.1)

θ2 : (η1 , η2 , η3 , η4 , η5 , η6) → (−η1 , −η2 , η3 , η4 , −η5 , −η6) .

and, clearly, there is another order-two element1 θ3 = θ1θ2.

Under the Z2×Z2 orbifold action, the invariant 3-forms are just those with one leg in

each 2-torus2

α0 = η135 , α1 = η235 , α2 = η451 , α3 = η613 ,

β0 = η246 , β1 = η146 , β2 = η362 , β3 = η524 ,
(2.2)

where, e.g. η135 = η1 ∧ η3 ∧ η5. On the other hand, the invariant 2-forms and their dual

4-forms are
ω1 = η12 , ω2 = η34 , ω3 = η56 ,

ω̃1 = η3456 , ω̃2 = η1256 , ω̃3 = η1234 .
(2.3)

whereas there are neither 1-forms nor 5-forms invariant under the Z2×Z2 orbifold group.

We choose the orientation and normalisation∫
M6

η123456 = V6 , (2.4)

where the positive constant V6 gives the volume of the internal space that we generically

denote M6. Notice that the cohomology basis satisfies∫
M6

α0 ∧ β0 = −V6 ,

∫
M6

αI ∧ βJ =

∫
M6

ωI ∧ ω̃J = V6 δ
J
I , I, J = 1, 2, 3 , (2.5)

so the Z2 × Z2 orbifold symmetry restricts the period matrix τ ij to be diagonal.

Up to normalisation, the Kähler form J and the holomorphic 3-form Ω that encode the

geometry of the internal space can be written in a basis of invariant (untwisted) forms.

1The orbifold group Z2 × Z2 is generated by Z2 × Z2 = {1, θ1, θ2, θ1θ2}.
2This also occurs in the compactification with an extra Z3 cyclic permutation of the three 2-tori that

was studied in [7, 95]. In that case there are only two geometric moduli, namely the overall Kähler and

complex structure parameters.
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• The holomorphic 3-form is given by

Ω = (η1+τ1 η
2)∧(η3+τ2 η

4)∧(η5+τ3 η
6) = α0+τK αK+βK

τ1τ2τ3

τK
+β0 τ1τ2τ3 , (2.6)

with the H3(M6,Z) cohomology basis displayed in (2.2).

• The Kähler 2-form can be expanded in the basis of 2-forms of (2.3) as

J = A1 ω1 +A2 ω2 +A3 ω3 , (2.7)

where AI denotes the area of the I-th 2-torus.

The geometric moduli {τI , AI}I=1,2,3 descend from the internal components of the 10d

metric and constitute the moduli space of possible metrics (far from the singularities)

ds2 =
3∑
I=1

AI
Im τI

[
|τI |2

(
η2I−1

)2
+
(
η2I
)2 − 2 (Re τI) η

2I−1 η2I
]
, (2.8)

in the T6/Z2 × Z2 orbifold. This moduli space consists of one Kähler (AI ∈ R) and one

complex structure (τI ∈ C) parameter for each 2-torus T2
I .

Compactification of type IIB superstring theory on the T6/Z2 × Z2 toroidal orbifold

produces four-dimensional supergravities that preserve 1/4 of the original supersymmetry

in ten dimensions. The effective theories built in this way correspond to a N = 2 , d = 4

extended supergravity which is again non-chiral.

Finally, in the case of the orbifold group G = Z2 × Z2, each non-trivial generator

θI=1,2,3 of G has 4×4 = 16 fixed points, so the total number of singularities is 3×16 = 48.

The twisted sector of the spectrum then contains 48 additional moduli fields localised

around the singularities of the Z2 × Z2 orbifold.

2.2 The T6/Z2 × Z2 IIB orientifold with O3/O7-planes

Let us now move to consider the type II toroidal orientifold T6/ (Z2 × Z2) ∪ (−1)FL Ωp σ,

where the action of the orientifold involution σ upon the internal space coordinates trans-

lates into an additional Z2 reflection3

σ : (η1 , η2 , η3 , η4 , η5 , η6) → (−η1 , −η2 , −η3 , −η4 , −η5 , −η6) , (2.10)

3The action of σ upon the internal space coordinates for each of the three type II orientifolds presented

in section 1.3.3 is given by

σi) : (η1 , η2 , η3 , η4 , η5 , η6) → (−η1 , −η2 , −η3 , −η4 , −η5 , −η6) ,

σii) : (η1 , η2 , η3 , η4 , η5 , η6) → ( η1 , −η2 , η3 , −η4 , η5 , −η6) ,

σiii) : (η1 , η2 , η3 , η4 , η5 , η6) → ( η1 , η2 , η3 , η4 , η5 , η6) .

(2.9)
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hence corresponding to a type IIB theory including O3-planes and O7-planes, as it was

stated in section 1.3.3. Clearly, the invariant 3-forms in (2.2) are all odd under the ori-

entifold involution σ, whereas the invariant 2-forms and their dual 4-forms in (2.3) are even.

The orientifold group action consists of the combined action of the orientifold reflection

σ in (2.10) and the {1, θ1, θ2, θ3} generators of the Z2 × Z2 orbifold group. This is a Z3
2

symmetry. It creates then O-planes of the following types:

• σ 1 : The action of this element upon the internal space coordinates is that of the

orientifold involution σ shown in (2.10). It reflects the coordinates of all the 2-tori

TI , creating 64 O3-planes located at its 4 × 4 × 4 = 64 fixed points. One of these

O3-planes is shown in figure 2.2.

b

η1

η2 b

η3

η4 b

η5

η6× ×

Figure 2.2: O3-plane located at the point
(

1
2 ,

1
2

)
×
(

1
2 ,

1
2

)
×
(

1
2 ,

1
2

)
in the internal space

that is fixed under the action of the orientifold group element σ 1.

• σ θI : Acting with this element on the internal space reflects the coordinates of the

2-tori TI . Therefore, it creates four O7-planes located at its 4 fixed 4-tori. One of

these O7-planes is shown in figure 2.3.

b

η1

η2

η3

η4

η5

η6× ×

Figure 2.3: O7-plane wrapping the 4-torus
(

1
2 ,

1
2

)
×T2 ×T3 in the internal space that is

fixed under the action of the orientifold group element σ θ1.

Modding out the theory with the worldsheet symmetry (−1)FL Ωp makes the fields

in the bosonic sector of the type IIB supergravity to acquire a parity under its action.

From (1.16) and (1.18), the 2-forms B2 and C2 are found to be odd while the rest of the

bosonic fields result to be even.

even odd

(−1)FL Ωp g , ϕ , C0 , C4 B2 , C2

(2.11)
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Notice that the action of this worldsheet symmetry is that of the type IIB SL(2,R) self-

duality reflection R = (−1)FL Ωp in (1.23) setting the Sen’s weak coupling limit of F-theory

(see section 1.4.2) and allowing for a perturbative type IIB orientifold description of the

theory.

The moduli space of type IIB orientifolds with O3/O7-planes [50] consists of three

Kähler moduli TI , three complex structure moduli UI and the axiodilaton S modulus

defined by

UI = τI ,

S = C0 + i e−ϕ ,

J = C4 +
i

2
e−ϕ J ∧ J + (C2 − i S B2) ∧B2 =

3∑
I=1

TI ω̃
I ,

(2.12)

where τI are the complex structure parameters entering the expansion (2.6) of the holo-

morphic 3-form Ω, and J is the fundamental Kähler 2-form of (2.7). Due to the absence

of odd elements (under the action of σ) in the basis of 2-foms (2.3), we have that

B2 = C2 = 0 =⇒ J = C4 +
i

2
e−ϕ J ∧ J , (2.13)

where J is known as the complexified Kähler 4-form. The Kähler moduli can then be

explicitly written as

TI =
1

V6

∫
M6

C4 ∧ ωI + i e−ϕAJ AK with I 6= J 6= K . (2.14)

This compactification preserves N = 1 supersymmetry in four dimensions. In this

case the moduli space dynamics is encoded within a Kähler potential given by

K = − log
(
−i (S − S̄)

)
−

3∑
I=1

log
(
−i (UI − ŪI)

)
−

3∑
I=1

log
(
−i (TI − T̄I)

)
, (2.15)

which is valid to first order in the string and sigma model perturbative expansions. The

Kähler potential in (2.15) codifies the metric in the moduli field space, namely, the Kähler

metric

Kij =
∂2K

∂Φi ∂Φ̄j
, (2.16)

with Φ ≡ (U1 , U2 , U3 , S , T1 , T2 , T3 ). This metric Kij determines the non-canonically

normalised kinetic term for the seven moduli fields of the compactification, whose dynamics

is totally described in terms of the Lagrangian density

Lmoduli = Kij ∂µΦi ∂
µΦ̄j − V (Φ) , (2.17)

with V (Φ) = 0. The Lagrangian in (2.17) would perilously entail to have seven free com-

plex scalars in Nature which couple to Gravity4.

4For the sake of clarity we have omitted from the Lagrangian in (2.17) the global factor
√
−g(4)

depending on the four-dimensional gµν metric.
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As we mentioned in the introduction, one of the main problems in String Phenomenol-

ogy is that of finding mechanisms to generate a non-vanishing potential

V (Φ) 6= 0 , (2.18)

involving the moduli fields. For instance, compactifications of type II superstrings in the

presence of (generalised) background fluxes, which is the topic covered in this thesis, have

been found to induce a non trivial V (Φ) 6= 0 interaction between moduli fields. This

interaction opens the possibility for the moduli to be stabilised at a minimum of the

flux-induced scalar potential.

2.3 Generalised fluxes and effective action

Our starting point will be the four-dimensional effective action controlling the dynamics

of the moduli fields when including a constant background for the internal components of

the field strengths entering the type IIB supergravity of the section 1.1.2.

Under the orientifold involution action in (2.10) there are neither σ-even 1-forms nor

σ-even 5-forms in the T6/Z2 × Z2 toroidal orbifold, so a background for the σ-even R-R

field strengths F1 and F̃5 is forbidden in the type IIB orientifold with O3/O7-planes.

The next step is then to switch on background fluxes H̄3 and F̄3 for the NS-NS and R-R

3-forms,

H3 = dB2 + H̄3 ,

F̃3 = F3 −H3 ∧ C0 + F̄3 .
(2.19)

Since both H3 and F̃3 are σ-odd under the orientifold involution action, the allowed

constant background fluxes can be expanded as

H̄3 = b3 α0 + b
(I)
2 αI + b

(I)
1 βI + b0 β

0 ,

F̄3 = a3 α0 + a
(I)
2 αI + a

(I)
1 βI + a0 β

0 ,
(2.20)

in terms of the basis of invariant 3-forms shown in (2.2). All flux coefficients are integers

because the integrals of H̄3 and F̄3 over 3-cycles are quantised. To avoid subtleties with

exotic orientifold planes we take all fluxes to be even [81,151].

Working with only the two 3-form fluxes, i.e. the NS-NS H̄3 and the R-R F̄3, we have

the standard form of the flux-induced N = 1 superpotential derived by Gukov, Vafa and

Witten in ref. [79],

WGVW =

∫
M6

(F̄3 − S H̄3) ∧ Ω . (2.21)

Plugging the expansion (2.20) for the background fluxes and that of (2.6) with UI = τI

for the holomorphic 3-form into (2.21), the resulting superpotential after integrating over
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the internal space M6 takes the form of

W = P1(UI) + P2(UI)S , (2.22)

involving only the S and the UI moduli fields of the compactification. The polynomials

P1(UI) and P2(UI) appearing in (2.22) are cubic polynomials in the complex structure

moduli given by

P1(UI) = a0 −
3∑

K=1

a
(K)
1 UK +

3∑
K=1

a
(K)
2

U1U2U3

UK
− a3 U1U2U3 ,

P2(UI) = −b0 +
3∑

K=1

b
(K)
1 UK −

3∑
K=1

b
(K)
2

U1U2U3

UK
+ b3 U1U2U3 .

(2.23)

The N = 1 supergravity theory defined by the Kähler potential in (2.15) and the

superpotential in (2.22) has a no-scale structure [152] due to the lack of Kähler moduli

TI in the latter. The inclusion of non-perturbative effects depending on these moduli,

such as gaugino condensation [153], was proposed as a mechanism to potentially stabilise

them [12,101,109,154].

However, considerable discussion has been done on the effect of applying T-duality

transformations on type II orientifolds with background fluxes as well as its repercussion

on the moduli stabilisation problem [6–8,95,155].

2.3.1 Fluxes and T-duality

As argued originally in [82,156], applying one T-duality transformation Ta to the NS-NS

fluxes H̄abc can give rise to geometric fluxes ωabc that correspond to structure constants

of the isometry algebra of the internal space.

In the presence of H̄abc and ωabc fluxes, the Lie algebra g of the supergravity group

G is spanned by isometry Za and gauge Xa generators [157]

[Za , Zb] = ωcab Zc + H̄abcX
c ,[

Za , X
b
]

= −ωbacXc ,[
Xa , Xb

]
= 0 ,

(2.24)

with a = 1, . . . , 6 . These generators enter the expansion of the isometry A
(G)
µ = G p

µ Zp

and the gauge A
(B)
µ = BµpX

p vector bosons (1-forms) in four dimensions descending from

the reduction of the metric and the B-field with fluxes [90,157–159]. Notice that the fluxes

play the role of structure constants of the algebra in (2.24).

Performing further T-dualities Tb and Tc leads to generalised fluxes denoted Qabc and

Rabc in ref. [7],

H̄abc
Ta−→ ωabc

Tb−→ Qabc
Tc−→ Rabc . (2.25)
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The Qabc are called non-geometric fluxes because the resulting metric after two T-dualities

yields a background that is locally but not globally geometric [6, 95]. Compactifications

with Rabc fluxes are not even locally geometric but these fluxes are necessary to maintain

T-duality between type IIA and type IIB [7]. As a result, starting with a NS-NS back-

ground flux H̄3 turned on, successive T-dualities on the six circular dimensions take the

space from one having a well defined metric everywhere to one with successively more and

more “pathological” descriptions, ultimately losing any notion of a locally definable metric.

The above set
{
H̄abc , ω

a
bc , Q

ab
c , Rabc

}
of generalised NS-NS fluxes would in principle

determine an extension of the supergravity algebra in (2.24) to a new one being invariant

under T-duality transformations. This T-duality invariant algebra was proposed in ref. [7]

to have the commutation relations

[Za, Zb] = H̄abcX
c + ωcab Zc ,[

Za , X
b
]

= −ωbacXc + Qbca Zc ,[
Xa, Xb

]
= Qabc Xc + Rabc Zc ,

(2.26)

involving this time the entire set of generalised fluxes as structure constants. We will be

back to this point at the end of the chapter 5 when exploring the N = 4 origin of the

supergravity theories including non-geometric fluxes [155,160,161].

In our T6/Z2 × Z2 type IIB orientifold with O3/O7-planes, the geometric ωabc and

the Rabc fluxes must be σ-even under the orientifold involution in (2.10) and are thus

totally absent. On the other hand, the non-geometric Q-flux must be σ-odd and is fully

permitted. The Z2 × Z2 symmetry only allows 24 components of the flux tensor Qabc ,

namely those with one leg on each 2-torus shown in figure 2.1. This set of non-geometric

fluxes is displayed in table 2.1. All the components of the tensor Q-flux are integers that

we take to be even.

Type Components Fluxes

Q−−− ≡ Qβγα Q35
1 , Q51

3 , Q13
5 c̃

(1)
1 , c̃

(2)
1 , c̃

(3)
1

Q
|−
| ≡ Q

iβ
k Q61

4 , Q23
6 , Q45

2 ĉ
(1)
1 , ĉ

(2)
1 , ĉ

(3)
1

Q
−|
| ≡ Q

αj
k Q14

6 , Q36
2 , Q52

4 č
(1)
1 , č

(2)
1 , č

(3)
1

Q−−| ≡ Qαβk Q35
2 , Q51

4 , Q13
6 c

(1)
0 , c

(2)
0 , c

(3)
0

Q
||
− ≡ Qijγ Q46

1 , Q62
3 , Q24

5 c
(1)
3 , c

(2)
3 , c

(3)
3

Q
|−
− ≡ Qiβγ Q23

5 , Q45
1 , Q61

3 č
(1)
2 , č

(2)
2 , č

(3)
2

Q
−|
− ≡ Qγiβ Q52

3 , Q14
5 , Q36

1 ĉ
(1)
2 , ĉ

(2)
2 , ĉ

(3)
2

Q
||
| ≡ Q

ij
k Q46

2 , Q62
4 , Q24

6 c̃
(1)
2 , c̃

(2)
2 , c̃

(3)
2

Table 2.1: Non-geometric Q-flux components in the Z2 × Z2 orbifold.
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The effect of this new non-geometric Q-flux can be incorporated into the superpotential

by contracting it with the complexified Kähler 4-form J in (2.13). Specifically,

(Q · J )abc =
1

2
Qde[a (J )bc]de ⇒

∫
M6

(Q · J ) ∧ Ω ⊂W , (2.27)

so the T-duality invariant four-dimensional effective theory involving the R-R flux F̄3 and

the NS-NS fluxes H̄3 and Q is described by the Kähler potential in (2.15) together with

the superpotential

WT-dual =

∫
M6

(F̄3 − S H̄3 +Q · J ) ∧ Ω . (2.28)

The contraction Q ·J can be expanded in the basis of 3-forms displayed in (2.2). This

expansion takes the form of

Q · J = TK

(
c

(K)
3 α0 − C(IK)

2 αI − C(IK)
1 βI + c

(K)
0 β0

)
, (2.29)

where C1 and C2 are the non-geometric Q-flux matrices

C1 =


−c̃ (1)

1 č
(3)
1 ĉ

(2)
1

ĉ
(3)
1 −c̃ (2)

1 č
(1)
1

č
(2)
1 ĉ

(1)
1 −c̃ (3)

1

 , C2 =


−c̃ (1)

2 č
(3)
2 ĉ

(2)
2

ĉ
(3)
2 −c̃ (2)

2 č
(1)
2

č
(2)
2 ĉ

(1)
2 −c̃ (3)

2

 . (2.30)

Using the expansion for the NS-NS H̄3 and the R-R F̄3 fluxes in (2.20) and substituting

those of (2.29) and (2.6) into (2.28), the T-duality invariant superpotential reads

WT-dual = WGVW +

3∑
K=1

P
(K)

3 (UI)TK , (2.31)

where the piece WGVW was previously shown in (2.22). Compared to it, the invariance

under T-duality transformations introduces a new cubic polynomial P3(UI) depending

again on the complex structure moduli

P
(K)

3 (U) = c
(K)
0 +

3∑
L=1

C (LK)
1 UL −

3∑
L=1

C (LK)
2

U1U2U3

UL
− c (K)

3 U1U2U3 . (2.32)

The main feature of the flux superpotential in (2.31) is that it now depends on all the

untwisted closed string moduli. As we will see in chapters 3 and 4, this T-duality invariant

supergravity theory deserves special attention since it induces a scalar potential V (Φ) 6= 0

for the moduli fields that possesses supersymmetric AdS4 as well as non-supersymmetric

Minkowski and de Sitter vacua without flat (massless) directions in field space.
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2.3.2 Fluxes and S-duality

Taking the T-duality invariant type IIB supergravity theory of the previous section as the

starting point, we now wish to impose an additional symmetry, that of S-duality. This

SL(2,Z) self-duality of the type IIB theory was shown in section 1.2.2 to have a non linear

action on the axiodilaton field S given by

S → aS + b

c S + d
with a d− b c = 1 . (2.33)

For the effective theory to be invariant under this transformation, the superpotential

must transform in a particular way,

W (S)→W

(
aS + b

c S + d

)
=

1

c S + d
W (S) . (2.34)

This implies that the fluxes must themselves transform in such a way as to satisfy this and

they must transform in multiplets. Therefore, having a non-trivial H̄3 or F̄3 flux means

allowing for both 3-form fluxes being non-zero following such a transformation in S,

F̄3 − S H̄3 → F̄3 −
(
aS + b

c S + d

)
H̄3 =

1

c S + d

(
(d F̄3 − b H̄3)− S(a H̄3 − c F̄3)

)
. (2.35)

In terms of H̄3 and F̄3, we have that the S-duality action on the 3-form fluxes is given by(
H̄3

F̄3

)
→
(
d c

b a

)(
H̄3

F̄3

)
, (2.36)

which, of course, coincides with that of (1.21) for the gauge potentials. Similarly, the

non-geometric Q-flux needs to be partnered with another flux of the same tensor type

and we are forced to turn on another non-geometric flux, P , which is multiplied by the

axiodilaton in order to give the same doublet mixing [8],(
P

Q

)
→
(
d c

b a

)(
P

Q

)
. (2.37)

With the inclusion of this additional non-geometric P -flux, we are lead to a both T-duality

and S-duality invariant four-dimensional effective theory. It involves the H̄3, F̄3, Q and

P fluxes and is described by the Kähler potential in (2.15) and the superpotential

WT/S-dual =

∫
M6

(
F̄3 − S H̄3 + (Q− S P ) · J

)
∧ Ω . (2.38)

As it happened with the Q · J contraction in (2.29), the P · J one can also be

expanded in the basis (2.2) of 3-forms as,

P · J = TK

(
d

(K)
3 α0 −D(IK)

2 αI −D(IK)
1 βI + d

(K)
0 β0

)
, (2.39)
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where D1 and D2 are the new non-geometric P -flux matrices,

D1 =


−d̃ (1)

1 ď
(3)
1 d̂

(2)
1

d̂
(3)
1 −d̃ (2)

1 ď
(1)
1

ď
(2)
1 d̂

(1)
1 −d̃ (3)

1

 , D2 =


−d̃ (1)

2 ď
(3)
2 d̂

(2)
2

d̂
(3)
2 −d̃ (2)

2 ď
(1)
2

ď
(2)
2 d̂

(1)
2 −d̃ (3)

2

 . (2.40)

Analogously to its Q-flux counterpart, the Z2 × Z2 orbifold symmetry only allows for 24

independent components of the non-geometric flux tensor P abc . These components can

also be read off from table 2.1 by the exchanges Q↔ P and c↔ d. After substituting the

expansions (2.20), (2.29), (2.39) and (2.6) and performing the integral over the internal

space, the T- and S-duality invariant superpotential of (2.38) takes the form

WT/S-dual = WT-dual + S
3∑

K=1

P
(K)

4 (U)TK , (2.41)

with the WT-dual piece being that of (2.31). To restore invariance under S-duality transfor-

mations, the superpotential in (2.41) incorporates an additional cubic polynomial P4(UI)

depending again on the complex structure moduli

P
(K)

4 (UI) = −d (K)
0 −

3∑
L=1

D (LK)
1 UL +

3∑
L=1

D (LK)
2

U1U2U3

UL
+ d

(K)
3 U1U2U3 . (2.42)

Therefore, the T- and S-duality invariant N = 1 effective supergravity described in this

section involves (8 + 24) + (8 + 24) = 64 flux parameters coming from the
(
F̄3 , Q

)
and

the
(
H̄3 , P

)
fluxes that are generically allowed.

2.4 Flux algebra and Jacobi identities

In the absence of fluxes, compactifications of the type II ten-dimensional supergravities on

T6 orientifolds yield a N = 4 , d = 4 supergravity. Without considering additional vector

multiplets coming from D-branes, its deformations produce N = 4 gauged supergravities

[160] specified by two constant embedding tensors, ξαA and fαABC , under the global

symmetry

SL(2,Z)× SO(6, 6,Z) , (2.43)

where α = ± and A,B,C = 1, . . . , 12 . These embedding tensors are interpreted as flux

parameters, so the fluxes become the gaugings of the N = 4 gauged supergravity [9].

In the Z2×Z2 toroidal orbifold the global symmetry (2.43) is broken to the SL(2,Z)7

group and the tensor ξαA is projected out. Compactifying the type IIB supergravity on

this orbifold produces a N = 2 supergravity further broken to N = 1 in the type IIB

orientifold theory with O3/O7-planes.



56 T6/Z2 × Z2 IIB Orientifold with O3/O7-planes

2.4.1 Spinorial embedding of the generalised fluxes

As it was shown in ref. [8], the F̄3, H̄3, Q and P sixty four flux components can be

embedded into a spinorial 128 representation of SO(7, 7,Z) which in turn decomposes as

two Weyl spinors transforming respectively in the 64 (left) and the 64′ (right) represen-

tations. Accordingly to the SU(7) tensorial structure of these Weyl representations,

64 = 1 + 7 + 21 + 35 ,

64′ = 1′ + 7′ + 21′ + 35′ ,
(2.44)

the embedding of the fluxes is displayed in table 2.2.

As introduced in ref. [155], and subsequently deeper understood in ref. [161], the(
F̄3 , Q

)
pair of fluxes belongs to the SL(2,Z)-electric part of the flux algebra whereas the(

H̄3 , P
)

pair belongs to the SL(2,Z)-magnetic part. The same occurs with the fluxes∗

(red print) in table 2.2 which correspond to heterotic fluxes [8,162,163], complete the 128

spinorial representation of SO(7, 7,Z) and restore an SL(2,Z)7 modular invariance at the

level of the effective theory5. This fact severely modifies the structure of the generalised

flux algebra in (2.26) proposed in ref. [7]. Nevertheless, we will postpone further discussion

of this matter to the end of chapter 5.

Besides to the ones imposed by the symmetries of the compactification, e.g. the Z2×Z2

orbifold symmetry, the set of generalised fluxes is subject to additional complex algebraic

relations. These constraints appear either as the Jacobi identities of the flux algebra that

the generalised fluxes give rise to or as tadpole cancellation conditions required by consis-

tency of the effective theory when sources such as O-planes and D-branes are included.

2.4.2 T-duality invariant supergravity and (H̄3, Q) flux algebra

Let us explore the constraints on the fluxes arising as Jacobi identities of the flux algebra

in the case of the IIB supergravity theory described in the previous section and simplified

by setting P = 0 . Not including the effect of this non-geometric P -flux, the effective

supergravity results invariant only under T-duality transformations.

The geometrical properties of the T-duality invariant type II compactifications to four

dimensions have been explored in [9, 23, 43, 44, 90, 164–170]. These compactifications are

naturally described as Scherk-Schwarz reductions [158] on a doubled torus, T12, twisted

5An SL(2,Z)7 global symmetry would translate into an effective theory invariant under SL(2,Z) mod-

ular transformations on each of its seven untwisted moduli fields. Then, the SL(2,Z)7-invariant superpo-

tential has to contain all the multi lineal couplings between the seven moduli up to a degree seven term

given by b∗0 S U1U2U3T1T2T3 [8]. Notice that the effective theory specified by the superpotential in (2.41)

is not invariant under modular transformations on the three Kähler moduli TI , so the fluxes∗ in table 2.2

are not present in our type IIB orientifold theory.
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rep fluxes

1 a0

7′ a
(K)
1 b0 c

(K)
0

21 a
(K)
2 b

(K)
1 C(KL)

1 d
(K)
0 c

∗(K)
3

35′ a3 b
(K)
2 C(KL)

2 D(KL)
1 C∗(KL)

2 d
∗(K)
3 a∗3

35 b3 c
(K)
3 D(KL)

2 C∗(KL)
1 D∗(KL)

2 a
∗(K)
2 b∗3

21′ d
(K)
3 c

∗(K)
0 D∗(KL)

1 a
∗(K)
1 b

∗(K)
2

7 d
∗(K)
0 a∗0 b

∗(K)
1

1′ b∗0

Table 2.2: Embedding of the flux parameters into the spinorial 128 representation of

SO(7, 7,Z). The (black print) ordinary fluxes are those entering the superpotential in

(2.41) while the (red print) fluxes∗ are not present in the type IIB orientifold theory under

consideration. It is worth noticing that the SL(2,Z)-electric F̄3 ≡ (a0 , a
(K)
1 , a

(K)
2 , a3) and

Q ≡ (c
(K)
0 , C(KL)

1 , C(KL)
2 , c

(K)
3 ) fluxes as well as the SL(2,Z)-magnetic H̄3 ≡ (b0 , b

(K)
1 , b

(K)
2 , b3)

and P ≡ (d
(K)
0 , D(KL)

1 , D(KL)
2 , d

(K)
3 ) fluxes fit into components of the two 64 and 64′ Weyl

spinors.

under the supergravity group G. A stringy feature of these reductions is that the coor-

dinates in T12 account for the ordinary coordinates and their duals, so both momentum

and winding modes of the string are treated on equal footing, see section 1.3.1. Fur-

thermore, the fluctuations of the internal components of the metric and the B field are

jointly described [157] in terms of the O(6, 6,R) doubled space metric in (1.40). In this

framework, a T-duality transformation can be interpreted as an SO(6, 6,Z) rotation on

the background [164].

Recalling the introductory section 1.3.3, the three type II orientifolds are found to be

related by a chain of (three) T-duality transformations,

type IIB with O3/O7 ↔ type IIA with O6 ↔ type IIB with O9/O5 . (2.45)

Each of these (T-) duality frames projects out half of the flux entries [8]. The type IIB

orientifold allowing for O3/O7-planes projects the geometric ω and the non-geometric R

fluxes out of the effective theory. This duality frame is particularly suitable when classify-

ing the supergravity algebras, since it does not forbid certain components in all the fluxes,

as it happens with the type IIA orientifold allowing for O6-planes, but certain fluxes as

a whole6. By performing three T-duality transformations, the type IIB flux models with

6This is also the case for the type IIB orientifold allowing for O9/O5-planes, which forbids the H̄3 and

Q fluxes. The generalised fluxes mapping between the O3/O7 and O9/O5 type IIB orientifold theories

reads Qabc ↔ ωcab together with H̄abc ↔ Rabc.
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O3/O7-planes are mapped to type IIA compactifications with O6-planes in the presence of

the entire set of generalised H̄3 , ω , Q and R fluxes. We will make use of this mapping

later on in chapter 4.

In the IIB with O3/O7-planes duality frame, the conjectured supergravity algebra in

(2.26) simplifies to

[Za, Zb] = H̄abcX
c ,[

Za , X
b
]

= Qbca Zc ,[
Xa, Xb

]
= Qabc Xc ,

(2.46)

and the effective supergravity theory admits a description in terms of a reduction on a

T-fold space [43,44,164,165]. From now on, we will refer to the IIB orientifold allowing for

O3/O7-planes as the T-fold description of the effective supergravity theory. One observes

that the algebra in (2.46) comes up with a gauge-isometry Z2-graded structure involving

the subspaces spanned by the gauge Xa and the isometry Za generators as the grading

subspaces.

In the T-fold description, the supergravity group G has a six-dimensional subgroup

Ggauge whose algebra ggauge involves the vector fields Xa coming from the reduction of

the B-field. The ggauge is completely determined by the non-geometric Q-flux forced to

satisfy the quadratic XXX-type Jacobi identity Q2 = 0 from (2.46),

Q[ab
x Q

c]x
d = 0 . (2.47)

From the general structure of (2.46), the remaining Za vector fields coming from the

reduction of the metric are the generators of the reductive and symmetric coset space

G/Ggauge [171]. Provided a Q-flux, the mixed gauge-isometry brackets in (2.46) are given

by the co-adjoint action Q∗ of Q and the G/Ggauge coset space is determined by the H̄3

flux restricted by the H̄3Q = 0 constraint

H̄x[bcQ
ax
d] = 0 , (2.48)

coming from the quadratic XZZ-type Jacobi identity from (2.46). Any point in the coset

space remains fixed under the action of the isotropy subgroup Ggauge of G [172], so an ef-

fective supergravity theory is defined by specifying both the supergravity algebra g as well

as the subalgebra ggauge associated to the isotropy subgroup of the coset space G/Ggauge.

The constraints in (2.47) and (2.48) on the Q and H̄3 fluxes can also be interpreted

in terms of a nilpotency condition D2 = 0 on the operator D = H̄3 ∧+Q · introduced in

ref. [95].

2.4.3 S-duality on top of T-duality

Under the ansatz of systematically applying S-duality transformations upon the flux con-

straints of the T-duality invariant supergravity theory, we shall focus on the S-dualisation
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of the Jacobi identities in (2.47) and (2.48).

• Applying the self-duality SL(2,Z) transformation of (2.37) on the non-geometric

Q-flux, the Q2 = 0 Jacobi identity in (2.47) gives rise to an SL(2,Z)-triplet of

constraints involving the Q and P fluxes,

Q[ab
x Q

c]x
d = 0 , P [ab

x P
c]x
d = 0 , Q[ab

x P
c]x
d + P [ab

x Q
c]x
d = 0 , (2.49)

which, as before, we will denote as Q2 = 0, P 2 = 0 and QP + PQ = 0. The

first condition results in that of (2.47) and the second one reduces to (2.47) under

Q → P . The third element of the triplet gives a mixing between the Q and P

fluxes.

• We now turn to the second Jacobi constraint H̄3Q = 0 in (2.48) and consider what

effect S-duality has on it. The result is that it is extended to mix the four types of

fluxes in the IIB orientifold theory with O3/O7-planes,

H̄x[bcQ
ax
d] − F̄x[bc P

ax
d] = 0 . (2.50)

This constraint is an SL(2,Z)-singlet and we will refer to it as H̄3Q− F̄3P = 0.

At this point we want to emphasise that the Jacobi constraints in (2.49) have been ob-

tained by applying an S-duality transformation to the Jacobi constraint Q2 = 0 of the T-

duality invariant effective supergravity theory. Starting however with the SL(2,Z)7-duality

invariant flux algebra involving the SL(2,Z)-electric (F̄3 , Q) and the SL(2,Z)-magnetic

(H̄3 , P ) background fluxes as structure constants, these conditions result slightly modi-

fied to Q2 = P 2 = 0 together with QP = PQ = 0 [155,161]. Nevertheless, these modified

constraints can be understood as a particular case of (2.49). We will be back to this point

at the end of the chapter 5 and will explain where does this mismatch stem from [161].

2.5 Tadpole cancellation conditions

In the absence of background fluxes, the R-R field strengths are constrained by the Bianchi

identities in (1.44). In the case of the type IIB supergravity of section 1.1.2, these are

dF1 = 0 , dF̃3 = ? j6 , dF̃5 = ? j4 , (2.51)

where the magnetic currents j6 and j4 account for D5-branes and D3-branes coupling to

the R-R gauge potentials C2 and C4, respectively.

When including the background fluxes needed to restore T-duality invariance in the

type IIB orientifold theory with O3/O7-planes, these Bianchi identities are promoted to

a new one of the type DF̄ = S. Now S is a generalised form due to sources that are

assumed smeared instead of localised and D is again the covariant derivative operator
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D = H̄3 ∧ +Q · of the previous section. Since there is only a non-trivial R-R flux back-

ground F̄3, one expects combinations of fluxes of the types H̄3 ∧ F̄3 (6-form) and Q · F̄3

(2-form). These can be understood as tadpole cancellation conditions on the R-R 4-form

C4 and 8-form C8 that respectively couple to O3/D3 and O7/D7 sources.

In the type IIB orientifold that we are considering there is a flux-induced C4 tadpole

due to the Chern-Simons term in (1.12)∫
M4×M6

C4 ∧ H̄3 ∧ F̄3 . (2.52)

There are further C4 tadpoles due to O3-planes and to D3-branes that can also be added.

The total orientifold charge is −32, equally distributed among 64 O3-planes located at the

fixed points of the orientifold involution in (2.10). Each D3-brane has charge +1 and if

they are located in the bulk, as opposed to fixed points of Z3
2, images must be included.

Adding the sources to the flux tadpole of (2.52) leads to the cancellation condition

a0 b3 − a(K)
1 b

(K)
2 + a

(K)
2 b

(K)
1 − a3 b0 = N3 , (2.53)

where N3 = 32−ND3 and ND3 is the total number of D3-branes.

The non-geometric Q and the R-R F̄3 fluxes combine to produce a flux-induced

tadpole for the R-R gauge potential C8. This tadpole depends on the 2-form contraction

Q · F̄3 and is given by the coupling term∫
M4×M6

C8 ∧ (Q · F̄3) . (2.54)

Expanding (Q · F̄3) in the basis of 2-forms of (2.3) yields coefficients

(Q · F̄3)I = a0 c
(I)
3 + a

(K)
1 C(KI)

2 − a(K)
2 C(KI)

1 − a3 c
(I)
0 , I = 1, 2, 3 . (2.55)

This means that there are induced tadpoles for C8 components of type C8 ∼ dvol4 ∧ ω̃I ,
where dvol4 is the spacetime volume 4-form and ω̃I is the 4-form dual to ωI . On the

other hand, there are also C8 tadpoles due to O7I -planes that have a total charge +32

for each I. As discussed before, due to the orbifold group Z2 × Z2, there are O7I -planes

located at the 4 fixed tori of σθI , where θI are the three order-two elements of Z2 × Z2.

At the end we find the three tadpole cancellation conditions

a0 c
(I)
3 + a

(K)
1 C(KI)

2 − a(K)
2 C(KI)

1 − a3 c
(I)
0 = N7I , I = 1, 2, 3 , (2.56)

where N7I = −32 + ND7I
and ND7I

is the number of D7I -branes that are generically

allowed.
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2.5.1 S-duality and tadpole cancellation conditions

The tadpole constraints once S-duality invariance is included were derived in [8]. There

are two kinds of flux-induced tadpoles accordingly to their behaviour under self-duality

SL(2,Z) transformations on the fluxes.

• There is a flux-induced tadpole for each of the components of the SL(2,Z)-triplet

(C8, C
′
8, C̃8) of 8-forms introduced in section 1.4.2. These three tadpoles,∫

M4×M6

C8∧(Q ·F̄3) ,

∫
M4×M6

C ′8∧(Q ·H̄3 +P ·F̄3) ,

∫
M4×M6

C̃8∧(P ·H̄3) ,

(2.57)

transform as an SL(2,Z)-triplet and arise from the original (Q · F̄3) one in (2.54).

Using the 2-form expansions

(Q · H̄3)I = b0 c
(I)
3 + b

(K)
1 C(KI)

2 − b
(K)
2 C(KI)

1 − b3 c
(I)
0 ,

(P · F̄3)I = a0 d
(I)
3 + a

(K)
1 D(KI)

2 − a
(K)
2 D(KI)

1 − a3 d
(I)
0 ,

(P · H̄3)I = b0 d
(I)
3 + b

(K)
1 D(KI)

2 − b
(K)
2 D(KI)

1 − b3 d
(I)
0 ,

(2.58)

the new second and third tadpole cancellation conditions in (2.57) for the R-R gauge

potentials C ′8 and C̃8 read

b0 c
(I)
3 + b

(K)
1 C(KI)

2 − b
(K)
2 C(KI)

1 − b3 c
(I)
0 +

a0 d
(I)
3 + a

(K)
1 D(KI)

2 − a
(K)
2 D(KI)

1 − a3 d
(I)
0 = N ′7I

(2.59)

and

b0 d
(I)
3 + b

(K)
1 D(KI)

2 − b
(K)
2 D(KI)

1 − b3 d
(I)
0 = Ñ7I . (2.60)

The quantities N ′7I and Ñ7I are respectively related to the number of I7-branes

(bound states of D7-branes and NS7-branes [139]) and NS7-branes which can be

added to the system wrapping the Ith 4-cycle dual to the 2-torus T2
I .

• There is also the SL(2,Z)-singlet tadpole of (2.52) for the R-R gauge potential C4

which does not transform under the type IIB SL(2,Z) self-duality.

In addition, further relations involving Jacobi-like contractions and tadpole-like con-

tractions of background fluxes take place in this type IIB orientifold theory, as originally

notice in ref. [8]. These relations are given by

H̄3Q = 0 ⇒ Q · H̄3 = 0 and F̄3P = 0 ⇒ P · F̄3 = 0 . (2.61)

As a consequence, satisfying the H̄3Q− F̄3P = 0 Jacobi identity of (2.50) in a piecewise

manner, i.e. H̄3Q = F̄3P = 0, will imply the vanishing N ′7I = 0 of the flux-induced

tadpoles for the R-R gauge potential C ′8.
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2.6 The “isotropic” supergravity flux models

Thus far we have worked out a four-dimensional N = 1 supergravity theory which de-

scribes the dynamics of seven moduli fields Φ ≡ (U1 , U2 , U3 , S , T1 , T2 , T3 ) and that

results invariant under both T- and S-duality transformations. Given the Kähler potential

in (2.15) and the superpotential in (2.41), the moduli evolve according to the standard

N = 1 scalar potential

V (Φ) = eK

(∑
Φ

KΦΦ̄|DΦW |2 − 3|W |2
)
, (2.62)

where KΦΦ̄ is the inverse of the Kähler metric in (2.16), and DΦW = ∂W
∂Φ + ∂K

∂ΦW is the

Kähler derivative. Moduli fields are stabilised at the minimum of the potential energy,

taking a vacuum expectation value Φ0 determined by the extremisation conditions

∂V (Φ)

∂Φ

∣∣∣∣
Φ=Φ0

= 0. (2.63)

This effective theory depends on 64 flux parameters although, as we have already seen,

they are further restricted by Jacobi identities and tadpole cancellation conditions. In any

case, finding moduli flux vacua in this generic setup is rather cumbersome.

To make it more affordable, we will impose an additional Z3 symmetry on the fluxes

under the exchange 1→ 2→ 3 in the factorisation

T6 = T2
1 × T2

2 × T2
3 , (2.64)

of the three 2-tori making up the internal space. We will refer to this restriction as isotropic

flux backgrounds or, with some abuse of language, as the isotropic model. Notice that this

isotropy assumption is realised on the flux backgrounds instead of on the internal space,

as it was done in [7,95]. In that case there are only O3-planes and two geometric moduli,

namely the overall Kähler and complex structure parameters.

Concretely, the aforementioned isotropic model ansatz is realized on the components

of the flux backgrounds as

c
(I)
0 ≡ c0 , c̃

(I)
1 ≡ c̃1 , ĉ

(I)
1 ≡ ĉ1 , č

(I)
1 ≡ č1 ,

c
(I)
3 ≡ c3 , c̃

(I)
2 ≡ c̃2 , ĉ

(I)
2 ≡ ĉ2 , č

(I)
2 ≡ č2 ,

d
(I)
0 ≡ d0 , d̃

(I)
1 ≡ d̃1 , d̂

(I)
1 ≡ d̂1 , ď

(I)
1 ≡ ď1 ,

d
(I)
3 ≡ d3 , d̃

(I)
2 ≡ d̃2 , d̂

(I)
2 ≡ d̂2 , ď

(I)
2 ≡ ď2 ,

b
(I)
1 ≡ b1 , b

(I)
2 ≡ b2 , a

(I)
1 ≡ a1 , a

(I)
2 ≡ a2 ,

(2.65)

so it simplifies the supergravity effective models by reducing the number of flux parame-

ters from 64 to 24. The isotropic fluxes are summarised in tables 2.3, 2.4 and 2.5.
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F̄−−− F̄|−− F̄−|| F̄||| H̄−−− H̄|−− H̄−|| H̄|||

a3 a2 a1 a0 b3 b2 b1 b0

Table 2.3: Isotropic F̄3 and H̄3 flux components in the Z2 × Z2 orbifold.

Q−−− Q
|−
| Q

−|
| Q−−| Q

||
− Q

|−
− Q

−|
− Q

||
|

c̃1 ĉ1 č1 c0 c3 č2 ĉ2 c̃2

Table 2.4: Isotropic non-geometric Q-flux components in the Z2 × Z2 orbifold.

P−−− P
|−
| P

−|
| P−−| P

||
− P

|−
− P

−|
− Q

||
|

d̃1 d̂1 ď1 d0 d3 ď2 d̂2 d̃2

Table 2.5: Isotropic non-geometric P -flux components in the Z2 × Z2 orbifold.

The ansatz of isotropic fluxes is compatible with vacua in which the geometric moduli

are also isotropic, namely,

U1 = U2 = U3 ≡ U and T1 = T2 = T3 ≡ T . (2.66)

This means that there is only one overall complex structure modulus U and one Kähler

modulus T together with the axiodilaton S. In this case, the Kähler potential in (2.15)

and the superpotential in (2.41) reduce to

K = −3 log
(
−i (U − Ū)

)
− log

(
−i (S − S̄)

)
− 3 log

(
−i (T − T̄ )

)
,

W = P1(U) + S P2(U) + T
(
P3(U) + S P4(U)

)
,

(2.67)

where the isotropic P1,2,3,4(U) cubic polynomials now depend on the single complex struc-

ture modulus U and have the simple expressions

P1(U) = a0 − 3 a1 U + 3 a2 U
2 − a3 U

3 , (2.68)

P2(U) = −b0 + 3 b1 U − 3 b2 U
2 + b3 U

3 , (2.69)

P3(U) = 3
(
c0 + (ĉ1 + č1 − c̃1)U − (ĉ2 + č2 − c̃2)U2 − c3 U

3
)
, (2.70)

P4(U) = −3
(
d0 + (d̂1 + ď1 − d̃1)U − (d̂2 + ď2 − d̃2)U2 − d3 U

3
)
. (2.71)

The Kähler potential and the superpotential in (2.67) define the four-dimensional

N = 1 effective supergravity which we will deal with during the next three chapters of

the thesis.
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2.6.1 Isotropic Jacobi identities and tadpole cancellation conditions

Making the isotropic flux ansatz of (2.65) leaves us with a much more simplified set of

Jacobi identities as well as tadpole cancellation conditions.

We will start with the SL(2,Z)-triplet of Jacobi identities in (2.49). In terms of flux

components, the Q2 = 0 constraints are written as

ĉ2 c̃1 − c̃1 č2 + č1 ĉ2 − c0 c3 = 0 , c3 c̃1 − č2
2 + c̃2 ĉ2 − ĉ1 c3 = 0 ,

c3 c0 − č2 ĉ1 + c̃2 č1 − ĉ1 c̃2 = 0 , c0 c̃2 − č2
1 + c̃1 ĉ1 − ĉ2 c0 = 0 ,

(2.72)

plus one additional copy of each condition with či ↔ ĉi. An important result is that

saturating7 this ideal with respect to the conditions či 6= ĉi automatically implies that c̃i

is complex. Therefore, it must be that

č1 = ĉ1 ≡ c1 and č2 = ĉ2 ≡ c2 . (2.73)

Using the result in (2.73), the Jacobi constraints satisfied by the non-geometric Q-flux

background become

c0 (c2 − c̃2) + c1 (c1 − c̃1) = 0 ,

c2 (c2 − c̃2) + c3 (c1 − c̃1) = 0 ,

c0c3 − c1c2 = 0 .

(2.74)

A similar reasoning can be done concerning the P 2 = 0 constraints in (2.49). These

conditions are exactly those in (2.74) when replacing c → d. In addition, the third

element of the triplet in (2.49) gives a mixing between the Q and P fluxes which, in

terms of their entries, reduces to

c3d0 − c2d1 − c1d2 + c0d3 = 0 ,

c1(d1 − d̃1) + c0(d2 − d̃2) + d0(c2 − c̃2) + d1(c1 − c̃1) = 0 ,

c3(d1 − d̃1) + c2(d2 − d̃2) + d2(c2 − c̃2) + d3(c1 − c̃1) = 0 .

(2.75)

Therefore, the conditions in (2.74) (equivalently for the P -flux components) and (2.75)

determine the form of the flux-induced polynomials P3(U) and P4(U) in (2.70) and (2.71).

Let us now consider the H̄3Q − F̄3P = 0 Jacobi identity of (2.50). It is an SL(2,Z)-

singlet and involves the entire set of fluxes. Inserting the isotropic flux backgrounds, we

find that the resulting conditions are written in terms of the flux entries as

c0 b2 − c2 b0 + (c1 − c̃1) b1 − d0 a2 + d2 a0 − (d1 − d̃1) a1 = 0 ,

c0 b3 − c2 b1 + (c1 − c̃1) b2 − d0 a3 + d2 a1 − (d1 − d̃1) a2 = 0 ,

c1 b2 − c3 b0 − (c2 − c̃2) b1 − d1 a2 + d3 a0 + (d2 − d̃2) a1 = 0 ,

c1 b3 − c3 b1 − (c2 − c̃2) b2 − d1 a3 + d3 a1 + (d2 − d̃2) a2 = 0 .

(2.76)

7This can be done using a computational algebra program as Singular [173] and solving over the real

field. In ref. [7], an analogous result is obtained manipulating this set of polynomial constraints by hand.
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The above constraints restrict the R-R F̄3 and the NS-NS H̄3 fluxes that respectively

determine the polynomials P1(U) and P2(U) in (2.68) and (2.69).

Finally, the tadpole cancellation relations also become simpler in the isotropic case.

Substituting the isotropic flux backgrounds one obtains

a0 b3 − 3 a1 b2 + 3 a2 b1 − a3 b0 = N3 , (2.77)

as the tadpole cancellation condition for the R-R gauge potential C4. In addition, the

constraints in (2.56), (2.59) and (2.60) depending on I = 1, 2, 3 reduce to the three

constraints

a0 c3 + a1 (2 c2 − c̃2)− a2 (2 c1 − c̃1)− a3 c0 = N7 , (2.78)

b0 c3 + b1 (2 c2 − c̃2)− b2 (2 c1 − c̃1)− b3 c0 +

a0 d3 + a1 (2 d2 − d̃2)− a2 (2 d1 − d̃1)− a3 d0 = N ′7 (2.79)

and

b0 d3 + b1 (2 d2 − d̃2)− b2 (2 d1 − d̃1)− b3 d0 = Ñ7 , (2.80)

which are the tadpole cancellation conditions associated to the SL(2,Z)-triplet of R-R

gauge potentials (C8, C
′
8, C̃8). All these tadpole conditions further restrict the R-R fluxes.

Nevertheless, our approach will consider the net charges N3, N7, N ′7 and Ñ7 to be free

parameters.

2.6.2 Roots structure of non-geometric flux-induced polynomials

The restriction in (2.73) upon the non-geometric Q-flux background simplifies the corre-

sponding flux-induced polynomial in (2.70) to

P3(U) = 3
(
c0 + (2 c1 − c̃1)U − (2 c2 − c̃2)U2 − c3 U

3
)
, (2.81)

with the flux coefficients being integer parameters.

Additionally, the Q2 = 0 system of equations in (2.74) is easy to solve explicitly. The

solution variety has three disconnected pieces of different dimensions. The first piece has

dimension four and it is characterised by fluxes

c3 = λp k2 , c2 = λp k1 , c̃1 = λq k2 + λk1 ,

c1 = λq k2 , c0 = λq k1 , c̃2 = λp k1 − λk2 .
(2.82)

Here λ = 1, (k1, k2) are two integers not zero simultaneously, and (λp, λq) are two rays

given by

λp = 1 +
p

GCD(k1, k2)
and λq = 1 +

q

GCD(k1, k2)
, (2.83)
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where p, q ∈ Z. By convention GCD(n, 0) = |n|. With coefficients given by the fluxes in

(2.82), the polynomial P3(U) turns out to factorise as

P3(U) = 3 (k1 + k2 U) (λq − λU − λp U2) . (2.84)

Notice that we have taken into account that the non-geometric fluxes are integers. The

second piece of solutions is three-dimensional, the set of fluxes can still be characterised

by (2.82) and P3(U) by (2.84), but with λ ≡ 0 and λp ≡ 1. Finally, the third piece has

only two dimensions with fluxes and P3(U) specified by setting λ ≡ 0, λp ≡ 0 and λq ≡ 1.

As a byproduct of the previous analysis we have isolated the real root of P3(U) that

always exists. In the next chapter we will investigate the T-duality invariant supergravity

theory and will explain how the nature of the remaining two roots is correlated with the

type of ggauge subalgebra in (2.46) spanned by the Xa generators. For example, we will

see that in the third piece of solutions with k2 = 0, the ggauge turns out to be nilpotent.

Finally the above derivation can be repeated for the case of the non-geometric P -flux

whose flux-induced polynomial in (2.71) also simplifies to

P4(U) = −3
(
d0 + (2 d1 − d̃1)U − (2 d2 − d̃2)U2 − d3 U

3
)
. (2.85)

The roots structure of P4(U) when imposing the P 2 = 0 Jacobi identity is exactly

the same as for its counterpart in (2.84). In this sense, the P 2 = 0 constraint can be

interpreted as the Jacobi identity associated to a P -flux algebra which relates to the type

of roots of P4(U). However an interpretation of the remaining QP +PQ = 0 condition in

(2.49) turns out to be more involved and needs further discussion. We will go into these

questions in chapter 5.



Chapter 3

Supersymmetric Vacua in

T-duality Invariant Flux Models

In chapter 2 we derived the N = 1 effective supergravity theory in four dimensions

arising from the T6/Z2 × Z2 type IIB orientifold including O3/O7-planes. In addition

we considered the effect of including the doublet of gauge fluxes (F̄3, H̄3) as well as of

non-geometric fluxes (Q,P ) transforming under the SL(2,Z) self-duality of type IIB su-

pergravity (weak-strong coupling duality). For the sake of simplicity, we concentrated on

a family of supergravity flux models that appears after imposing an isotropy Z3 sym-

metry upon the fluxes and worked out the Jacobi identities and the tadpole cancellation

conditions that the fluxes must satisfy for consistency of the models. These models are

found to be invariant under the action of T-duality and S-duality transformations which

reflect at the effective level as modular transformations on the complex structure and on

the dilaton moduli fields respectively.

Here we want to consider only the effect of the gauge fluxes (F̄3, H̄3) together with a

non-geometric Q-flux. In other words, we are fixing the non-geometric P -flux background

to zero, namely, the vanishing dA = 0 of the fluxes in table 2.5. The symbolic index A

runs over all the entries of the non-geometric P -flux tensor. As a result, the supergravity

flux models arising from this P = 0 simplification are no longer invariant under SL(2,Z)

modular transformations upon the axiodilaton modulus S.

Setting P = 0 in the Jacobi identities and the tadpole cancellation conditions re-

stricting the isotropic flux configurations, these result further simplified. While the flux

constraints in (2.74) coming from the Jacobi identity Q2 = 0 are left intact, those in
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(2.76) arising from H̄3Q− F̄3P = 0 get simplified to

c0 b2 − c2 b0 + (c1 − c̃1) b1 = 0 ,

c0 b3 − c2 b1 + (c1 − c̃1) b2 = 0 ,

c1 b2 − c3 b0 − (c2 − c̃2) b1 = 0 ,

c1 b3 − c3 b1 − (c2 − c̃2) b2 = 0 .

(3.1)

Because of the first relation in (2.61), the fact of taking P = 0 automatically imposes

the flux-induced tadpole cancellations N ′7 = Ñ7 = 0 in (2.79) and (2.80). In the weak

coupling limit, 7-branes will then look like ordinary O7-planes and D7-branes in these

type IIB orientifold models, as it was explained in section 1.4.2.

Our objective in this chapter is the study and classification of supersymmetric vacua

in the aforementioned type IIB orientifold flux models.

3.1 Flux algebra and NS-NS flux-induced polynomials

We will start by discussing the solution to the Jacobi identities satisfied by the H̄3 and

the non-geometric Q fluxes. The key idea is twofold:

• First, the gauge generators Xa in (2.46) coming from the reduction of the B-field

span a six-dimensional subalgebra ggauge whose structure constants are precisely

the Qabc non-geometric fluxes.

• Second, when these Q-fluxes are invariant under the Z2 × Z2 orbifold symmetry

described in section 2.1, the subalgebra ggauge is rather constrained. We expect

only a few subalgebras to be allowed in the isotropic case and our strategy is to

identify them.

In this way we will manage to provide explicit parameterisations for the non-geometric Q-

flux backgrounds that satisfy the Jacobi identity Q2 = 0 in (2.47). Once this is achieved,

we will also be able to find the corresponding NS-NS H̄3 fluxes that fulfil the H̄3Q = 0

Jacobi identities in (3.1).

We want to consider in detail the set of isotropic non-geometric Q-fluxes given in

table 2.4 plus the conditions č1 = ĉ1 ≡ c1 and č2 = ĉ2 ≡ c2 of (2.73). In this case the

subalgebra ggauge simplifies to[
X2I−1, X2J−1

]
= εIJK

(
c̃1X

2K−1 + c0X
2K
)
,[

X2I−1, X2J
]

= εIJK
(
c2X

2K−1 + c1X
2K
)
, (3.2)[

X2I , X2J
]

= εIJK
(
c3X

2K−1 + c̃2X
2K
)
,

where I, J,K = 1, 2, 3. The Jacobi identities of this Q-algebra are given in (2.74). To

reveal further properties, it is instructive to compute the Cartan-Killing metric, denoted
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MQ, with components

Mab
Q = Qadc Qbcd . (3.3)

For the above ggauge of isotropic fluxes we find that the six-dimensional matrix MQ is

block-diagonal, namely

MQ = diag (Mg ,Mg ,Mg) , (3.4)

where the 2× 2 matrix Mg turns out to be

Mg = −2

(
c̃2

1 + 2c0c2 + c2
1 c̃1c2 + c1c2 + c0c3 + c1c̃2

c̃1c2 + c1c2 + c0c3 + c1c̃2 c̃2
2 + 2c1c3 + c2

2

)
. (3.5)

Since Mg is symmetric, we conclude that MQ can have up to two distinct real eigenval-

ues, each with multiplicity three.

The full 12-dimensional algebra g in (2.46) incorporating also the isometry Za genera-

tors enjoys distinctive features alike. In the isotropic case the remaining isometry-isometry

algebra commutators involving the NS-NS H̄3 fluxes are given by

[Z2I−1, Z2J−1] = εIJK
(
b3X

2K−1 + b2X
2K
)
,

[Z2I−1, Z2J ] = εIJK
(
b2X

2K−1 + b1X
2K
)
, (3.6)

[Z2I , Z2J ] = εIJK
(
b1X

2K−1 + b0X
2K
)
,

whereas the mixed piece of the algebra involving the gauge-isometry brackets is determined

by the co-adjoint action Q? of Q as[
Z2I−1, X

2J−1
]

= εIJK (c̃1 Z2K−1 + c2 Z2K) ,[
Z2I−1, X

2J
]

= εIJK (c2 Z2K−1 + c3 Z2K) ,[
Z2I , X

2J−1
]

= εIJK (c0 Z2K−1 + c1 Z2K) , (3.7)[
Z2I , X

2J
]

= εIJK (c1 Z2K−1 + c̃2 Z2K) .

Besides the Jacobi identities purely involving the non-geometric Q-fluxes, there are the

additional mixed constraints of (3.1). Computing the full Cartan-Killing metric, denoted

M, shows that there are no mixed XZ-terms. In fact, the matrix is again block-diagonal

M = diag (Mg ,Mg ,Mg ,Misom ,Misom ,Misom) , (3.8)

with Mg shown above. The new 2× 2 matrix Misom is found to be

Misom = −4

(
b3c̃1 + 2b2c2 + b1c3 b2(c1 + c̃1) + b1(c2 + c̃2)

b2(c1 + c̃1) + b1(c2 + c̃2) b0c̃2 + 2b1c1 + b2c0

)
. (3.9)

Here we have simplified Misom using the Jacobi identities in (3.1). We conclude that the

allowed 12-dimensional algebras g are such that the Cartan-Killing matrix can have up

to four distinct eigenvalues, each with multiplicity three.
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Let us now return to the subalgebra ggauge spanned by the Xa generators and the

task of solving the constraints in (2.74) that arise from the Jacobi identity Q2 = 0. The

idea is to fulfil these constraints by choosing the non-geometric Q-fluxes to be the struc-

ture constants of six-dimensional Lie algebras whose Cartan-Killing matrix has the simple

block-diagonal form of (3.4). To proceed it is convenient to distinguish whether MQ is

non-degenerate or not, i.e. whether ggauge is semisimple or not. If detMQ 6=0, and MQ

is negative definite, the only possible Q-algebra is the compact so(4) ∼ su(2)2. On the

other hand, the only non-compact semisimple Q-algebra with the required block structure

is so(3, 1). When detMQ=0, the Q-algebra is non-semisimple. In this class to begin we

find two compatible algebras, namely the direct sum su(2) + u(1)3 and the semi-direct

sum su(2)⊕Z3 u(1)3 that is isomorphic to the Euclidean algebra iso(3). The ⊕Z3 symbol

denotes the semidirect sum of algebras endowed with the Z3 cyclic structure coming from

isotropy. The remaining possibility is that the non-semisimple Q-algebra be completely

solvable. One example is the nilpotent u(1)6 that we disregard because the non-geometric

Q-fluxes vanish identically. A second non-trivial solvable algebra, that is actually nilpo-

tent, will be discussed shortly.

After classifying the allowed 6-dimensional subalgebras ggauge the next step is to

find the set of corresponding non-geometric Q-fluxes. Except for the nilpotent example,

all other cases have an su(2) factor. This suggests to make a change of basis from

(X2I−1, X2I) with I = 1, 2, 3, to new generators (EI , ẼI) such that basically one type,

say EI , spans su(2). The Z3
2 symmetry of the fluxes require that we form combinations

that transform in a definite way. For instance, EI can only be a combination of X2I−1

and X2I with the same I. Furthermore, for isotropic fluxes it is natural to make the

same transformation for each I. We will then make the SL(2,R) transformation(
EI

ẼI

)
=

1

|Γ|2

(
−α β

−γ δ

)(
X2I−1

X2I

)
, (3.10)

for all I = 1, 2, 3. Here |Γ| = αδ − βγ, and it must be that |Γ| 6= 0. In the following we

will refer to (α, β, γ, δ) as the Γ parameters.

Substituting into (3.2), it is straightforward to obtain the algebra satisfied by the new

generators EI and ẼJ . This algebra will depend on the non-geometric Q-fluxes as well

as on the parameters (α, β, γ, δ) . We can then prescribe the commutators to have the

standard form for the allowed algebras found previously. For instance, in the direct prod-

uct examples we impose
[
EI , ẼJ

]
= 0.

In the following sections we will discuss each compatible 6-dimensional subalgebra

ggauge in more detail. As we explained, this subalgebra is spanned by the Xa generators

coming from the reduction of the B-field. The goal is to parameterise the non-geometric
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Q-fluxes in terms of (α, β, γ, δ) for each type of B-field reduction, namely, semisimple and

non-semisimple reductions. By construction these fluxes will satisfy the Jacobi identity

Q2 = 0 of the algebra g in (2.46). We will then solve the mixed constraints in (3.1)

involving the NS-NS H̄3 fluxes. The main result will be an explicit factorisation of the

cubic polynomials P3(U) and P2(U) that dictate the couplings among the moduli fields.

3.1.1 Semisimple B-field reductions

The Q-algebra is semisimple when the Cartan-Killing metric is non-degenerate. This

means detMQ 6= 0 and hence detMg 6= 0. Now, six-dimensional semisimple algebras

are completely classified. If MQ is negative definite the Q-algebra is compact so that

it must be so(4) ∼ su(2) + su(2). When MQ has positive eigenvalues the Q-algebra is

non-compact and it could be so(3, 1) or so(2, 2) but the latter does not fit the required

block-diagonal form in (3.4).

3.1.1.1 The so(4) ∼ su(2)2 case

The standard commutators of this algebra are[
EI , EJ

]
= εIJKE

K ,
[
ẼI , ẼJ

]
= εIJKẼ

K ,
[
EI , ẼJ

]
= 0 . (3.11)

After performing the change of basis in (3.2) we find that the non-geometric Q-fluxes

needed to describe this algebra can be parameterise as

c0 = β δ (β + δ) , c1 = β δ (α+ γ) , c̃2 = γ2 β + α2 δ ,

c3 = −αγ (α+ γ) , c2 = −αγ (β + δ) , c̃1 = − (γ β2 + α δ2) ,

(3.12)

provided that |Γ| = (αδ − βγ) 6= 0. It is easy to show that these fluxes verify the Jacobi

identities in (2.74). What we have done is to trade the six non-geometric Q-fluxes, con-

strained by two independent conditions, by the four independent parameters (α, β, γ, δ).

These parameters are real but the resulting non-geometric Q-fluxes in (3.12) must be in-

tegers.

For future purposes we need to determine the cubic polynomial P3(U) that corresponds

to the parameterised non-geometric Q-fluxes. Substituting in (2.81) yields

P3(U) = 3(αU + β)(γU + δ)
[
(α+ γ)U + (β + δ)

]
. (3.13)

This clearly shows that in this case P3(U) has three real roots. Moreover, the roots

are all different because |Γ| 6= 0. We will prove that for other algebras P3(U) has either

complex roots or degenerate real roots. The remarkable conclusion is that P3(U) has three

different real roots if and only if the algebra of the non-geometric Q-fluxes is the compact

so(4) ∼ su(2) + su(2). Alternatively, we may start with the condition that the polynomial
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has three different real roots that we can choose to be at 0, −1 and ∞ without loss of

generality. These roots can then be moved to arbitrary real locations by a linear fractional

transformation

Z =
αU + β

γ U + δ
, (3.14)

with (α, β, γ, δ) ∈ R and |Γ| 6= 0. By comparing the roots of P3(U) in terms of the fluxes

with those in terms of the transformation parameters we rediscover the map in (3.12)

and the associated su(2)2 algebra. In the next sections we will see that the variable Z
introduced above plays a very important physical role.

We now turn to the Jacobi constraints in (3.1) involving the NS-NS H̄3 fluxes. In-

serting the non-geometric Q-fluxes of (3.12) we find that the b’s fluxes can be completely

fixed by the Γ parameters plus two new real variables (ε1, ε2) as follows

b0 = − (ε1 β
3 + ε2 δ

3) , b2 = − (ε1 α
2 β + ε2 γ

2 δ) ,

b3 = ε1 α
3 + ε2 γ

3 , b1 = ε1 αβ
2 + ε2 γ δ

2 .
(3.15)

We also need to compute the polynomial P2(U) that depends on the NS-NS H̄3 fluxes.

Substituting the above b’s in (3.15) yields

P2(U) = ε1(αU + β)3 + ε2(γU + δ)3 . (3.16)

It is easy to show that because |Γ| 6= 0, the P2(U) flux-induced polynomial has complex

roots whenever ε1 ε2 6= 0. Contrariwise, P2(U) has a triple real root if either ε1 or ε2

vanishes.

We may expect that the full 12-dimensional algebra g has special properties when

P2(U) has a triple root. Indeed, inserting the fluxes in (3.12) and (3.15) into (3.9) yields

detMisom = 16 ε1 ε2 |Γ|6. Hence, the full Cartan-Killing matrix M happens to be degen-

erate when ε1 ε2 = 0. To learn more about the full algebra it is convenient to switch from

the original Za isometry generators to a new basis (DI , D̃I) defined by(
DI

D̃I

)
=

1

|Γ|2

(
δ γ

β α

)(
Z2I−1

Z2I

)
, (3.17)

for I = 1, 2, 3. It is straightforward to compute the piece of the full algebra generated by

the (DI , D̃I) . Substituting the parameterised fluxes in (3.6) and (3.7) we obtain[
DI , DJ

]
= −ε1 εIJKEK ,

[
D̃I , D̃J

]
= −ε2 εIJKẼK ,[

EI , DJ

]
= εIJKDK ,

[
ẼI , D̃J

]
= εIJKD̃K ,

(3.18)

where all other commutators do vanish. A quick inspection of the whole algebra encoded

in (3.11) and (3.18) shows that when either ε1 or ε2 is zero, the DI or the D̃I , generate

a 3-dimensional invariant abelian subalgebra. Moreover, when say ε1 = 0 and ε2 6= 0, the
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Misom block of the full Cartan-Killing metric has one zero and one non-zero eigenvalue

which is negative for ε2 < 0 and positive for ε2 > 0. The upshot is that when ε1 ε2 = 0,

the 12-dimensional algebra g is iso(3) + g, where g is either so(4) or so(3, 1). On the

other hand, when ε1 ε2 < 0, the algebra is so(4) + so(3, 1), whereas for ε1, ε2 < 0 it is

so(4)2, and for ε1, ε2 > 0 it is so(3, 1)2.

The methods developed in this section will be applied shortly to other subalgebras.

In summary, the non-geometric Q and the NS-NS H̄3 fluxes can be parameterised us-

ing auxiliary variables (α, β, γ, δ) and (ε1, ε2) in such a way that the Jacobi identities

are satisfied and flux-induced superpotential terms are explicitly factorised. The full 12-

dimensional algebra g can be simply characterised after the changes of basis (3.10) and

(3.17) are performed. We will carry out this algebra classification in the next chapter.

The auxiliary variables are constrained by the condition that the resulting fluxes be

integers. This issue deserves further explanation. There are two cases depending on

whether the polynomial P2(U) has complex roots or not. If it does not, we can take

ε1 = 0 to be concrete. From the structure of the NS-NS fluxes H̄3 in (3.15) it is then

obvious that, for α 6= 0, the quotient β/α is a rational number. Going back to the non-

geometric Q-fluxes, it can be shown that the ratios γ/α and δ/α, as well as α3 and ε2

also belong to Q. If P2(U) admits complex roots the generic result is that ε2/ε1, β/α ,

α3 , etc., involve square roots of rationals. However, it happens that when at least one of

the non-geometric parameters (α, β, γ, δ) is zero then all well defined quotients are again

rational numbers.

3.1.1.2 The so(3, 1) case

This is the well known Lorentz algebra. We can take EI to be the angular momentum

generators and ẼJ to be the boost generators. Thus, the Q-algebra can be written as[
EI , EJ

]
= εIJKE

K ,
[
ẼI , ẼJ

]
= −εIJKEK ,

[
EI , ẼJ

]
= εIJKẼ

K . (3.19)

In this case the non-geometric Q-fluxes that produce the algebra are found to be

c0 = −β
(
β2 + δ2

)
, c1 = −α

(
β2 + δ2

)
, c̃2 = −β (α2 − γ2)− 2 γ δ α ,

c3 = α
(
α2 + γ2

)
, c2 = β

(
α2 + γ2

)
, c̃1 = α

(
β2 − δ2

)
+ 2β γ δ ,

(3.20)

as long as |Γ| 6= 0. Substituting the resulting non-geometric Q-fluxes in (2.81) gives the

P3(U) polynomial

P3(U) = −3(αU + β)
[
(αU + β)2 + (γU + δ)2

]
. (3.21)

Since Γ 6= 0, P3(U) always has complex roots. We will see that for non-semisimple

algebras all roots of P3(U) are real, as for the compact so(4). Hence, the important
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observation now is that P3(U) has complex roots if and only if the algebra of the non-

geometric Q-fluxes is the non-compact so(3, 1).

The Jacobi constraints in (3.1) for the NS-NS H̄3 fluxes can again be solved in terms

of the Γ parameters plus two real constants that we again denote by (ε1, ε2). Concretely,

b0 = −β
(
β2 − 3δ2

)
ε1 − δ

(
δ2 − 3β2

)
ε2 ,

b1 = (αβ2 − 2βγδ − αδ2) ε1 +
(
γδ2 − 2αδβ − γβ2

)
ε2 ,

b2 =
(
βγ2 + 2γδα− βα2

)
ε1 +

(
δα2 + 2βγα− δγ2

)
ε2 ,

b3 = α
(
α2 − 3γ2

)
ε1 + γ

(
γ2 − 3α2

)
ε2 .

(3.22)

These fluxes give rise to the NS-NS H̄3 flux-induced polynomial

P2(U) = (γU + δ)3(ε1Z3 − 3ε2Z2 − 3ε1Z + ε2) , (3.23)

where Z = (αU + β)/(γU + δ) as before. The discriminant of this cubic polynomial is

always negative, so the P2(U) polynomial has three different real roots.

3.1.2 Non-semisimple B-field reductions

Accordingly to the Levi’s decomposition theorem, the Q-algebra in this case is the semidi-

rect sum of a semisimple algebra and a solvable invariant subalgebra. Lack of simplicity

is detected imposing detMQ = 0 which requires detMg = 0, where Mg is shown in

(3.5). Combining with the Jacobi identities in (2.74) we deduce that up to isomorphisms

there are only two solutions in which the solvable invariant subalgebra has dimension less

than six. In practice this means that Mg has only one zero eigenvalue. As expected from

the underlying symmetries, this invariant subalgebra can only have dimension three and

be u(1)3. The semisimple piece can only be su(2), so the two solutions are the direct and

semidirect sum discussed below.

The remaining possibility consistent with the symmetries is for the solvable invariant

subalgebra to have dimension six. The criterion for solvability is that the derived algebra

[ggauge, ggauge] be orthogonal to the whole algebra ggauge with respect to the Cartan-

Killing metric. In our case this means Qabc Mdc
Q = 0, ∀a, b, d. The non-geometric Q-fluxes

further satisfy the Jacobi identity Q2 = 0. On the other hand, the stronger condition for

nilpotency is Mdc
Q = 0. For our Q-algebra of isotropic fluxes given in (3.2), we find that all

solvable flux configurations are necessarily nilpotent. The proof can be carried out using

the algebraic package Singular to manipulate the various ideals1. This result is consistent

with the fact that in our model MQ is block-diagonal so that when detMQ = 0, it

has three or six null eigenvalues and in the latter situation MQ is identically zero. One

1A group theoretical derivation of the allowed ggauge in the Z2 ×Z2 isotropic orbifold will be given in

chapter 4.
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obvious nilpotent algebra is u(1)6, but it is uninteresting because the associated Q-fluxes

vanish identically. There is a second solution which will be described later.

The allowed non-semisimple Q-algebras can all be obtained starting from su(2)2 and

performing contractions consistent with the underlying symmetries of the isotropic fluxes.

For example, setting E′I = EI and Ẽ′I = λ ẼI in (3.11) and then letting λ→ 0 obviously

gives the direct sum su(2) + u(1)3. More generically we can take E′I = λa (EI + ẼI) and

Ẽ′I = λb (EI−ẼI) with a, b ≥ 0. The limit a = 0, b > 0 and λ→ 0 yields the Euclidean

algebra iso(3). Letting instead 2b = a > 0 and contracting gives the nilpotent algebra.

3.1.2.1 The su(2) + u(1)3 case

Since this algebra is a direct sum and one factor is abelian, the brackets take the simple

form [
EI , EJ

]
= εIJKE

K ,
[
ẼI , ẼJ

]
= 0 ,

[
EI , ẼJ

]
= 0 . (3.24)

Requiring that, after the change of basis in (3.10), the algebra in (3.2) is of this type

returns the following non-geometric Q-fluxes

c0 = β δ2 , c1 = β δ γ , c̃2 = γ2 β ,

c3 = −αγ2 , c2 = −αγ δ , c̃1 = −δ2 α ,
(3.25)

assuming |Γ| 6= 0. These fluxes automatically satisfy the Jacobi identities in (2.74). They

also satisfy the additional condition c0 c2 = c1 c̃1 arising from detMg = 0. The non-

geometric Q-fluxes of the Q-algebra su(2) + u(1)3 lead to the P3(U) polynomial

P3(U) = 3(αU + β)(γU + δ)2 . (3.26)

One observes that P3(U) has one single and one double real root. The Jacobi identities

in (3.1) again fix the NS-NS H̄3 fluxes as in the previous cases. The solution in terms of

the free parameters is given by

b0 = − (ε1 β
3 + ε2 δ

3) , b2 = − (ε1 α
2 β + ε2 γ

2 δ) ,

b3 = ε1 α
3 + ε2 γ

3 , b1 = ε1 αβ
2 + ε2 γ δ

2 .
(3.27)

For the associated polynomial P2(U) we then find

P2(U) = ε1(αU + β)3 + ε2(γU + δ)3 , (3.28)

which, as in the compact case, has complex roots whenever ε1 ε2 6= 0.

3.1.2.2 The su(2)⊕Z3 u(1)3 ∼ iso(3) case

The Levi’s theorem states that in general the Q-algebra can be characterised as[
EI , EJ

]
= εIJK

(
EK + ẼK

)
,

[
ẼI , ẼJ

]
= 0 ,

[
EI , ẼJ

]
= εIJKẼ

K . (3.29)
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The typical form of the Euclidean algebra in three dimensions is recognised after the

isomorphism (EI − ẼI)→ ÊI . The non-geometric Q-fluxes needed to reproduce the above

commutators turn out to be

c0 = −δ2 (β − δ) , c1 = −δ2 (α− γ) , c̃2 = γ2 (β + δ)− 2 γ δ α ,

c3 = γ2 (α− γ) , c2 = γ2 (β − δ) , c̃1 = −δ2 (α+ γ) + 2 γ δ β ,

(3.30)

for |Γ| 6= 0. Besides the Jacobi identity Q2 = 0, these Q-fluxes satisfy the additional

condition 4c0c2 = −(c1 − c̃1)2 by virtue of detMg = 0. For the flux configuration of this

Q-algebra the P3(U) polynomial becomes

P3(U) = 3(γU + δ)2
[
(γ − α)U + (δ − β)

]
. (3.31)

As in the direct sum su(2) + u(1)3, this P3(U) polynomial has one single and one double

real root.

The NS-NS H̄3 fluxes can be determined from the Jacobi identities in (3.1). Intro-

ducing again parameters (ε1, ε2) leads to

b0 = −δ2 (β ε1 + δ ε2) , b2 = −γ
3

(β γ + 2α δ) ε1 − γ2 δ ε2 ,

b3 = γ2 (α ε1 + γ ε2) , b1 =
δ

3
(α δ + 2β γ) ε1 + γ δ2 ε2 .

(3.32)

The companion polynomial P2(U) of the NS-NS H̄3 fluxes is fixed as

P2(U) = (γU + δ)2 [ε1(αU + β) + ε2(γU + δ)] . (3.33)

Analogous to the non-compact case, this P2(U) has only real roots, but one of them is

degenerate.

3.1.2.3 The u(1)3 ⊕Z3 u(1)3 ∼ nil case

To search for Q-flux configurations that generate a nilpotent Q-algebra we impose that

the Cartan-Killing metric vanishes. Now, in our model MQ = 0 implies the much simpler

conditions detMg = 0 and TrMg = 0. Up to isomorphisms, we find only one non-trivial

solution. This is the expected result based on the known classification of 6-dimensional

nilpotent algebras2.

From the 34 isomorphism classes of nilpotent algebras, besides u(1)6, only one is

compatible with isotropic fluxes invariant under the Z2 × Z2 orbifold symmetry. The

algebra is 2-step nilpotent and its brackets can be written as[
EI , EJ

]
= εIJKẼ

K ,
[
ẼI , ẼJ

]
= 0 ,

[
EI , ẼJ

]
= 0 , (3.34)

2A table and references to the original literature are given in ref. [99].
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so, up to isomorphisms, this is the Q-algebra nil = u(1)3 ⊕Z3 u(1)3 labelled n3.5 in Ta-

ble 4 of ref. [99].

The change of basis from the original (X2I−1, X2I) generators to the new (EI , ẼI)

ones is still given by (3.10). Starting from the Xa commutators in (3.2) we can then

deduce Q-fluxes such that the nilpotent algebra in (3.34) is reproduced. In this way we

obtain
c0 = δ3 , c1 = δ2 γ , c̃2 = δ γ2 ,

c3 = −γ3 , c2 = −δ γ2 , c̃1 = −δ2 γ .
(3.35)

Notice that these Q-fluxes only depend on two independent parameters. This occurs

because besides the Jacobi constraints there are two more conditions detMg = 0 and

TrMg = 0. The non-geometric Q-fluxes of the nilpotent algebra generate the P3(U)

polynomial

P3(U) = 3(γU + δ)3 , (3.36)

which clearly has one triple real root.

In analogy with all previous examples, the H̄3Q = 0 Jacobi identity determines the NS-

NS fluxes H̄3 in terms of two additional parameters (ε1, ε2). Inserting the non-geometric

Q-fluxes of the nilpotent algebra into (3.1) readily yields

b0 = −δ2 (δ ε2 + γ ε1) , b2 = −γ2 δ ε2 +
γ

3

(
2 δ2 − γ2

)
ε1 ,

b3 = γ2 (γ ε2 − δ ε1) , b1 = γ δ2 ε2 −
δ

3

(
δ2 − 2 γ2

)
ε1 .

(3.37)

Substituting in (2.69) we easily obtain the corresponding polynomial

P2(U) = (γU + δ)2 [ε2(γU + δ) + ε1(γ − δU)] . (3.38)

As in the su(2)⊕Z3 u(1)3 case, this P2(U) has one single and one double real root.

Without loss of generality we can choose α = −δ and β = γ (so that |Γ| < 0) in order to

write P2(U) in terms of the variable Z = (αU + β)/(γU + δ) as

P2(U) = (γU + δ)3(ε1Z + ε2) . (3.39)

The advantage of this choice of parameters will become evident when we perform a trans-

formation from U to Z in the scalar potential.

3.2 New variables and R-R background fluxes

The T-duality invariant superpotential in (2.28) depends on the complex structure parame-

ter U through the three cubic polynomials P1(U), P2(U) and P3(U) induced respectively

by the R-R F̄3, the NS-NS H̄3 and the non-geometric Q-fluxes. Our results in last section

show that the last two polynomials can be concisely written as

P2(U) = (γU + δ)3P2(Z) and P3(U) = (γU + δ)3P3(Z) , (3.40)
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where Z = (αU+β)/(γU+δ). The real parameters (α, β, γ, δ), with |Γ| = (αδ − βγ) 6= 0,

encode the non-geometric Q-fluxes while for the NS-NS fluxes H̄3 two additional real con-

stants (ε1, ε2) are needed. As summarised in table 3.1, the polynomials P2(Z) and P3(Z)

take very specific forms according to the Q-algebra underlying the non-geometric Q flux

background.

ggauge P3(Z)/3 P2(Z) P1(Z)

ξ3 (ε1 + 3ε2Z − 3ε1Z2 − ε2Z3)
so(3, 1) −Z(Z2 + 1) ε1Z3 − 3ε2Z2 − 3ε1Z + ε2

+ 3 ξ7 (Z2 + 1)

su(2)2 Z(Z + 1) ε1Z3 + ε2 ξ3 (ε1 − ε2Z3) + 3 ξ7Z(1−Z)

su(2) + u(1)3 Z ε1Z3 + ε2 ξ3 (ε1 − ε2Z3) − 3 ξ7Z2

su(2)⊕Z3 u(1)3 1−Z ε1Z + ε2 3λ1Z + 3λ2Z2 + λ3Z3

nil 1 ε1Z + ε2 3λ1Z + 3λ2Z2 + λ3Z3

Table 3.1: Q-algebras and flux-induced polynomials.

A very nice property of the variable Z introduced in (3.14) is its invariance under

SL(2,Z)U modular transformations

U ′ =
k U + `

mU + n
with k, `, m, n ∈ Z and kn− `m = 1 . (3.41)

Since this is a symmetry of the compactification, the effective action must be invariant.

The Kähler potential, K = −3 log[−i(U − Ū)] + · · · , clearly transforms as

K ′ = K + 3 log |mU + n|2 . (3.42)

Therefore, the physically important quantity eK |W |2 is invariant as long as the superpo-

tential satisfies

W ′ =
W

(mU + n)3
. (3.43)

In order for W to fulfil this property the fluxes must transform in definite patterns. In

fact, it follows that (3.43) holds separately for each of the flux-induced polynomials in the

superpotential.

We claim that the fluxes transform under SL(2,Z)U precisely in such a manner that

Z ′ = Z . (3.44)

The proof begins by first finding how the non-geometric Q-fluxes mix among themselves

from the condition P ′3(U) = P3(U)/(mU + n)3. For example, under U ′ = −1/U , the

Q-fluxes transform as

c′0 = −c3 , c′1 = c2 , c′2 = −c1 , c′3 = c0 , c̃ ′1 = c̃2 , c̃ ′2 = −c̃1 . (3.45)
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Next we read off the corresponding transformation of the parameters (α, β, γ, δ) that are

better thought of as the elements of a matrix Γ. The result is

Γ′ =

(
α′ β′

γ′ δ′

)
=

(
α β

γ δ

)(
n −`
−m k

)
, (3.46)

so it easily follows that Z ′ = Z. One additionally has that |Γ′| = |Γ|.

For the NS-NS flux H̄3 we can study the transformation of P2(U) with coefficients

given by the bA. Alternatively, we may start from P2(U) written as function of Z as

in (3.40). The conclusion is that the transformation of the bA is also determined by Γ′

together with

(ε′1, ε
′
2) = (ε1, ε2) , (3.47)

for all the Q-algebras.

At this point it must be evident that we want to change variables from U to Z. It

is also convenient to trade the axiodilaton S and the Kähler modulus T by new fields

defined by

S = S + ξs and T = T + ξt , (3.48)

where the shifts ξs and ξt are some real parameters. The motivation is that such shifts in

the axions ReS and ReT can be reabsorbed into R-R fluxes as explained in the following.

3.2.1 Parameterisation of R-R fluxes

The systematic procedure is to express the R-R fluxes aA in such a way that their con-

tribution to the superpotential is of the form

P1(U) = (γU + δ)3P̂1(Z) , (3.49)

in complete analogy with (3.40). To arrive at this factorisation we must relate the four

R-R fluxes aA to the parameters (α, β, γ, δ) that define Z = (αU + β)/(γU + δ), and

to four additional independent variables. Obviously, P̂1(Z) can be expanded in the basis

of monomials
{

1 , Z , Z2 , Z3
}

. However, a more convenient basis contains the already

known polynomials P3(Z) and P2(Z) that are generically linearly independent. We still

need two independent polynomials and these are taken to be the duals P̃3(Z) and P̃2(Z).

The dual P̃i(Z) is such that Pi(Z)→ P̃i(Z)/Z3 when Z → −1/Z. The last two subal-

gebras in table 3.1 must be treated slightly different because linear independence of P3(Z)

and P2(Z) fails for particular values of the NS-NS H̄3 flux parameters (ε1, ε2).

We concretely make the expansion

P̂1(Z) = ξs P2(Z) + ξt P3(Z) + P1(Z) . (3.50)
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In the full superpotential the first two terms in P̂1(Z) will precisely offset the axionic shifts

in the new variables S and T shown in (3.48). Let us now discuss the remaining piece

P1(Z) that also depends on the Q-algebra and is displayed in table 3.1. As explained

before, for the first three subalgebras in the table we can further choose

P1(Z) = ξ7 P̃3(Z)− ξ3 P̃2(Z) . (3.51)

A motivation for this choice is that the R-R tadpoles turn out to depend on the R-R fluxes

only through the real coefficients (ξ3, ξ7).

For the last two subalgebras in table 3.1, P3(Z) and P2(Z) are not independent when

ε1 takes a particular critical value. For su(2)⊕Z3 u(1)3 this happens when ε1 = −ε2,

whereas for the nilpotent Q-algebra the critical value is ε1 = 0. To take into account

these possibilities, compensating at the same time for the axionic shifts, we still make the

decomposition in (3.50) but with

P1(Z) = 3λ1Z + 3λ2Z2 + λ3Z3 . (3.52)

Away from the critical values of the ε1 parameter we can take λ1 = 0 because ξs and

ξt are independent parameters. At the critical value necessarily λ1 6= 0 but in this case

ξs and ξt enter in the R-R fluxes in only one linearly independent combination. The R-R

flux-induced tadpoles happen to depend just on the parameters (λ2, λ3).

The next step is to compare the expansion of P1(U) in U with its factorised form, c.f.

(3.49) and (2.68). In this way we can obtain an explicit parameterisation of the R-R fluxes

aA in terms of the variables that determine P̂1(Z), namely (ξs, ξt) together with (ξ3, ξ7)

or (λ1, λ2, λ3), depending on the Q-algebra. These results are collected in the appendix B

. We stress that the ξ’s and λ’s are real parameters but the emerging R-R fluxes must be

integers.

ggauge N3/|Γ|3 N7/|Γ|3

so(3, 1) 4 (ε21 + ε22) ξ3 4 ξ7

su(2)2 (ε21 + ε22) ξ3 2 ξ7

su(2) + u(1)3 (ε21 + ε22) ξ3 ξ7

su(2)⊕Z3 u(1)3 λ2 ε1 − λ3 ε2 λ2 + λ3

nil λ2 ε1 − λ3 ε2 λ3

Table 3.2: Q-algebras and R-R flux-induced tadpoles.

A vacuum solution in which the moduli (Z,S, T ) are fixed generically requires spe-

cific values of the non-geometric Q, NS-NS H̄3 and R-R F̄3 fluxes. These fluxes also
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generate R-R flux-induced tadpoles that must be balanced by adding orientifold planes or

D-branes. To determine the type of sources that must be included we need to evaluate

the R-R tadpole cancellation conditions using all parameterised fluxes. Substituting into

(2.77) and (2.78) we arrive at the very compact expressions for the number of sources

N3 and N7 gathered in table 3.2. As advertised before, the R-R fluxes only enter either

through the parameters (ξ3, ξ7) or (λ2, λ3). The non-geometric Q and NS-NS H̄3 fluxes

only contribute through |Γ|3 and (ε1, ε2). We will see that there is also a clear correlation

between the tadpoles and the VEVs of the moduli fields.

Finally, let us remark that, just like (ε1, ε2), the ξ’s and λ’s variables are all invariant

under SL(2,R)U modular transformations on the complex structure U . Indeed, from the

explicit parameterisation of the R-R fluxes aA we deduce that their correct behaviour un-

der SL(2,Z)U , analogous to (3.45), precisely follows from the transformation of (α, β, γ, δ)

in (3.46). This is of course consistent with the fact that the number of sources N3 and

N7 in the tadpole cancellation conditions are physical quantities that must be modular

invariant.

3.2.2 Moduli potential in the new variables

We have just seen how a systematic parameterisation of the fluxes has guided us to new

moduli fields denoted (Z,S, T ). As we may expect, the effective action in the trans-

formed variables also takes a form more suitable for finding vacua. The shifts in the

axionic real parts of the axiodilaton and the Kähler field do not affect the Kähler poten-

tial K whereas in the superpotential W they can be reabsorbed in R-R fluxes. On the

other hand, the change from the complex structure U to Z is the SL(2,R) transformation

U = (β− δZ)/(γZ −α) whose effect on K and W is completely analogous to a modular

transformation except for factors of |Γ| = (αδ − βγ).

Combining previous results we obtain eK |W |2 → eK|W|2, where the transformed

Kähler potential K and superpotential W are given by

K = −3 log
(
−i (Z − Z̄)

)
− log

(
−i (S − S̄)

)
− 3 log

(
−i (T − T̄ )

)
,

W = |Γ|3/2 [P1(Z) + S P2(Z) + T P3(Z) ] .
(3.53)

The flux-induced polynomials Pi(Z) are displayed in table 3.1 for each Q-algebra. In the

effective four-dimensional action with N = 1 supersymmetry, the functions K and W
determine the scalar potential of the moduli according to

V = eK

 ∑
Φ=Z,S,T

KΦΦ̄|DΦW|2 − 3|W|2
 . (3.54)

In this chapter we will be interested in supersymmetric minima for which the Kähler

derivative DΦW = ∂ΦW +W ∂ΦK = 0 for all moduli fields.
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3.3 Supersymmetric vacua

This section is devoted to searching for supersymmetric vacua of the moduli potential

induced by R-R F̄3, NS-NS H̄3 and non-geometric Q fluxes together. We will show that

by using our new variables the problem simplifies substantially and analytic solutions are

feasible.

Supersymmetric vacua are characterised by the vanishing of the F-terms. In our setup

these conditions are written as

DZW =
∂W
∂Z +

3 iW
2 ImZ = 0 , DSW =

∂W
∂S +

iW
2 ImS = 0 , DTW =

∂W
∂T +

3 iW
2 Im T = 0,

(3.55)

so the task will be to determine whether there are solutions with the moduli fields com-

pletely stabilised at VEVs denoted

Z0 = x0 + i y0 , S0 = s0 + i σ0 , T0 = t0 + i µ0 . (3.56)

It is worth noticing that, at any supersymmetric moduli solution satisfying (3.55), the

potential energy in (3.54) is given by

V0 = −3 eK0 |W0|2 ≤ 0 . (3.57)

This translates into the well known fact that supersymmetric vacua are forced to be either

Minkowski or AdS4. Then obtaining dS solutions necessarily implies supersymmetry to

be broken at the vacuum. We will carry out an exhaustive search of non-supersymmetric

dS solutions within these T-duality invariant supergravity flux models in the chapter 4.

Besides stabilisation, there are further physical requirements. At the minimum the

imaginary part of the axiodilaton in (2.12), σ0 = e−ϕ, must be positive for the reason

it is the inverse of the string coupling constant gs as shown in (15). It can be argued

that the geometric moduli are subject to similar conditions. The main assumption is that

they arise from the metric of the internal space, which is T6 in absence of fluxes. In

particular, the Kähler modulus in (2.14) has ImT = e−ϕA2, where A2 is the area of a

4-dimensional subtorus. Hence, it must be µ0 > 0. Notice also that the internal volume is

measured by Vint = (µ0/σ0)3/2. For the transformed complex structure Z it happens that

ImZ = |Γ| ImU/|γU + δ|2. Therefore, necessarily ImZ0 = y0 6= 0 because for ImU0 = 0

the internal space is degenerate. Without loss of generality we choose that ImU0 is always

positive.

Another physical issue is whether the moduli take values such that the effective super-

gravity action is a reliable approximation to String Theory. Specifically, the string coupling

gs = 1/σ0 is expected to be small to justify the exclusion of non-perturbative string ef-

fects. Conventionally, there is also a requirement of large internal volume to disregard
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corrections in α′. However, in the presence of non-geometric Q-fluxes the internal space

might be a T-fold in which there can exist cycles with sizes related by T-duality [43,164].

Thus, for large volume there could be tiny cycles whose associated winding modes would

be light (see section 1.3). To date these effects are not well understood. At any rate, we

limit ourselves to finding supersymmetric vacua of an effective field theory defined by a

very precise Kähler potential and flux-induced superpotential. A more detailed discussion

of the landscape of vacua is left for section 3.4. We will see that the moduli can be fixed

at small string coupling and cosmological constant.

In the following we will first consider supersymmetric Minkowski vacua that have

W = 0 at the minimum. In our approach it is straightforward to show that for isotropic

fluxes such vacua are disallowed. We then turn our attention to the richer class of AdS4

vacua. Since superpotential terms adopt very specific forms depending on the particular

subalgebra satisfied by the non-geometric Q-fluxes, we will study the corresponding vacua

case by case. We will mostly focus on the model associated to the non-geometric Q-fluxes

of the compact su(2)2 but will also consider other allowed subalgebras to some extent.

3.3.1 Minkowski vacua

Minkowski solutions with zero cosmological constant require that the potential vanishes.

Imposing supersymmetry further implies that the superpotential must be zero at the

minimum (Z0,S0, T0). A key property of the superpotential in (3.53) is its linearity in S
and T . This implies in particular that the F-flatness conditions DSW = 0 and DTW = 0,

together with W = 0, reduce just to

P3(Z0) = P2(Z0) = P1(Z0) = 0 . (3.58)

The third condition DZW = 0 yields a linear relation between S0 and T0 so that not all

moduli can be stabilised. The situation is actually worse because (3.58) cannot be fulfilled

appropriately. Indeed, for the specific polynomials for each subalgebra shown in table 3.1,

it is evident that P3(Z) and P2(Z) can only have a common real root Z0. But then

ImU0 = ImZ0 = 0 and this is inconsistent with a well defined internal space.

It must be emphasised that we are assuming that non-geometric Q-fluxes, and their

induced P3(Z), are non-trivial. Our motivation is to fix the Kähler modulus without in-

voking non-perturbative effects. If only R-R F̄3 and NS-NS H̄3 fluxes are turned on there

do exist physical supersymmetric Minkowski vacua in which only the axiodilaton and the

complex structure are stabilised [81,85]. In such solutions the gauge fluxes (F̄3, H̄3) must

still satisfy a non-linear constraint [85,174].

No-go results for supersymmetric Minkowski vacua in the presence of non-geometric

Q-fluxes have been previously obtained [8,23,174]3. In ref. [8] their existence was disproved

3In ref. [23] it is further shown that Minkowski vacua with all moduli stabilised can exist in more general
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assuming special solutions for the Jacobi identities in (2.74). We are now extending the

proof to all possible non-trivial isotropic non-geometric Q-fluxes solving these constraints.

3.3.2 AdS4 vacua

We now want to solve the supersymmetry conditions when W 6= 0. The three com-

plex equations DΦW = 0 with Φ = Z,S, T , in principle admit solutions with all moduli

fixed at values Z0 = x0 + iy0, S0 = s0 + iσ0, and T0 = t0 + iµ0. We will also impose

the physical requirements σ0 > 0, µ0 > 0 and ImU0 > 0 which implies |Γ| y0 > 0. In

general existence of such solutions demands that the fluxes satisfy some specific properties.

In the AdS4 vacua, the polynomials P2(Z) and P3(Z) are necessarily different from

zero. Moreover, combining the equations DSW = 0 and DTW = 0 shows that at the

minimum Im (P3(Z)/P2(Z)) = 0, or equivalently

P3(Z)P2(Z)∗ − P3(Z)∗ P2(Z)
∣∣∣
0

= 0 . (3.59)

From this condition we can quickly extract useful information. For example, for the poly-

nomials of the nilpotent subalgebra we find that ε1 = 0. Similarly, for the semidirect

product su(2)⊕Z3 u(1)3, it follows that ε1 = −ε2. Thus, in these two cases P2(Z) and

P3(Z) are forced to be parallel and the equation (3.59) is inconsequential for the moduli.

Having one equation less means that all moduli cannot be fixed simultaneously. In fact,

what happens is that only a linear combination of the axions s0 and t0 is determined [93].

Another instructive example is that of the su(2) + u(1)3 Q-algebra. With the polyno-

mials provided in table 3.1 the supersymmetry condition in (3.59) implies

ε2 − 2 ε1 x0 (x2
0 + y2

0) = 0 , (3.60)

where we already used that y0 6= 0. Now we see that forcefully ε1 6= 0 because otherwise

ε2, and thus P2(Z) itself, would vanish. However, it could be ε2 = 0 and then x0 = 0.

If ε2 6= 0 we will just have one equation that gives y0 in terms of x0.

In other examples with P2(Z) and P3(Z) not parallel there are analogous results. It

can happen that the supersymmetry condition in (3.59) already fixes x0 or it gives y0

as function of x0. The remaining five equations can be used to obtain S0 and T0 in

terms of y0 or x0, and to find a polynomial equation that determines y0 or x0. This

procedure can be efficiently carried out using the algebraic package Singular. The results

are described below in more detail.

The superpotential for each Q-algebra is constructed with the flux-induced polyno-

mials listed in table 3.1. The number of sources needed to cancel tadpoles are given in

setups having more complex structure than Kähler moduli (in our type IIB language).
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table 3.2. Recall that O3-planes (D3-branes) make a positive (negative) contribution to

N3, whereas O7-planes (D7-branes) yield negative (positive) values of N7.

Each supersymmetric vacua can be distinguished by the modular invariant values of

the string coupling constant gs and the potential at the minimum V0 that is equal to

the cosmological constant up to normalisation. In the models at hand these quantities are

given by

V0 = − 3|W0|2
128 y3

0 µ
3
0 σ0

and gs =
1

σ0
. (3.61)

In all examples the VEVs of the moduli y0, σ0, µ0, as well as the value W0 of the

superpotential at the minimum, can be completely determined and will be given explicitly.

It is then straightforward to evaluate the characteristic data (gs, V0).

3.3.2.1 The nil case

When ε1 = 0, the model based on the non-geometric Q-fluxes of the nilpotent subalgebra

is U ↔ T dual to a type IIA orientifold with only R-R F̄3 and NS-NS H̄3 fluxes already

considered in the literature [92, 93]. Supersymmetry actually requires ε1 = 0. There are

some salient features that are easily reproduced in our setup. For instance, a solution

exists only if λ3 6= 0 and (λ1 λ3 − λ2
2) > 0. The axions s0 and t0 can only be fixed in

the linear combination

3 t0 + ε2 s0 =
λ2

λ2
3

(3λ1 λ2 − 2λ2
2) . (3.62)

The rest of the moduli fields are determined as

x0 = −λ2

λ3
, y2

0 =
5(λ1λ3 − λ2

2)

3λ2
3

, σ0 = −2(λ1λ3 − λ2
2)y0

3ε2λ3
, µ0 = ε2σ0 ,

(3.63)

and the cosmological constant can be computed using W0 = 2 i µ0 |Γ|3/2.

From the results we deduce that ε2 > 0, and λ3 > 0 for y0 < 0. Then ImU0 > 0

requires |Γ| < 0 as it happens for the nilpotent algebra. The tadpole conditions then

verify N3 = −λ3 ε2 |Γ|3 > 0 and N7 = λ3 |Γ|3 < 0. The relevant conclusion is that the

model necessarily requires O3-planes and O7-planes.

3.3.2.2 The iso(3) case

The non-geometric Q-fluxes of this subalgebra are U ↔ T dual to NS-NS H̄3 plus

geometric fluxes ω in a type IIA orientifold. Supergravity models of this type have

been studied previously [84, 93, 175, 176]. For completeness we will briefly summarise

our results that totally agree with the general solution presented in [93]. Existence of a

supersymmetric minimum imposes the constraint ε1 = −ε2. In this case it occurs again

that the axions s0 and t0 can only be determined in a linear combination given by

3 t0 + ε2 s0 = 3λ1 + 3λ2 (9− 7x0) + 3λ3 x0 (9− 8x0) . (3.64)
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The imaginary parts of the Kähler and the axiodilaton fields are stabilised at values

µ0 = ε2 σ0 , ε2 σ0 = 6 (λ2 + λ3 x0) y0 , (3.65)

so the NS-NS ε2 parameter must be positive. It also follows that W0 = 2 i µ0 (1 − x0 −
i y0) |Γ|3/2 determines the AdS4 vacuum energy.

The VEVs of the x0 and y0 real axions depend on whether the R-R flux parameter

λ3 is zero or not:

i) If λ3 = 0 we obtain

x0 = 1 and 3λ2 y
2
0 = −(λ1 + λ2) . (3.66)

Notice that λ2 6= 0 to guarantee σ0 6= 0. In fact, choosing y0 > 0 it must be λ2 > 0.

For the number of sources we find N3 = −λ2 ε2 |Γ|3 < 0 and N7 = λ2 |Γ|3 > 0.

Therefore, D3-branes and D7-branes must be included.

ii) If λ3 6= 0 we instead find

λ3 y
2
0 = 15 (x0 − 1) (λ2 + λ3 x0) , (3.67)

whereas the axion x0 must be a root of the cubic equation

160(x0−1)3+294

(
1 +

λ2

λ3

)
(x0−1)2+135

(
1 +

λ2

λ3

)2

(x0−1)+
1

λ3
(λ3+3λ2+3λ1) = 0.

(3.68)

The solution for x0 must be real and such that y2
0 > 0. For the tadpoles we now

have N7 = |Γ|3 (λ2 + λ3) and N3 = −ε2N7. Thus, in general N3 and N7 have

opposite signs. The remarkable feature is that now they can be zero simultaneously.

This occurs when the R-R parameters satisfy λ2 = −λ3, in which case the cubic

equation for x0 can be solved exactly.

3.3.2.3 The su(2) + u(1)3 case

As explained before, necessarily ε1 6= 0. Let us consider ε2 = 0 which is the condition for

P2(Z) to have only real roots. Now it happens that all moduli fields can be determined.

The axions are fixed at x0 = 0, s0 = 0 and t0 = 0. The imaginary parts have VEVs

y2
0 =

ε1 ξ3

ξ7
, σ0 = −2 ξ2

7 y0

ε21 ξ3
, µ0 = 2 ξ7 y0 , (3.69)

and the cosmological constant is easily found substituting W0 = −2µ0 y0 |Γ|3/2.

Clearly, the solution exists only if ξ3 6= 0 and ξ7 6= 0. Moreover, ε1 ξ3 ξ7 > 0 and if

we take y0 > 0, ξ3 < 0, ξ7 > 0 and ε1 < 0. The number of sources satisfy N3 < 0 and

N7 > 0, so that D3-branes and D7-branes are needed.

Taking ε2 6= 0 we deduce that there are no solutions at all when ξ7 = 0 and ξ3 6= 0.

However, there are minima that require ε1 < 0 and N7 > 0 when ξ3 = 0.
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3.3.2.4 The so(3, 1) case

This is the only flux configuration for which P3(Z) has complex roots. It also happens

that P2(Z) always has three non-degenerate real roots. We will briefly discuss the vacua

according to whether the NS-NS flux parameter ε2 vanishes or not.

i) Taking ε2 = 0 : In this setup the axions are determined to be x0 = 0, s0 = 0

and t0 = 0. For the imaginary parts of the Kähler modulus and the axiodilaton we

obtain

µ0 =
ε1 σ0 (3 + y2

0)

(1− y2
0)

and ε1 σ0 =
3 ξ7 (y2

0 − 1)− ε1 ξ3 (3y2
0 + 1)

2 y0 (3 + y2
0)

. (3.70)

To evaluate the potential at the minimum we use W0 = 2µ0 y0 (1−y2
0) |Γ|3/2. Notice

that ξ3 and ξ7 cannot be zero simultaneously and that y2
0 = 1 is not allowed, so

we are interested in real roots y0 6= 0 and y0 6= ±1. Actually, the imaginary part

of the transformed complex structure satisfies a third order polynomial equation in

y2
0 given by

ε1 ξ3 (5 y6
0 + 13 y4

0 + 15 y2
0 − 1)− ξ7 (y2

0 − 1) (5 y4
0 + 6 y2

0 − 3) = 0 . (3.71)

Although we have not made an exhaustive analysis, it is clear that the solutions of

(3.71) depend on the range of the ratio ξ7/ε1 ξ3. For instance, there are values for

which there is no real root at all, as it occurs e.g. for 2 ξ7 = −ε1 ξ3. For other values

there might be only one real positive solution for y2
0. An special example happens

when ξ3 = 0 and the net O3/D3 charge N3 is zero, while the net O7/D7 charge

N7 is negative as implied by the conditions µ0 > 0 and |Γ| y0 > 0. Similarly, when

ξ7 = 0, there is only one solution in which N7 = 0 while N3 < 0.

The third possibility is to have two allowed solutions. For instance, taking ξ7 =

2 ε1 ξ3 gives roots y2
0 = 1/5 and y2

0 = 1 + 2
√

2. However, in principle the cor-

responding vacua cannot be realized simultaneously because the net charges would

have to jump. In fact, for y2
0 < 1, it happens that N3N7 > 0, whereas for y2

0 > 1, it

must be N3N7 < 0. It can also arise that both solutions have y2
0 < 1. For example,

when ξ7 = −30 ε1 ξ3 each of the two vacua has N3 > 0 and N7 < 0. We will ex-

plore the phenomenon of multiple AdS4 vacua in more detail for the non-geometric

Q-fluxes of the su(2)2 algebra.

ii) Taking ε2 6= 0 : We have only studied the special cases when one of the flux-tadpoles

N3 or N7 is zero. We find that when ε1 = 0 the F-flatness conditions can not be

solved but for ε1 > 0 there are consistent solutions for a particular range of |ε2/ε1| .
Vacua with ξ3 = 0 exist provided that ξ7 < 0. Vacua with no O7/D7 flux-tadpoles,

i.e. with ξ7 = 0, require ξ3 < 0. One important conclusion is that, for the fluxes of

the non-compact Q-algebra, solutions with N7 = 0 must have N3 < 0.
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3.3.2.5 The su(2)2 case

This is the only situation in which the polynomial P3(U) induced by the non-geometric

Q-fluxes has three different real roots. The polynomial P2(U) generated by the NS-NS

H̄3 fluxes has complex roots whenever ε1 ε2 6= 0 and one triple real root otherwise. We

will study the vacua in both cases in some detail.

The full model based on the non-geometric Q-fluxes of the su(2)2 subalgebra has an

interesting residual symmetry that exchanges the NS-NS auxiliary parameters ε1,2. It can

be shown that the effective action is invariant under ε1 ↔ ε2, ξ3 → ξ3 and ξ7 → ξ7,

together with the field transformations

Z → 1/Z∗ , S → −S∗ , T → −T ∗ . (3.72)

This symmetry leaves one of the P3(Z) roots invariant while exchanging the other two.

We will make extensive use of it in the next chapter.

P2(U) polynomial with a triple real root

Due to the symmetry in (3.72) it is enough to consider ε1 = 0 and ε2 6= 0. In this model

the axions are stabilised at VEVs

x0 = −1

2
, ε2 s0 = 3 ξ7 −

ε2 ξ3

2
, t0 = ξ7 −

ε2 ξ3

2
. (3.73)

The imaginary parts of the Kähler modulus and the axiodilaton are fixed in terms of y0

according to

µ0 = − 4 ε2 σ0

(1 + 4 y2
0)

and ε2 σ0 = −y0

[
3 ξ7 +

ε2 ξ3

8
(4 y2

0 − 3)
]
. (3.74)

At the minimum W0 = 2 i ε2 σ0 |Γ|3/2. Clearly ξ3 and ξ7 cannot vanish simultaneously

so that the model always requires additional sources to cancel tadpoles. One has that

necessarily ε2 < 0.

The modulus y0 is determined by the fourth order polynomial equation

ε2 ξ3 (4 y2
0 − 1) (4 y2

0 + 5)− 8 ξ7 (4 y2
0 − 5) = 0 . (3.75)

In the two special cases ξ7 = 0 and ξ3 = 0 an exact solution is easily found. When

ξ3 ξ7 6= 0 there can be two AdS4 solutions. The corresponding vacua, which can be

characterised by the net tadpoles N3 and N7 , are described more extensively in the

following.

i) Taking N7 = 0 : When ξ7 = 0 the moduli VEVs and the cosmological constant

have the very simple expressions

y2
0 =

1

4
, σ0 =

ξ3y0

4
, µ0 = −2ε2σ0 , V0 =

12|Γ|3y0

ε2ξ2
3

. (3.76)



3.3 Supersymmetric vacua 89

Since both µ0 and σ0 are positive, it must be ε2 < 0, and taking y0 > 0 then

ξ3 > 0. Therefore N3 > 0 and O3-planes must be included.

ii) Taking N3 = 0 : This is the case ξ3 = 0. The moduli and the cosmological constant

are fixed at values

y2
0 =

5

4
, ε2σ0 = −3ξ7y0 , µ0 = −2

3
ε2σ0 , V0 =

9|Γ|3ε2y0

500 ξ2
7

. (3.77)

Necessarily ε2 < 0, and choosing y0 > 0 then ξ7 > 0. Hence N7 > 0 and D7-branes

are required.

iii) Taking N3N7 6= 0 : The solutions for y0 depend on the ratio ξ7/ε2 ξ3. A detailed

analysis can be easily performed because the polynomial equation (3.75) is quadratic

in y2
0. We find that there are no real solutions in the interval 1/8 < ξ7/ε2 ξ3 <

(7 + 2
√

10)/4. On the other hand, when 0 < ξ7/ε2 ξ3 < 1/8, there is only one real

positive solution for y2
0 and it requires N3 > 0 and N7 < 0. For ξ7/ε2 ξ3 ≤ 0

there is only one acceptable root for y2
0 and it leads to N3 > 0 and N7 ≥ 0. A

more interesting range of parameters is ξ7/ε2 ξ3 > (7 + 2
√

10)/4 because there are

two allowed solutions for y2
0 and for both it must be that N3 < 0 and N7 > 0. The

upshot is that there can be metastable AdS4 vacua in the presence of D3-branes and

D7-branes.

P2(U) polynomial with complex roots

The F-flatness conditions can be unfolded to obtain analytic expressions for the VEVs

of all the moduli. However, for generic range of parameters, a higher order polynomial

equation has to be solved to determine y0 in the end. The main interesting feature is

the appearance of multiple vacua even when N3N7 = 0, i.e. when there are either no

O7/D7 or no O3/D3 net charges present. We will first describe the overall picture and

then present examples. For definiteness we always choose y0 > 0 so that |Γ| > 0 is

required to have ImU0 > 0 for the complex structure.

To obtain and examine the results it is useful to make some redefinitions. The idea is

to leave as few free parameters as possible in the F-flatness equations. Since ε1 is different

from zero we can work with the ratio

ρ =
ε2
ε1
. (3.78)

By virtue of the residual symmetry in (3.72) there is an invariance under ρ→ 1/ρ. There-

fore, we can restrict to the range −1 ≤ ρ ≤ 1, where the boundary corresponds to the

fixed points of the inversion. Furthermore, as discussed at the end of section 3.1.1.1, the

parameter ρ is either a rational number or involves at most square roots of rationals.
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When the R-R flux parameter ξ3 6= 0 it is also convenient to introduce new variables

as

T = ε1 ξ3 T̂ , S = ξ3 Ŝ , ξ7 = ε1 ξ3 (ρ2 + 1) η . (3.79)

Even though the definition of the parameter η seems awkward, it simplifies the results

since η → ηρ under the transformations in (3.72). In the new variables of (3.79) the

superpotential becomes

W = |Γ|3/2 ε1 ξ3

[
3 T̂ Z(Z + 1) + Ŝ (Z3 + ρ) + (1− ρZ3) + 3 η (1 + ρ2)Z (1−Z)

]
. (3.80)

Since the F-flatness conditions are homogeneous in W the resulting equations will only

depend on the parameters ρ and η. When ξ3 = 0 we just make different field redefini-

tions, i.e. T = ε1 ξ7 T̂ and S = ξ7 Ŝ, so that the free parameters will be ρ and ξ7/ε1.

Manipulating the F-flatness conditions enables us to find the VEVs T0 and S0 as

functions of (x0, y0). The expressions are tractable but bulky so that we refrain from

presenting them. The exception is the handy relation between the size and string coupling

moduli fields

µ0 =
ε1 σ0 (3x2

0 − y2
0)

1 + 2x0
, (3.81)

which is valid when x0 6= − 1
2 and y2

0 6= 3
4 . There is a solution with x0 = − 1

2 and y2
0 = 3

4

but it has µ0 = −ε1 (1 + ρ)σ0, µ0 = 3 ξ7 y0 and it requires η = −(1 + ρ)/(ρ2 − 7 ρ + 1).

There is another vacuum with x0 = − 1
2 that occurs when ρ → ∞ ( ε1 = 0 ) and has

already been discussed. The case x2
0 = y2

0, which is better treated separately, requires

ξ7 6= 0 unless ρ = 0.

The residual unknowns (x0, y0) are determined from the coupled system of high degree

algebraic equations

0 = y4
0 + 2x0 (1 + x0) y2

0 − ρ (2x0 + 1) + x3
0 (x0 + 2) ,

0 =
(
2 ρ+ 4 ρ x0 + 11x3

0 + 13x4
0

) (
2 ρ η + 2 η x3

0 + x2
0 + x0

)
+ y6

0 (1 + 2 ηx0 − 2 η) +
(
1 + 30 ηx3

0 − x2
0 + 18 η x2

0 − 6 ρ η
)
y4

0

+ x0

(
54 η x4

0 + 11x3
0 + 42 η x3

0 + 8x2
0 + 12 ρ η x0 − 4x0 − 6 ρ η

)
y2

0 .

(3.82)

The corresponding equations when ξ3 = 0 can be obtained taking the limit η → ∞.

Eliminating y0 for generic parameters gives a ninth-order polynomial equation for x0.

For some range of parameters the above equations can admit several solutions for

Z0 = x0 + i y0, which in turn yield consistent values for the remaining moduli fields. The

existence of multiple vacua is most easily detected in the limiting cases in which one of the

net tadpoles N7 or N3 vanishes, equivalently when ξ7 = 0 ( η = 0 ) or ξ3 = 0 ( η →∞ ).

In either limit the new NS-NS flux parameter ρ can still be adjusted. We expect the
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results to be invariant under ρ→ 1/ρ and this is indeed what happens.

We have mostly looked at models having no O7/D7 net charge, namely with η = 0.

It turns out that the solutions require ξ3 > 0 so that N3 > 0 and O3-planes must be

present. Below we list the main results:

i) Taking ρ = 1 there are no minima with the moduli fields stabilised.

ii) Taking ρ = −1 there is only one distinct vacuum with data

Z0 = −0.876 + 1.158 i , S0 = ξ3 (−0.381 + 0.238 i) , T0 = ε1 ξ3(0.602− 0.305 i) ,

and V0 = 2.38 |Γ|3
ξ2
3 ε1

. Notice that necessarily ξ3 > 0 and ε1 < 0. Actually, for ρ = −1,

there is a second consistent solution but it is related to the above by the residual

symmetry in (3.72).

iii) There can be only one solution when ρc ≤ ρ < 1, where ρc = −0.7267361874.

The critical value ρc is such that the discriminant of the polynomial equation that

determines x0 is zero. Consistency requires ε1 < 0 and ξ3 > 0 so that O3-planes are

needed. For instance, when ρ = 0 the solution is exact and has

Z0 = −1 + i , S0 =
ξ3
8

(4 + i) , T0 =
ε1 ξ3

4
(2− i) , V0 =

6 |Γ|3
ξ23 ε1

. (3.83)

As expected, when applying the transformation in (3.72) this vacuum coincides with

that having ξ7 = 0 and ε1 = 0, given in (3.76). For other values of the parameter

ρ the solution is numerical. For example, taking ρ = 1
2 leads to the VEVs

Z0 = −1.036 + 0.834 i , S0 = ξ3 (1.561 + 0.192) , T0 = ξ3ε1 (1.055− 0.453 i) ,

and the vacuum energy V0 = 2.283 |Γ|3
ξ2
3 ε1

.

Z0 S0/ξ3 T0/ξ3 ε1 V0 ξ
2
3 ε1/|Γ|3

−0.91105442 + 1.14050441 i −0.26002362 + 0.19059447 i 0.53128071− 0.27572497 i 3.353

−0.43550654 + 0.73478523 i 0.28605555 + 0.55017649 i 0.60410811 + 0.12407321 i −2.168

−0.40368586 + 0.57866160 i 0.49215445 + 0.33255331 i 0.57101568 + 0.26593032 i −1.880

Table 3.3: Degenerate moduli flux vacua for ξ7 = 0 and ρ = − 4
5 .

iv) The important upshot is that in the interval −1 < ρ < ρc there can be two distinct

solutions for the same set of fluxes. An example with ρ = − 4
5 is shown in table 3.3.

Notice that the last two solutions can exist for ξ3 > 0 and ε1 > 0. The first solution

can also occur but for ξ3 > 0 and ε1 < 0.
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For models having no O3/D3 net charge, namely with η → ∞, a detailed analysis is

clearly feasible but we have only sampled narrow ranges of the adjustable parameter ρ.

Consistent solutions must have ε1 < 0 and ξ7 > 0. Hence N7 > 0 and D7-branes must

be included. There are values of ρ, e.g. ρ = −1, for which there are no vacua with the

moduli stabilised. For ρ = 1 there is only one minimum which can be computed exactly.

More interestingly, the supergravity models of this type can also exhibit multiple vacua.

In table 3.4 we show an example with ρ = 3
4 . Observe that both solutions exist for ε1 < 0

and ξ7 > 0.

Z0 ε1S0/ξ7 T0/ξ7 V0 ξ
2
7/ε1|Γ|3

−0.88312113 + 0.74580943 i −6.1818994− 1.6867660 i −4.20643209 + 3.92605399 i 0.026

0.20646056 + 0.89488895 i 0.03039439− 2.49813344 i −0.06455485 + 1.18981502 i 0.084

Table 3.4: Degenerate moduli flux vacua for ξ3 = 0 and ρ = 3
4 .

3.4 Aspects of the non-geometric landscape

In this section we review and discuss the main aspects of the AdS4 vacua in our models

that are standard examples of type IIB toroidal orientifolds with O3/O7-planes. Besides

the axiodilaton S, after an isotropic ansatz the massless scalars reduce to the overall com-

plex structure U and the size modulus T . Fluxes of the R-R and NS-NS 3-forms (F̄3, H̄3)

generate a potential that gives masses only to S and U . The new ingredient here are

the non-geometric Q-fluxes, which are required to restore T-duality between type IIA and

type IIB, and that induce a superpotential for the Kähler field T . The various fluxes must

satisfy certain constraints arising from Jacobi or Bianchi identities. The problem is then

to minimise the scalar potential while solving the constraints. The question is whether

there are solutions with all moduli stabilised. We have seen that the answer is affirmative

and now we intend to analyse it in more detail.

It is instructive to begin by recounting the findings of the previous sections. The initial

step is to classify the subalgebras ggauge whose structure constants are the Q-fluxes. With

the isotropic ansatz there are only five classes. For each type, the non-geometric Q-fluxes

can be written in terms of four auxiliary parameters
(
αβ
γ δ

)
= Γ, in such a way that the

Jacobi identities are automatically satisfied. Other fluxes can also be parameterised using

Γ plus additional variables: (ε1, ε2) for the NS-NS H̄3 fluxes, and (ξ3 , ξ7 , ξs , ξt) or

(λ1 , λ2 , λ3 , ξs , ξt) for the R-R F̄3 . The significance of the Γ matrix is that it defines a

transformed complex structure Z = (αU + β)/(γU + δ) that is invariant under the mod-

ular group SL(2,Z)U . The effective action can be expressed in terms of Z according to

the Q-algebra. Once the subalgebra is chosen the vacua will depend only on the variables

Γ, (ε1, ε2), and (ξ3, ξ7) or (λ1, λ2, λ3), that in turn determine the values of the string
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coupling and the cosmological constant (gs, V0), as well as the net tadpoles (N3, N7). In

many examples, the VEVs of the moduli fields can be determined in a closed form.

Our approach to analyse the vacua in the presence of non-geometric Q-fluxes has

the great advantage that the degeneracy due to modular transformations of the complex

structure is already taken into account. Inequivalent vacua are just labelled by the VEVs

(Z0 , S0 , T0) that are modular invariant. In practice this means that we can study fami-

lies of modular invariant vacua by choosing a particular structure for Γ. In section 3.4.2

we will give concrete examples.

There is an additional vacuum degeneracy because the characteristic data (gs, V0) hap-

pen to be independent of the parameters (ξs, ξt). The explanation is that they correspond

to shifts of the axions ReS and ReT which can be reabsorbed in the R-R F̄3 fluxes.

The flux-induced R-R tadpoles (N3, N7) are blind to (ξs, ξt) as well. Apparently, generic

shifts in ReS and ReT are not symmetries of the compactification, so that two vacua

differing only in the R-R flux parameters (ξs, ξt) would be truly distinct. We argue below

that the vacua are equivalent because the full background is symmetric under S → S−ξs,
and T → T − ξt.

In the absence of non-geometric Q-fluxes, the R-R field strength F̃3 entering the piece

(1.9) of the ten-dimensional type IIB supergravity action is given in (2.19). The natural

generalisation to include non-geometric Q-fluxes is

F̃3 = F3 −H3 ∧ C0 +Q · C4 + F̄3 , (3.84)

where Q · C4 is a 3-form that we can extract from (2.29) because ReJ = C4. It is

straightforward to see from (2.12) that C4 = ReT
∑

I ω̃
I , where ω̃I are the basis 4-forms,

and that C0 = ReS. Notice then that F̃3 involves the two axions in question. The

relevant result is that F̃3 is invariant under the shifts S → S − ξs and T → T − ξt.

To show this we first compute the variation of F̄3 using the universal terms in (B.1) for

the parameterisation of the R-R fluxes and then substitute into (3.84). In the effective

four-dimensional action the result is simply that the superpotential in (2.28) is invariant

under these axionic shifts and the corresponding transformation of the R-R fluxes.

3.4.1 Overview

We now describe in order some prominent features of the AdS4 vacua found in this chapter

with non-geometric Q-fluxes switched on.

1. The explicit results of section 3.3.2 indicate that in all models the VEVs σ0 = ImS0

and µ0 = ImT0 are correlated. This generic property follows from the F-flatness

conditions simply because the superpotential is linear in the axiodilaton and the
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Kähler modulus. Recall that the VEVs in question determine physically important

quantities, namely the string coupling gs = 1/σ0, and the overall internal volume

Vint = (µ0/σ0)3/2. To trust the perturbative string approximation gs must be small

and we will shortly explain, as already shown in ref. [95], that generically there are

regions in flux space in which both gs and the cosmological constant are small, while

Vint is large. We stress again the caveat that even at large overall volume there could

still exist light winding string states when non-geometric Q-fluxes are in play. These

effects are certainly important in trying to lift the solutions to full string vacua. In

this chapter we only claim to have found vacua of the effective field theory with a

precise set of massless fields and interactions due to generalised fluxes.

2. Another common feature of all models is the relation between moduli VEVs and

net R-R charges. In type IIB toroidal orientifolds it is known that in Minkowski

supersymmetric vacua the contribution of R-R F̄3 and NS-NS H̄3 fluxes to the C4

tadpole is positive (N3 > 0 ) and this occurs if and only if ImS0 > 0 [81]. The inter-

pretation is that to cancel the tadpole due to F̄3 and H̄3 it is mandatory to include

O3-planes, whereas D3-branes can be added only as long as N3 stays positive. This

is also true for no-scale Minkowski vacua in which supersymmetry is broken by the

F-term of the Kähler field. Turning on non-geometric Q-fluxes enables to stabilise

all moduli at a supersymmetric AdS4 minimum. At the same time, the Q-fluxes

induce a C8 tadpole of magnitude N7 that can be cancelled by adding O7-planes

and/or D7-branes. We find in general that the VEVs ImS0 and ImT0, that must

be positive, are correlated to the tadpoles (N3, N7). According to the Q-algebra

there are several possibilities for the type of sources that have to be included. For

example, the models considered in ref. [95], having N3 > 0 and N7 = 0, proceed

only with the Q-fluxes of the compact su(2)2 algebra.

For the Q-fluxes of the nil and the su(2)⊕Z3 u(1)3 algebras, there is a relation

N3 = −ε2N7, with ε2 > 0. Only in the latter case it is allowed to have N3 = N7 = 0,

and the sources can be avoided altogether. For the Q-fluxes of su(2) + u(1)3 alge-

bra it turns out that orientifold planes are unnecessary to cancel tadpoles, but both

D3-branes and D7-branes must be added (N3 < 0 and N7 > 0 ).

The fluxes of the semisimple Q-algebras are more flexible. In particular, it can

happen that one flux-tadpole vanishes while the other must have a definite sign.

Moreover, the sign is opposite for the compact and non-compact cases. For in-

stance, when N7 = 0, N3 > 0 and O3-planes are obligatory for the su(2)2 Q-fluxes,

while for the so(3, 1) case, N3 < 0 and D3-branes are required.

The magnitudes of the VEVs are also proportional to the net tadpoles. This then

implies that the string coupling typically decreases when N3 and/or N7 increase.
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However, the number of D-branes cannot be increased arbitrarily without taking

into account their backreaction.

3. Consistency of the vacua can in fact be related to the full 12-dimensional algebra g

in which the H̄3 and the Q-fluxes are the structure constants. The reason is that

the conditions ImS0 > 0 and ImT0 > 0 also impose restrictions on the signs of the

NS-NS flux parameters (ε1, ε2). For instance, in section 3.3.2.5 we have seen that for

Q-fluxes of the compact so(4) ∼ su(2)2 algebra, the solutions with ε1 = 0 require

ε2 < 0. This in turn implies, as explained in section 3.1.1.1, that the full algebra

is so(4) + iso(3). Another simple example is the model based on the su(2) + u(1)3

Q-algebra. The vacua found in the section 3.3.2.3 with ε2 = 0 require ε1 < 0 and it

can then be shown that the full algebra g is so(4) + u(1)6. A more detailed study

of the 12-dimensional algebras is left for the next chapter 4.

4. We defer to section 3.4.2 a more thorough discussion of the landscape of values

attained by the string coupling gs and the cosmological constant V0 for the Q-

fluxes of the compact su(2)2 algebra. The situation for the so(3, 1) case is similar

and can be analysed using the results in section 3.3.2.4. The model based on the

direct sum su(2) + u(1)3 is different because both N3 and N7 must be non-zero,

but it can still be shown that there exist vacua with small gs and V0. The models

built using the nil and the su(2)⊕Z3 u(1)3 Q-algebras have been studied in their

T-dual type IIA formulation in refs [92,93], where it was found that there are infinite

families of vacua within the perturbative region.

5. A peculiar result is the appearance of multiple vacua for certain combination of

fluxes. These events occur only in models based on the semisimple Q-algebras. They

can have N3N7 = 0 or N3N7 6= 0, but in the former case both NS-NS flux param-

eters (ε1, ε2) must be non-zero. Reaching small string coupling and cosmological

constant typically requires that N3 and/or N7 be sufficiently large.

6. To cancel R-R flux-induced tadpoles it might be necessary to add stacks of D3-branes

and/or D7-branes. These additional D-branes could also generate a charged chiral

spectrum but more generally a different sector of D-branes will serve this purpose.

In any case, the D-branes that can be included are constrained by cancellation of

Freed-Witten anomalies [93,98]. In absence of non-geometric Q-fluxes the condition

amounts to the vanishing of H̄3 when integrated over any internal 3-cycle wrapped

by the D-branes. For unmagnetised D7-branes in T6/Z2 × Z2 with H̄3 given in

(2.20), it is easy to see that the condition is met, whereas for D3-branes it is trivial.

When the Q-fluxes are switched on the modified condition [98] is still satisfied basi-

cally because the 3-form Q · J defined in (2.29) can be expanded in the same basis

as H̄3.
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D3-branes and unmagnetised D7-branes in T6/Z2 × Z2 do not give rise to charged

chiral matter. Therefore the models will not have U(1) chiral anomalies. This is

consistent with the fact that the axions ReS and ReT are generically stabilised

by the fluxes and having acquired a mass they could not participate in the Green-

Schwarz mechanism to cancel the chiral anomalies.

To construct a more phenomenologically viable scenario one could introduce mag-

netised D9-branes as in the T6/Z2 × Z2 type IIB orientifolds with NS-NS and R-R

fluxes that were considered some time ago [73, 83, 86–88, 177]. Now, care has to be

taken because magnetised D9-branes suffer from Freed-Witten anomalies. They are

actually forbidden in the absence of non-geometric Q-fluxes when H̄3 6= 0.

The effect of the Q-fluxes can be studied as explained in [98]. Cancellation of

Freed-Witten anomalies translates into invariance of the superpotential under shifts

S → S + qs ν and T → T + qt ν where the real charges (qs, qt) depend on the U(1)

gauged by the D-brane. Applying this prescription we conclude that in our setup

with isotropic fluxes magnetised D9-branes could be introduced only in models based

on the nil and the su(2)⊕Z3 u(1)3 Q-algebras. The reason is that only in these cases

the flux-induced polynomials P2(U) and P3(U) can be chosen parallel and then W

can remain invariant under the axionic shifts. Equivalently, only in these cases the

axions ReS and ReT are not fully determined and the residual massless linear

combination can give mass to an anomalous U(1). For other Q-algebras the poly-

nomials P2(U) and P3(U) are linearly independent and both axions are completely

stabilised.

It would be interesting to study the consistency conditions on magnetised D9-branes

in models with non-isotropic fluxes. In principle there could exist configuration of

the fluxes such that the general superpotential in (2.28) is invariant under axionic

shifts of the axiodilaton S and the Kähler TI moduli fields.

3.4.2 Families of modular invariant vacua

To generate specific families of vacua we first choose the Q-algebra and then select the pa-

rameters in the Γ matrix. In general Γ can be chosen so that the non-geometric Q-fluxes

are even integers. The NS-NS fluxes H̄3 turn out to be even integers by picking (ε1, ε2)

appropriately. One can also start from given non-geometric Q and NS-NS H̄3 even in-

teger fluxes and deduce the corresponding Γ and (ε1, ε2) parameters. Similar remarks

apply to the R-R fluxes F̄3. We will illustrate the procedure for the su(2)2 Q-algebra.

If one of the parameters vanishes, let us say γ = 0, it can be shown from (3.12) that

the ratios δ/α and β/α are rational numbers (recall that |Γ| 6= 0 so that α, δ 6= 0 ). It
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then follows that by a modular transformation, c.f. (3.46), we can go to a canonical gauge

in which also β = 0.

• When ε2 = 0 and ε1 6= 0, the canonical diagonal gauge γ = β = 0 is completely

generic. In this case we find that β/α and γ/δ are rational because they are given

respectively by quotients of the original NS-NS H̄3 and non-geometric Q fluxes.

Therefore β and γ can be gauged away by modular transformations. If instead

ε1 = 0 but ε2 6= 0, we can take α = δ = 0.

• When ε1 ε2 6= 0 we can still use the canonical gauge but it will not give the most

general results that are obtained simply by considering α, β, γ, δ 6= 0.

Canonical families for su(2)2 fluxes

For each Q-algebra we can obtain families of vacua starting from the canonical gauge

defined by γ = β = 0. In the su(2)2 case only the non-geometric Q-fluxes c̃1 and c̃2 are

different from zero and can be written as

c̃1 = −2m , c̃2 = 2n with m, n ∈ Z . (3.85)

From the non-geometric Q-fluxes in (3.12) we easily find α/δ = n/m and δ3 = 2m2/n,

so that

|Γ|3 = 4nm . (3.86)

In addition, the non-zero NS-NS fluxes H̄3 in (3.15) and the R-R fluxes F̄3 in appendix B

are found to be

b0 = −2m2

n
ε2 , b3 =

2n2

m
ε1 . (3.87)

a0 =
2m2

n
(ε1ξ3 +ε2ξs) , a1 = −2m(ξt+ξ7) , a2 = 2n(ξt−ξ7) , a3 = −2n2

m
(ε1ξs−ε2ξ3) ,

(3.88)

Since the above fluxes are (even) integers, it is obvious that (ε1, ε2) and (ξ3, ξ7, ξs, ξt) are

all rational numbers.

The moduli VEVs depend on (ξ3, ξ7) and (ε1, ε2). For concreteness, and to compare

with the results in ref. [95], we focus on the case ξ7 = 0. Other cases can be studied using

the results of section 3.3.2.5. When ξ7 = 0, the R-R fluxes a1 and a2 are spurious and

they can be eliminated by setting ξt = 0, i.e. by a shift in the ReT modulus.

To continue we have to distinguish whether one of the NS-NS flux parameters ε1 or ε2

is zero. Recall that in this case the flux induced polynomial P2(U) does not have complex

roots.

i ) Taking ε1 ε2 = 0 : Let us consider ε2 = 0. Then, also a3 (or ξs ) is irrelevant

and can be set to zero by a shift in the ReS modulus. The important physical
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Figure 3.1: The (gs, V0) landscape of canonical flux vacua with even integer fluxes up to

20 and where we have set N3 = 16 and N7 = 0 as in ref. [95]. The blue points (� marks)

are vacua with ε1 ε2 = 0 while the red points (+ marks) are those with ε1 ε2 6= 0.

parameters are ε1 and ξ3 and they can be deduced from b3 and a0. Notice also

that at this point N3 = a0 b3. Using the results in (3.83) we obtain the values of the

cosmological constant and the string coupling

V0 =
48m6 b33
n3N2

3

, gs =
8m3 b23
n3N3

. (3.89)

Consistency requires ε1 < 0 and ξ3 > 0, or equivalently V0 < 0 and gs > 0. For the

purpose of counting distinct vacua we can safely assume b3 > 0 and then m, n < 0.

As noticed in ref. [95], the important outcome is that gs and V0 can be made arbi-

trarily small by keeping b3 and m fixed while letting n→∞.

In our approach it is also easy to see that (gs, V0) always take values of the form

in (3.89) whenever P2(U) has only real roots. This follows because all vacua are

related by modular transformations plus axionic shifts. However, if as in ref. [95] we

want to count the vacua with fluxes bounded by an upper limit L, it does not suffice

to just consider the canonical gauge. The reason is that by performing modular

transformations and axionic shifts we can reach larger effective values of b3 that

seem to violate the tadpole condition. Rather than an elaborate argument we will

just provide a simple example. We can go to a non-canonical gauge with γ = 0 but

β 6= 0 and also take ξt = 0 but ξs 6= 0. With these choices it is straightforward
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to show that N3 = a0 b3 − a3 b0, which would allow to take e.g. b3 = N3 that is

forbidden when b0 = 0 (β = 0 ), or a3 = 0 ( ξs = 0 ), because a0 must be even. To

do detailed vacua statistics it is necessary to use generic gauge and axionic shifts.

ii ) Taking ε1 ε2 6= 0 : As in section 3.3.2.5 we set ε2 = ρ ε1. In the canonical gauge the

parameter ρ is a rational number that we assume to be given. We choose to vary

the NS-NS flux b3 that determines

ε1 =
mb3
2n2

, b0 = −ρm
3 b3
n3

, (3.90)

where (m,n) are the integers coming from the non-geometric Q-fluxes. The vacuum

data have been found to be

V0 =
4FV nm

ε1 ξ2
3

, gs =
1

Fg ξ3
, (3.91)

where we have used (3.86). The numerical factors FV and Fg depend on ρ. For

instance, for ρ = 0, FV = 6 and Fg = 1/8. Other examples are given in sec-

tion 3.3.2.5. We remark that for ρ in a particular range there can be multiple

vacua, meaning that for some ρ the above numerical factors might take different

values (e.g. table 3.3).

It is most convenient to extract ξ3 from the tadpole relation N3 = 4mnε21 (1+ρ2) ξ3,

which in terms of the integer fluxes reads N3 = a0 b3 − a3 b0. Combining all the

information we readily find

V0 =
8FV m

6 b33 (1 + ρ2)2

n3N2
3

, gs =
m3 b23 (1 + ρ2)

Fg n3N3
. (3.92)

Unlike the case when ρ = 0, in general we cannot keep m and b3 fixed while letting

n→∞. The reason is that the NS-NS flux b0 in (3.90) must be an integer.

The main conclusion is that it is not always possible to obtain small string coupling

and cosmological constant. In fact, when ρ 6= 0, there are no vacua with gs < 1

unless the tadpole N3 is sufficiently big. To prove this, notice first that the string

coupling can be rewritten as gs = −b3 b0 (1 + ρ2)/(Fs ρN3). The most favourable sit-

uation occurs when ρ = −1 for which Fs = 0.238. The smallest allowed NS-NS

fluxes are b0 = b3 = 2 (compatible with ρ = −1 ). Hence, the minimum value of the

coupling is gmins = 8/(FsN3) and gmins < 1 would require N3 > 33. The situation

is worse for values of ρ such that multiple vacua can appear. The problem is that

since such ρ’s are rational, b3 must be largish for b0 to be integer. Going to a more

general gauge does not change the conclusion.

We have just provided a quantitative, almost analytic, explanation of why there are

no perturbative vacua when the flux polynomial P2(U) has complex roots and N3
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is not large enough (see figure 3.1). This observation was first made in ref. [95] based

on a purely numerical analysis.



Chapter 4

De Sitter Vacua in T-duality

Invariant Flux Models

In chapter 3 we have explored supersymmetric AdS4 moduli vacua in a simple IIB ori-

entifold theory that arises when including, apart from ordinary (F̄3, H̄3) gauge fluxes,

a non-geometric Q-flux which restores T-duality invariance at the effective level. After

this, we now focus our attention on the existence of de Sitter (dS) and Minkowski (Mkw)

vacua which are interesting for phenomenology, i.e. that break supersymmetry, in these

supergravity flux models.

We should also point out that, since fluxes are relevant for the moduli dynamics, the

cosmological implications of these are strongly related to the geometrical properties of the

internal space [13, 14, 137, 178]. For instance, in the absence of non-geometric fluxes, the

existence of de Sitter vacua as required by the observations needs of a (positive) source

of potential energy directly coming from the (negative) curvature of the internal manifold

induced by metric fluxes [16, 17, 179]. However, the concept of internal space is distorted

or even lost once we include non-geometric fluxes. Therefore, the interplay between gen-

eralised fluxes and moduli stabilisation (or dynamics) has to be decoded from the whole

12-dimensional algebra in (2.26).

This chapter investigates the algebra-moduli interplay in the case of the N = 1 four-

dimensional effective flux models of the previous chapter 3. More concretely, we perform

a systematic search of de Sitter vacua with all moduli stabilised at reasonable values. The

result is that de Sitter vacua exist and, with a certain tuning of one of the parameters, such

vacua can be made Minkowski. The process of searching for these solutions is systematic

and could be easily extended to other supergravity models.
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4.1 Classification of 12-dimensional isotropic flux algebras

In the previous chapter we carried out a classification of the allowed gauge subalgebras

ggauge arising from B-field reductions on the T6/Z2 × Z2 isotropic orbifold. Specifically

we focused on type IIB orientifold flux models including O3/O7-planes and being invariant

under T-duality transformations, so that these subalgebras turn out to be totally induced

by non-geometric Q-fluxes as structure constants. However an exhaustive identification of

the full twelve-dimensional supergravity algebras g underlying such T-duality invariant

isotropic flux backgrounds remains undone, and that is what we present in this section.

Since g is invariant under T-duality transformations, this classification of algebras is valid

in any duality frame although we are performing it in the IIB orientifold case allowing for

O3/O7-planes.

An exploration of their N = 4 origin, if any, after removing the orbifold projection,

is beyond the scope of this chapter. Nevertheless, recent progress on this bottom-up

approach has been made for the set of the geometric type IIA flux compactifications

[180], complementing the previous work [155] that focused on non-geometric type IIB flux

compactifications. The N = 4 lifting of these non-geometric type IIB flux models and

their flux algebra has been further explained in ref. [161].

4.1.1 The set of gauge subalgebras

The discrete Z2×Z2 orbifold symmetry together with the cyclic Z3 symmetry (isotropy)

of the fluxes under the exchange 1→ 2→ 3 in the factorisation

T6 = T2
1 × T2

2 × T2
3 , (4.1)

select the simple so(3) ∼ su(2) algebra [84] as the fundamental block for building the set

of compatible ggauge subalgebras within the N = 1 algebra in (2.46).

The two maximal ggauge subalgebras that our orbifold admits are the semisimple

so(4) ∼ su(2)2 and so(3, 1) Lie algebras. Both possibilities come up with a Z2-graded

structure differing in the way in which the two su(2) factors are glued together when it

comes to realising the grading.

Since there is no additional restriction over ggauge , apart from that of respecting the

isotropic orbifold symmetries, any Z2-graded contraction1 of the previous maximal sub-

algebras is also a valid ggauge. The set of such contractions comprises the non-semisimple

subalgebras of iso(3) ∼ su(2) ⊕Z3 u(1)3 and nil ∼ u(1)3 ⊕Z3 u(1)3 arising from contin-

uous contractions2, together with the direct sum su(2) + u(1)3 coming from a discrete

1We refer the reader interested in the topic of G-graded Lie algebras and their contractions to refs [181,

182].
2As it was stated in the previous chapter, the ⊕Z3 symbol denotes the semidirect sum of algebras

endowed with the Z3 cyclic structure coming from isotropy.
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contraction [181]. These are exactly the gauge subalgebras already identified in chapter 3.

Denoting (EI , ẼI)I=1,2,3 a basis for ggauge , the entire set of gauge subalgebras previ-

ously found is gathered in the brackets

[EI , EJ ] = κ1 εIJK E
K , [EI , ẼJ ] = κ12 εIJK Ẽ

K , [ẼI , ẼJ ] = κ2 εIJK E
K ,

(4.2)

with an antisymmetric εIJK structure imposed by the isotropy Z3 symmetry. The struc-

ture constants Q given by

QEKEI ,EJ = κ1 , QẼK
EI ,ẼJ

= κ12 and QEK
ẼI ,ẼJ

= κ2 , (4.3)

are restricted by the Jacobi identity Q2 = 0 to either

κ1 = κ12 or κ12 = κ2 = 0 . (4.4)

The first solution in (4.4) gives rise to the maximal gauge subalgebras and their continu-

ous contractions, whereas the second generates the discrete contraction. The intersection

between both spaces of solutions contains just the trivial point κ1 = κ12 = κ2 = 0 . The

structure constants in (4.3) can always be normalised to 1, 0 or −1 by a rescaling of the

generators in (4.2). These normalised κ-parameters are presented in table 4.1.

ggauge so(3, 1) so(4) iso(3) nil su(2) + u(1)3 u(1)6

κ1 1 1 1 0 1 0

κ12 1 1 1 0 0 0

κ2 −1 1 0 1 0 0

Table 4.1: The set of normalised gauge subalgebras satisfying (4.4).

In the following, we will refer to the (EI , ẼI) generator basis equipped with the Q
structure constants shown in (4.3), as the canonical basis for ggauge.

4.1.2 The extension to a full supergravity algebra

Thus far, we have explored the set of ggauge compatible with the isotropic Z2×Z2 orbifold

symmetries finding that there exists a gauge Z2-graded inner structure modding out all

of them. Specifically, this set consists of the two maximal semisimple ggauge, those of

so(3, 1) and so(4), and their non-semisimple Z2-graded contractions.

Two questions that arise at this point are the following

1. How does ggauge in (4.2) extend to a twelve-dimensional supergravity algebra g?

Since we are dealing with an orientifold of the isotropic Z2×Z2 orbifold, the structure
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constants of g can be classified according to the group SO(2, 2)×SO(3) ⊂ SO(6, 6)

with the embedding (4,3) = 12 [84]. The SO(3) factor accounts for the cyclic Z3

isotropy symmetry and imposes a εIJK structure, not only in the gauge brackets

of (4.2), but also in the extended brackets involving the isometry generators. The

SO(2, 2) factor reflects on a splitting of g into four (E, Ẽ,D, D̃) algebra subspaces

expanded by the gauge generators (EI , ẼI)I=1,2,3 of (4.2) and a new set of isometry

generators (DI , D̃I)I=1,2,3 . In addition to the gauge brackets specified by Q in

(4.3), the algebra g will involve an enlarged set of structure constants

Q∗(DK ,D̃K)

(EI ,ẼI) , (DJ ,D̃J )
and H(EK ,ẼK)

(DI ,D̃I) , (DJ ,D̃J )
, (4.5)

such that the mixed gauge-isometry brackets in (4.5) are given by the co-adjoint

action Q∗ of Q and (DI , D̃I)I=1,2,3 become the generators of the reductive and

symmetric coset space G/Ggauge [171].

2. Does such an extension result in a G-graded structure? If it does, the G-grading of g

has to accommodate for both gauge-inner and gauge-isometry Z2-graded structures

of (4.3) and (4.5). This reduces the candidates to the G = Z2 ⊕ Z2 , G = Z2 ⊗ Z2

and G = Z4 groups.

Let us start by deriving the extension of the ggauge based on the κ1 = κ12 solution

in (4.4) to a full supergravity algebra g. For the extended Jacobi identity HQ = 0 to

be fulfilled, the most general twelve-dimensional supergravity algebra is given (up to re-

definitions of the algebra basis) in table 4.2, where the (ε1, ε2) real quantities determine

the new entries in the extended structure constants H , involving the brackets between

the isometry generators. Therefore, the ε-parameters determine the coset space G/Ggauge
and the supergravity algebra g built from a specific ggauge [172]. Observe that g has

a non manifest graded structure. Although we omit the tedious proof, it can always be

transformed into a G-graded form with G = Z2 ⊕ Z2 , G = Z2 ⊗ Z2 and G = Z4 , by

an appropriate rotation of the (E, Ẽ,D, D̃) vector of SO(2, 2) without mixing the gauge

and isometry subspaces3.

Working out the extension of the ggauge for κ12 = κ2 = 0 solution in (4.4), the most

general supergravity algebra verifying HQ = 0 is written (again up to redefinitions of

the algebra basis) in table 4.3, resulting in an explicit G = Z2 ⊕ Z2 graded structure.

It factorises into the direct sum of two six-dimensional pieces spanned by (EI , DI) and

(ẼI , D̃I) respectively.

We will refer to the (EI , ẼI ; DI , D̃I)I=1,2,3 generators, satisfying the commutation re-

lations either in table 4.2 or table 4.3, as the canonical basis of g. The structure constants

3 Z2 ⊗ Z2 acts naturally on the bi-complex numbers. The maximal supergravity algebra with this

grading is g = so(3, 1)2, namely, the su(2) bicomplexification.
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κ1 = κ12 EJ ẼJ DJ D̃J

EI κ1E
K κ1 Ẽ

K κ1DK κ1 D̃K

ẼI κ1 Ẽ
K κ2E

K −κ2 D̃K −κ1DK

DI κ1DK −κ2 D̃K −ε1 κ2E
K − ε2 κ2 Ẽ

K ε2 κ2E
K + ε1 κ1 Ẽ

K

D̃I κ1 D̃K −κ1DK ε2 κ2E
K + ε1 κ1 Ẽ

K −ε1 κ1E
K − ε2 κ1 Ẽ

K

Table 4.2: Commutation relations for the algebra g based on the κ1 = κ12 solution in

(4.4).

κ12 = κ2 = 0 EJ ẼJ DJ D̃J

EI κ1E
K 0 κ1DK 0

ẼI 0 0 0 0

DI κ1DK 0 −ε1 κ1E
K 0

D̃I 0 0 0 −ε2 κ1 Ẽ
K

Table 4.3: Commutation relations for the algebra g based on the κ12 = κ2 = 0 solution

in (4.4).

Q and H in this basis depend on the (κ1, κ2, ε1, ε2) parameters and can be directly read

from there.

A powerful clue to identifying the set of supergravity algebras that can be realized

within the brackets in tables 4.2 and 4.3 comes from the study of their associated Cartan-

Killing matrix, denoted M . It has a block-diagonal structure

M = Diag (Mg,Mg,Mg,Misom,Misom,Misom) , (4.6)

where Mg and Misom are 2× 2 matrices referring to the pairs (EI , ẼI) and (DI , D̃I)

of generator subspaces, respectively. Let us study the diagonalisation of M. The two

eigenvalues of the Mg matrix

κ1 = κ12 : λ
(1)
gauge = −23 κ2

1 and λ
(2)
gauge = −23 κ1 κ2 ,

κ12 = κ2 = 0 : λ
(1)
gauge = −22 κ2

1 and λ
(2)
gauge = 0 ,

(4.7)

are obtained by substituting the normalised κ-configurations in table 4.1. For the Misom

matrix, they are computed by solving the characteristic polynomial

λ2
isom − Tλisom + D = 0 , (4.8)
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determined by its trace T and its determinant D. Those are given by

κ1 = κ12 : T = 23 ε1 κ1 (κ1 + κ2) and D = 26 κ2
1 κ2 (ε21 κ1 − ε22 κ2) ,

κ12 = κ2 = 0 : T = 12 ε1 κ
2
1 and D = 0 .

(4.9)

Provided the κ1 = κ12 solution in (4.4), the supergravity algebra g becomes semisimple

if and only if

κ1 κ2 (κ1 ε
2
1 − κ2 ε

2
2) 6= 0 , (4.10)

whereas for the κ12 = κ2 = 0 solution g is always non-semisimple since a null λisom = 0

eigenvalue comes out from (4.8).

Some of the generators in the adjoint representation of g may vanish when we are

dealing with a non-semisimple algebra. If so, this representation is no longer faithful

and the supergravity algebra gemb realised on the curvatures and embeddable within the

o(6, 6) duality algebra becomes smaller than the algebra g involving the vector fields [166].

After a detailed exploration, the set of g allowed by the N = 1 orientifolds of

the isotropic Z2 × Z2 orbifold are listed in table 4.4. The spectrum includes from the

flux-vanishing g = u(1)12 case up to the most involved g = so(3, 1)2 algebra. All of

them are G-graded contractions of those supergravity algebras built from the maximal

ggauge = so(4) and ggauge = so(3, 1) subalgebras. Specifically, contractions based on the

abelian G = Z2 ⊕ Z2 , G = Z2 ⊗ Z2 and G = Z4 finite groups, compatible with the

isotropic orbifold symmetries.

It can be observed that the cases of g = so(3, 1)2 and g = so(3, 1) ⊕Z3 u(1)6 arising

as the extensions of ggauge = so(3, 1) , also appear as extensions of ggauge = so(4) and

ggauge = iso(3) respectively. At this point, we have to go back to section 2.4.2 and

emphasise that, in the type IIB with O3/O7-planes duality frame (the T-fold description),

a family of 4d effective models is determined not only by the supergravity algebra g , but

also by specifying the subalgebra ggauge associated to the isotropy subgroup of the coset

space G/Ggauge. In this sense, effective models based on the same g, but containing

different ggauge, result in non equivalent models.

4.2 Type IIA supergravity flux models and no-go theorems

So far, we have been mostly centered on the T-fold description of the type II orientifold

flux models on the isotropic Z2 × Z2 orbifold. This is mainly due to its suitability to

classify the supergravity algebras underlying the generalised fluxes. Any effective model

in this description becomes an apparently4 non-geometric model once we switch on a non

4By apparently we mean that it may result in a type IIA geometric flux model when changing the

duality frame.
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# ggauge g gemb H extension

1
so(3, 1)

so(3, 1)2

g
ε21 + ε22 6= 0

2 so(3, 1)⊕Z3 u(1)6 ε21 + ε22 = 0

3

so(4)

so(3, 1)2

g

(ε1 + ε2) > 0 , (ε1 − ε2) > 0

4 iso(3)2 (ε1 + ε2) = 0 , (ε1 − ε2) = 0

5 so(4)2 (ε1 + ε2) < 0 , (ε1 − ε2) < 0

6 so(3, 1) + iso(3) (ε1 + ε2) > 0 , (ε1 − ε2) 1 0

7 so(3, 1) + so(4) (ε1 + ε2) ≷ 0 , (ε1 − ε2) ≶ 0

8 iso(3) + so(4) (ε1 + ε2) 0 0 , (ε1 − ε2) 6 0

9

iso(3)

so(3, 1) ⊕Z3
u(1)6

g

ε1 > 0

ε2 = free10 iso(3) ⊕Z3
u(1)6 ε1 = 0

11 so(4) ⊕Z3
u(1)6 ε1 < 0

12
nil

nil12(4) nil12(3)
ε1 = free

ε2 6= 0

13 nil12(2) u(1)12 ε2 = 0

14

su(2) + u(1)3

so(3, 1) + nil
so(3, 1) + u(1)6 ε1 > 0

ε2 6= 0

15 so(3, 1) + u(1)6 ε2 = 0

16 iso(3) + nil
iso(3) + u(1)6 ε1 = 0

ε2 6= 0

17 iso(3) + u(1)6 ε2 = 0

18 so(4) + nil
so(4) + u(1)6 ε1 < 0

ε2 6= 0

19 so(4) + u(1)6 ε2 = 0

20 u(1)6 nil12(2) u(1)12 unconstrained

Table 4.4: List of the N = 1 supergravity algebras g allowed by the isotropic Z2 × Z2

orbifold. The κ-parameters fixing ggauge are taken to their normalised values shown

in table 4.1. The number p within the parenthesis in the twelve-dimensional nil12(p)

nilpotent algebras denotes the nilpotency order.

vanishing Q-flux background. By changing the duality frame it can always be mapped to

a N = 1 type IIA string compactification with O6/D6 sources including the entire set of

generalised fluxes, i.e. H̄3 , ω , Q and R , together with a set of R-R p-form fluxes F̄p

with p = 0, 2, 4, 6.
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4.2.1 Power law dependence of IIA scalar potential

Starting from the ten-dimensional type IIA massive supergravity action and performing

dimensional reduction to four dimensions, the H̄3 and F̄p flux-induced terms in the scalar

potential were worked out in ref. [13]. More concretely, their power law dependence on

the the volume modulus y and the four-dimensional dilaton modulus σ̃,

y ≡ (Vol6)
1
3 ∼ A , σ̃ ≡ e−ϕ

√
Vol6 ∼ e−ϕA3/2 , (4.11)

where ϕ is the ten-dimensional dilaton field and Vol6 ∼ A3 denotes the volume of the

internal space T6 = (T2)3 with A the area of T2. Further terms induced by generalised

ω, Q and R fluxes were also introduced by applying T-dualities on the H̄3 one due

to the non existence of a ten-dimensional supergravity formulation of the theory in such

generalised flux backgrounds.

The N = 1 scalar potential coming from these generalised type IIA flux compactifi-

cations can be split into three main contributions

VIIA = VGen + Vloc +

6∑
p=0 (even)

VF̄p , (4.12)

with

VGen = VH̄3
+ Vω + VQ + VR . (4.13)

The latter is the potential energy induced by the set of generalised fluxes. The term Vloc

accounts for the potential localised sources as O6-planes and D6-branes. VH̄3
and VF̄p ac-

count for the H̄3 and F̄p flux-induced terms in the scalar potential. These are non negative

because they come from quadratic terms in the ten-dimensional action. Vω accounts for

the potential energy induced by the geometric ω flux. Finally, VQ and VR account for the

contributions generated by the non-geometric Q and R fluxes.

Working with the two (y, σ̃) moduli fields (a.k.a in the volume-dilaton plane limit),

the power law dependence of all the terms in (4.12) on those fields, was found to be

VH̄3
∝ σ̃−2 y−3 , Vω ∝ σ̃−2 y−1 , VQ ∝ σ̃−2 y , VR ∝ σ̃−2 y3 , (4.14)

for the set of generalised flux-induced contributions, together with

Vloc ∝ σ̃−3 , (4.15)

for the potential energy induced by the localised sources and

VF̄p ∝ σ̃−4 y3−p , (4.16)

for the R-R flux-induced terms [13]. The contributions to the scalar potential of eq. (4.12)

can be arranged as

VIIA = A(y,M) σ̃−2 +B(M) σ̃−3 + C(y,M) σ̃−4 , (4.17)



4.3 Type IIA scalar potential from type IIB flux models 109

where M denotes the set of additional moduli fields in the model. A(y,M) contains the

contributions to the scalar potential resulting from the generalised fluxes. B(M) accounts

for the O6-planes and D6-branes contributions to the potential energy. Finally, C(y,M)

incorporates the terms in the scalar potential induced by the set of R-R fluxes. The explicit

form of these functions depends on the features of the specific model under consideration.

In contrast with previous works, our initial setup does not contain KK5-branes [16, 17]

generating a contribution to the scalar potential that scales as the geometric ω flux-

induced term of eq. (4.14), nor NS5-branes [13, 17] that would induce a VNS5 ∝ σ̃−2y−2

term. We work within the framework of ref. [14], extended to include the set of generalised

fluxes needed for restoring T-duality invariance at the 4d effective level.

4.2.2 Simple no-go theorems in the volume-dilaton plane limit

Using the general scaling properties of eqs (4.14)-(4.16), it can be shown that the potential

of eq. (4.12) verifies

−
(
y
∂VIIA

∂y
+ 3 σ̃

∂VIIA

∂σ̃

)
= 9VIIA +

6∑
p=0 (even)

p VF̄p − 2Vω − 4VQ − 6VR . (4.18)

Notice that the l.h.s of eq. (4.18) vanishes identically at any extremum of the scalar

potential yielding

VIIA =
1

9

∆V −
6∑

p=0 (even)

p VF̄p

 , (4.19)

with ∆V ≡ 2Vω + 4VQ + 6VR . Whenever VF̄p > 0 for some p = 0, 2, 4, 6 , there can not

exist dS/Mkw solutions (i.e. VIIA ≥ 0) unless

∆V ≥
6∑

p=0 (even)

p VF̄p . (4.20)

This was the line followed in refs [16, 17] where certain type IIA flux compactifications

on curved internal spaces generating a contribution ∆V = 2Vω 6= 0 were presented.

Additionally, if building the linear combination

−
(
y
∂VIIA

∂y
+ σ̃

∂VIIA

∂σ̃

)
= 3VIIA + 2

(
VH̄3

+ VF̄4
+ 2VF̄6

)
−2

(
VF̄0

+ VQ + 2VR
)
, (4.21)

it shows that VF̄0
6= 0 for dS vacua to exist in any geometric model, i.e. VQ = VR = 0.

This implies having a Romans massive supergravity, as it was stated in ref. [17].

4.3 Type IIA scalar potential from type IIB flux models

In this section we are deriving the characteristic flux-induced N = 1 isotropic scalar po-

tential associated to each of the 12-dimensional supergravity algebras found in section 4.1
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and displayed in table 4.4. Our main goal here is to do it in a unified manner that will

allow us to work with all the T-duality invariant supergravity flux models simultaneously.

To start with, we consider the type IIB with O3/O7-planes duality frame used in chap-

ter 3. In this duality frame only the Q and H̄3 fluxes are turned on in the supergravity

models and g takes the form given in (2.46). Next, and by performing three T-dualities

along the internal space coordinates, these effective models are mapped to type IIA com-

pactifications in the presence of H̄3 , ω , Q and R fluxes and O6-planes.

couplings IIA with O6 IIB with O3/O7 fluxes

1 F̄αiβjγk F̄ijk a0

U F̄αiβj F̄ijγ a1

U2 F̄αi F̄iβγ a2

U3 F̄0 F̄αβγ a3

S H̄ijk H̄ijk b0

S U ωαjk H̄αjk b1

S U2 Qαβk H̄iβγ b2

S U3 Rαβγ H̄αβγ b3

T H̄αβk Qαβk c0

T U ωjkα , ω
i
βk , ω

α
βγ Qαjk , Qiβk , Qβγα č1 , ĉ1 , c̃1

T U2 Qγiβ , Q
iβ
γ , Qijk Qiβγ , Qγiβ , Q

ij
k č2 , ĉ2 , c̃2

T U3 Rijγ Qijγ c3

Table 4.5: IIA/IIB correspondence between isotropic flux coefficients in the Z2 × Z2

orientifolds.

Switching the duality frame, the Kähler modulus and the complex structure modulus

are swapped. The resulting type IIA effective theory is still given by (2.67) when setting

the non-geometric P -fluxes dA = 0 so that P4(U) = 0. However, the coefficients in the

remaining flux-induced polynomials (2.68), (2.69) and (2.70) have to be reinterpreted in

terms of the type IIA flux entries, namely, the set of F̄p R-R fluxes with p = 0, 2, 4, 6

together with the entire set H̄3 , ω , Q and R of fluxes [7,8]. The correspondence between

IIA and IIB fluxes [7] is shown in table 4.5.
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4.3.1 Unified description of type IIB models

Let us consider the T-duality invariant effective flux models described in chapter 3. Per-

forming a non linear transformation on the complex structure U modulus

U → Z ≡ ΓU =
αU + β

γ U + δ
, (4.22)

via the general Γ ∈ GL(2,R) matrix

Γ ≡
(
α β

γ δ

)
, (4.23)

was found to be equivalent to applying the SL(2,R) rotations of (3.10) and (3.17) upon

the generators of the supergravity algebra in (2.46). In terms of the Γ matrix in (4.23),

this rotation of the algebra basis is given by

(
EI

ẼI

)
=

Γ

|Γ|2

(
−X2I−1

X2I

)
and

(
−DI

D̃I

)
=

Adj(Γ)

|Γ|2

(
−Z2I−1

Z2I

)
,

(4.24)

for I = 1, 2, 3. Thus, any non-geometric Q-flux background consistent with (2.46) can

always be transformed into the canonical Q form in (4.3) satisfying (4.4), by means of

an appropriate choice of the Γ matrix5. The new gauge-isometry mixed brackets are still

given by the co-adjoint action Q∗ of Q , and g is forced by the HQ = 0 Jacobi identity

to be that of table 4.2 or 4.3.

Reading the canonical Q and H fluxes from there, and undoing the change of basis in

(4.24), we obtain the non canonical embedding of g within the original Q and H̄3 fluxes,

respectively. Substituting them into the original flux-induced polynomials in (2.69) and

(2.70), they result with the form of (3.40),

P2(U) = (γU + δ)3P2(Z) , P3(U) = (γU + δ)3P3(Z) , (4.25)

where the P2(Z) and P3(Z) flux-induced polynomials are shown in table 4.6. Notice that

all the supergravity flux models introduced case by case in section 3 are now described

jointly.

In terms of the redefined complex structure modulus Z, and following the philosophy

of the previous chapter 3, we decide to make the R-R flux-induced polynomial expansion

of

P1(U) = (γU + δ)3
[
ξs P2(Z) + ξt P3(Z) − ξ3P̃2(Z) + ξ7 P̃3(Z)

]
, (4.26)

5At this point it becomes clear that a rescaling of the gauge generators in (4.2) is equivalent to a

rescaling of the diagonal entries within the Γ matrix in (4.24). Therefore, κ1 and κ2 can always be

expressed as their normalised values, shown in table 4.1, without lost of generality.
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P3(Z)/3 P2(Z)

κ1 = κ12 κ2Z3 − κ1Z κ2
(
ε1Z3 + 3 ε2Z2

)
+ κ1 (ε2 + 3 ε1Z)

κ12 = κ2 = 0 κ1Z κ1
(
ε1Z3 + ε2

)
Table 4.6: The unified flux-induced P2(Z) and P3(Z) polynomials.

where P̃i(Z) denotes the dual of Pi(Z) such that Pi(Z) → P̃i(Z)
Z3 when Z → − 1

Z . As

noticed in section 3.2.1, this parameterisation allows us to remove the R-R flux degrees

of freedom (ξs, ξt) from the effective theory through the field shifts in (3.48). However,

the previous argument for reabsorbing parameters fails when P3(Z) and P2(Z) are pro-

portional to each other, i.e. P3(Z) = λP2(Z) . In this case only the linear combination,

Re(S)+λRe(T ) , of axions enters the superpotential, and its orthogonal direction can not

be stabilised due to the form of the Kähler potential in (2.67).

The effective theory built in this way corresponds to a transformation eK |W |2 →
eK|W|2 of the original (F̄3, H̄3) and Q flux-induced model into an equivalent one described

by the Kähler K and the superpotential W

K = −3 log
(
−i (Z − Z̄)

)
− log

(
−i (S − S̄)

)
− 3 log

(
−i (T − T̄ )

)
,

W = |Γ|3/2
[
T P3(Z) + S P2(Z)− ξ3P̃2(Z) + ξ7 P̃3(Z)

]
,

(4.27)

with the P2,3(Z) polynomials shown in table 4.6. This parameterisation makes more

evident the discrete symmetries of the theory. In particular:

i) W is invariant under

S → −S , ( ε1 , ε2 , ξ3 , ξ7 ) → (−ε1 , −ε2 , −ξ3 , ξ7 ) . (4.28)

ii) W goes to −W under these two transformations:

T → −T , ( ε1 , ε2 , ξ3 , ξ7 ) → (−ε1 , −ε2 , ξ3 , −ξ7 ) . (4.29)

Z → −Z , ( ε1 , ε2 , ξ3 , ξ7 ) → ( ε1 , −ε2 , −ξ3 , −ξ7 ) . (4.30)

iii) The dynamics of the moduli fields (Z,S, T ) is determined by the standard N = 1

scalar potential in (3.54) built from (4.27). Since the superpotential parameters are

real, the potential is invariant under field conjugation. We can combine this action

with the above transformations, namely

(Z , S , T ) → − (Z , S , T )∗ , ( ε1 , ε2 , ξ3 , ξ7 ) → ( ε1 , −ε2 , ξ3 , ξ7 ) ,

(4.31)

to relate physical vacua at ±ε2. Notice that this transformation keeps the super-

gravity algebra g invariant.
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The transformations in i) and ii) map physical vacua into non-physical ones. Using

them it is possible to turn any non-physical vacuum into a physical one in a related model

by flipping the signs of some parameters. It is interesting to notice that the supergravity

algebra g of these two models may be different (see table 4.4).

The original flux entries appearing in (2.68)-(2.70) can be read from (3.40) and (4.26)

after substituting the Z redefined modulus of (4.22) into the flux-induced polynomi-

als given in table 4.6. Then, the tadpole cancellation conditions in (2.77) and (2.78)

result in a few simple expressions shown in table 4.7. As can be seen from it, the dis-

crete transformations in (4.28), (4.29), (4.30) and (4.31) imply (N3, N7) → (−N3, N7),

(N3, N7)→ (N3,−N7), (N3, N7)→ (−N3,−N7) and (N3, N7)→ (N3, N7), respectively.

N3/|Γ|3 N7/|Γ|3

κ1 = κ12 3ε1
(
κ2

1 − κ2
2

)
ξ7 +

(
ε21 (3κ2

1 + κ2
2) + ε22

(
κ2

1 + 3κ2
2

) )
ξ3 ε1(κ2

1 − κ2
2)ξ3 + (κ2

1 + 3κ2
2)ξ7

κ12 = κ2 = 0 κ2
1 (ε21 + ε22) ξ3 κ2

1 ξ7

Table 4.7: The unified R-R flux-induced tadpoles.

Summarising, all the 4d effective models can be jointly described by the Kähler poten-

tial and the superpotential in eqs. (4.27) with the flux-induced polynomials presented in

table 4.6. They are totally defined in terms of the new (Z,S, T ) moduli fields, together

with a small set of parameters

i) (κ1, κ2 ; ε1, ε2), that determine the generalised fluxes and hence the twelve-dimensional

supergravity algebra g. As it was previously explained, see footnote 5, κ1 and κ2

can always be taken to their normalised values shown in table 4.1 without lost of

generality.

ii) (ξ3, ξ7), related to the localised O3/D3 and O7/D7 sources through the tadpole

cancellation conditions displayed in table 4.7.

Finally, the use of this parameterisation for the effective models allows us to extract

an interesting result based on the following argument: it is well known (see table 4.5) that

only the U2 and U3 couplings in the flux-induced polynomials P2,3(U) of (2.69) and

(2.70) come from the non-geometric Q and R fluxes, respectively. This is in the type IIA

description of the effective models [7, 8].

On the other hand, provided consistent Q and H̄3 fluxes in the type IIB description,

their flux-induced polynomials can always be transformed to the form given in table 4.6

via the modular transformation U → Z of eq. (4.22). Substituting the value of the

κ-parameters given in table 4.1 into the flux-induced polynomials of table 4.6, we can

conclude that such quadratic and cubic couplings can be removed from the superpotential
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via a modular transformation for the models based on ggauge = nil , iso(3) and su(2) +

u(1)3 (if taking ε1 = 0). Therefore, these models can be described as geometric type IIA

flux compactifications. In the nil case with κ1 = κ12 = 0 , a further Z → 1
−Z inversion is

needed in order to remove the quadratic and cubic couplings from P3(Z) and P2(Z). As

we showed in section 3, these geometric flux models do not possess supersymmetric AdS4

vacua with all the moduli (including axionic fields) stabilised.

4.3.2 From type IIB with O3/O7 to type IIA with O6

In going from the IIB with O3/O7 duality frame to the IIA with O6 one by means of apply-

ing three T-duality transformations, the generalised NS-NS flux entries are shuffled. This

is because T-duality raises and lowers indices according to the chain of transformations in

(2.25)

H̄abc
Ta−→ ωabc

Tb−→ Qabc
Tc−→ Rabc . (4.32)

This flux mixing also happens for the R-R fluxes, although this time the effect of a T-

duality transformation Tp is that of creates/annihilates an index

Tp :

 F̄a1...an → F̄a1...anp

F̄a1...anp → F̄a1...an

. (4.33)

After applying three T-dualities upon the F̄3 flux in the T-fold description, its components

map to the different F̄p flux entries with p = 0, 2, 4, 6 in the type IIA picture [7, 8]. The

correspondence between flux components is displayed in table 4.5. Consequently, since

the flux-induced terms in the scalar potential map between duality frames, the remaining

contributions, namely, those coming from localised sources in both descriptions, will also

do.

In the T-fold description of the effective models, the scalar potential in (3.54) can

be entirely computed from (4.27) using the flux-induced polynomials in table 4.6. The

contributions coming from the O3/D3 and O7/D7 localised sources are given by

VO3/D3 = − N3

16µ3
and VO7/D7 =

3N7

16µ2 σ
, (4.34)

where we have made use of the tadpole cancellation conditions shown in table 4.7. The

N = 1 scalar potential computed from (3.54) contains the localised sources needed to

cancel the flux-induced tadpoles [175]. We will not consider additional localised sources

whose effect would have to be included directly in the scalar potential [12]. Therefore,

all the contributions to VT-fold (the scalar potential computed in type IIB with O3/O7-

planes) coming from localised sources are those in (4.34).
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By applying the relation between the IIB/IIA moduli fields for the supergravity models

based on the Z2 × Z2 isotropic orbifold [175],

T-fold description ↔ Type IIA description

σ =
σ̃

µ̃3
↔ σ̃

µ = σ̃ µ̃ ↔ µ̃

(4.35)

the VO3/D3 and VO7/D7 contributions in (4.34) turn out to depend on the σ̃ modulus in

the same way as Vloc in (4.15).

Computing the IIB with O3/O7-planes scalar potential from eqs (4.27) with the flux-

induced polynomials given in table 4.6, and using the moduli relation of eq. (4.35), we

end up with the standard form in (4.17) of the scalar potential in the IIA with O6-planes

language,

VIIA = A(y, µ̃, x) σ̃−2 +B(µ̃) σ̃−3 + C(y, φ) σ̃−4 , (4.36)

where φ denotes the set of axions (x, s, t) = (ReZ,ReS,Re T ) and y = ImZ . The

functions A, B and C account for the sixteen different sources of potential energy which

we list below:

• A(y, µ̃, x) contains the contributions coming from the set of R , Q , ω and H̄3

fluxes,

A(y, µ̃, x) = y3

(
r2

1

µ̃6
+ r2

2 µ̃
2

)
+ y

(
q2

1

µ̃6
+
q2

µ̃2
+ q3 µ̃

2

)
+

+
1

y

(
ω2

1

µ̃6
+
ω2

µ̃2
+ ω3 µ̃

2

)
+

1

y3

(
h2

1

µ̃6
+ h2

2 µ̃
2

)
.

(4.37)

• B(µ̃) accounts for the potential energy stored within the O6-planes and D6-branes

localised sources,

B(µ̃) =
−1

16

(
N3

µ̃3
− 3N7 µ̃

)
. (4.38)

- The O3/D3 sources in the T-fold description are interpreted in the type IIA lan-

guage as O6/D6 sources wrapping a 3-cycle of the internal space, which is invariant

under the type IIA with O6-planes orientifold action σii) in (2.9)6. In the following,

we will refer to these O6/D6 sources as type 1, see figure 4.1.

6In the type IIA language, only the O6/D6 sources wrapping this invariant three cycle preserve N = 4

supersymmetry [180]. Since these sources are reinterpreted as O3/D3 sources in the type IIB language,

the Jacobi identities descending from a truncation of a N = 4 supergravity algebra would have nothing

to say about their number [155].
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η1

η2

η3

η4

η5

η6× ×

Figure 4.1: A type 1 D6-brane originated from an initial D3-brane by applying three

T-dualities along the η1, η3 and η5 directions.

- The O7/D7 sources in the T-fold description correspond in the type IIA picture

as O6/D6 sources wrapping three cycles which are invariant under the composition

of both the IIA orientifold together with the Z2 × Z2 orbifold actions [8]. We will

refer to these O6/D6 sources as type 2, see figure 4.2.

η1

η2

η3

η4

η5

η6× ×

Figure 4.2: Example of type 2 D6-brane coming from an initial D7-brane wrapping the

4-torus
(

1
2 ,

1
2

)
× T2 × T3 in the internal space. The D6-brane appears after performing

three T-dualities along the η1, η3 and η5 directions.

• C(y, φ) contains the terms in the scalar potential induced by the F̄p R-R p-form

fluxes with p = 0, 2, 4 and 6 ,

C(y, φ) = y3 f2
0 + y f2

2 +
f2

4

y
+
f2

6

y3
. (4.39)

Taking a look at the (σ̃, y)-scaling properties of the different terms appearing in these

functions, they are easily identified in the type IIA picture of eqs (4.14)-(4.16), resulting

in a dictionary between both descriptions at the level of the scalar potential. In fact,

VT-fold ↔ VIIA , (4.40)

after applying (4.35) and reinterpreting the different scalar potential contributions in the

T-fold description with respect to the type IIA with O6-planes duality frame.
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All the terms in the scalar potential VIIA of (4.12) and (4.13) are reproduced. Making

their dependence on the axions explicit, they are given by

Vω = σ̃−2y−1µ̃−6
(
ω2

1(x) + ω2(x)µ̃4 + ω3(x) µ̃8
)

, VH̄3
= σ̃−2y−3µ̃−6

(
h2

1(x) + h2
2(x) µ̃8

)
VQ = σ̃−2y µ̃−6

(
q2

1(x) + q2(x)µ̃4 + q3(x) µ̃8
)

, VR = σ̃−2y3 µ̃−6
(
r2

1(x) + r2
2(x) µ̃8

)
(4.41)

for the set of generalised flux-induced terms,

Vloc = − 1

16
σ̃−3 µ̃−3

(
N3 − 3N7 µ̃

4
)
, (4.42)

for the potential energy within the O6/D6 localised sources and

VF̄p = σ̃−4 y(3−p) f2
p (x, s, t) , p = 0, 2, 4, 6 , (4.43)

for the R-R flux-induced contributions. The above decomposition of the scalar potential

holds after the non linear action of an arbitrary matrix Θ ∈ GL(2,R)Z on the redefined

complex structure modulus Z → Θ−1Z.

The contributions VH̄3
, Vω, VQ and VR involve only the axion x = ReZ unlike the

set of VF̄p that depends on the entire set of them. Specifically, the functions fp(x, s, t)

have a linear dependence on the axions s and t. It is clear from (4.41) and (4.43) that

VH̄3
, VR, VF̄p are positive definite, as well as the Vω1 and Vq1 terms induced by ω1 and

q1 respectively.

At this point we would like to make a rough comparison of the scalar potential in (4.36),

involving the entire set of moduli fields, with that of ref. [17] obtained in the volume-dilaton

two (non-axionic) moduli limit. First of all, the compactifications studied there do not

include non-geometric fluxes, i.e. VQ = VR = 0, so that Vω ≥ 0 at any dS/Mkw vacuum.

The setup in ref. [17] also reduces the contributions in (4.42), accounting for localised

sources, to the piece involving N3 (with N3 > 0). Finally, another difference is that

the functions r1,2 , q1,2,3 , ω1,2,3 , h1,2 and fp in (4.41) and (4.43) can not be taken to be

constant as in ref. [17], but they do depend on the set of axions, φ. Hence these are

dynamical quantities to be determined by the moduli VEVs.

4.4 Discarding type IIB flux models

Armed with the mapping between the T-fold and the type IIA descriptions of the effective

models presented in the previous section, we investigate now how the no-go theorem of

eq. (4.20), on the existence of dS/Mkw vacua, can be used in this context. We restrict

ourselves to vacua with all moduli (including axions) stabilised by fluxes. We do not

consider the limiting cases defined by:
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1. ε1 = ε2 = 0, for which P2(Z) = 0 and the shifted dilaton S can not be stabilised

by the fluxes. This excludes algebras 2 , 4 and 17 in table 4.4.

2. κ1 = κ2 = 0, yielding P3(Z) = 0 and leaving the shifted Kähler modulus T
not stabilised. This case results in no-scale supergravity models [152] previously

found [84, 93], since the T modulus does not enter the superpotential in (4.27).

This discards algebra 20 in table 4.4.

Furthermore, we will also assume that F̄p 6= 0 for some p = 0, 2, 4, 6 . However, we will

consider a much weaker version of the no-go theorem of eq. (4.20), given by

∆V > 0 . (4.44)

The reason for doing this is that our classification of the supergravity algebras, which is

the building block for finding vacua, has nothing to do with R-R fluxes7. These will not

be used in the process of excluding algebras through the no-go theorem, and, therefore, we

will use eq. (4.44) (rather than eq. (4.20)) in what follows. Note that, in any case, the R-R

fluxes defining the VF̄p contributions in (4.43) will play a crucial role in the stabilisation

of the axions.

Working with the flux-induced polynomials P2(Z) and P3(Z) from table 4.6, corre-

sponds to defining the supergravity algebra g in the canonical basis of tables 4.2 and 4.3.

In this basis, ∆V reads

∆V =
3 |Γ|3

16 y σ̃2 µ̃6

(
l2 µ̃

8 + l1 µ̃
4 + l0

)
where |Γ| , l0 > 0 . (4.45)

The functions l2 , l1 and l0 in the polynomial of (4.45) may depend on the Z modulus

and determine whether or not ∆V can be positive (provided that y0, σ̃0, µ̃0 > 0 at any

physical vacuum).

In some cases, moving to a different algebra basis may simplify the flux-induced poly-

nomials in the superpotential, since they are built from the structure constants of g. Then,

a higher number of zero entries in the structure constants translates into simpler effec-

tive models. This also simplifies the l2 , l1 and l0 functions in (4.45), which determine

whether the necessary condition in (4.44) can be fulfilled.

Starting with the effective theory derived in the canonical basis of g , and by applying a

non linear Θ ∈ GL(2,R)Z transformation upon the Z modulus, Z → Θ−1Z , we end up

7In this work we have used the IIB with O3/O7 supergravity algebra given in eq. (2.46) and proposed

in ref. [7]. It is totally specified by the non-geometric Q and the NS-NS H̄3 fluxes. In the most recent

articles of refs [155,161], the origin of these IIB generalised flux models as gaugings of N = 4 supergravity

was explored. The R-R F̄3 flux was found to also enter the N = 4 supergravity algebra, written this time

in terms of both electric and magnetic gauge/isometry generators.
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with an equivalent effective theory formulated in a non canonical basis. The generators in

this new basis are related to the original Xa and Za through the same rotation of (4.24),

by simply replacing

Γ→ Θ Γ . (4.46)

Since the scalar potential decomposition introduced in section 4.3.2 holds after the Z →
Θ−1Z transformation, the form of the ∆V in (4.45) also does. Therefore, restricting the

Θ transformations to those with |Θ| > 0, i.e. ImZ0 > 0 → Im(Θ−1Z0) > 0, guarantees

that (4.44) still holds as a necessary condition for dS/Mkw vacua to exist.

The usefulness of moving from the canonical basis to a non-canonical one can be

illustrated in the two particular cases determined by the transformations

Θ1 ≡
(

0 −1

1 0

)
and Θ2 ≡

1

22/3

(
1 −1

1 1

)
. (4.47)

Θ1 exchanges the gauge generators EI ↔ ẼI as well as the isometry ones DI ↔ D̃I

(up to signs). On the other hand, Θ2 induces the well known rotation needed for turning

the so(4) algebra into the direct sum of su(2)2 in both the gauge and isometry subspaces.

4.4.1 Using the canonical basis

Let us start by exploring the existence of dS/Mkw vacua in two sets of effective models

computed in the canonical basis of g:

1. Taking the κ1 = κ12 solution in (4.4) and fixing κ2 = 0 , results in VQ = VR =

0 . These models are based on ggauge = iso(3) and admit a geometric type IIA

description. The coefficients determining the quadratic polynomial in (4.45) are

given by

l2 = −κ2
1 , l1 = 4 ε1 κ

2
1 and l0 = ε21 κ

2
1 . (4.48)

The case with ε1 = 0 translates into ∆V < 0, so dS/Mkw solutions are forbidden

for algebra 10 in table 4.4. This supergravity algebra has received special attention

in ref. [180], where it has been identified as g = su(2)⊗Z3 n9,3 . In fact, fixing

κ2 = ε1 = 0 in the commutation relations of table 4.2, the algebra is given by[
EI , EJ

]
= εIJKE

K ,
[
EI , AJn

]
= εIJKA

K
n ,[

AI1, A
J
1

]
= ε2 εIJKA

K
2 ,

[
AI1, A

J
2

]
= εIJKA

K
3 ,

(4.49)

with n = 1, 2, 3, after identifying A1 ≡ D̃, A2 ≡ −Ẽ and A3 ≡ D. It coincides
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with that of ref. [180]8, and we can now exclude that it has any dS/Mkw vacua9.

Moreover, if ε1 6= 0 , the case ε2 = 0 cannot have all the axions stabilised, since

only the linear combination ReS − ε−1
1 ReT enters the superpotential.

2. Taking κ12 = κ2 = 0 in (4.4) induces non-geometric VQ 6= 0 and VR 6= 0 contri-

butions in the scalar potential. These models are built from ggauge = su(2) + u(1)3

and the quadratic polynomial in (4.45) results in

l2 = −κ2
1 , l1 = 2 ε1 κ

2
1

(
|Z|2 + (ImZ)2

)
and l0 = ε21 κ

2
1 |Z|4 . (4.50)

As in the previous case, the limit ε1 = 0 yields effective models with ∆V < 0 as

well as VQ = VR = 0 . They also admit to be described as geometric type IIA flux

compactifications where dS/Mkw solutions are again forbidden. Hence the exclusion

of algebras 16 and 17 in table 4.4.

4.4.2 Using the Θ1-transformed basis

Leaving the canonical basis via applying the Θ1 transformation in (4.47), additional

effective models can be excluded from having vacua with non-negative energy:

1. Taking κ1 = κ12 in (4.4), specifically κ1 = κ12 = 0, the effective models are those

based on ggauge = nil. The condition in (4.44) is not efficient in excluding the

existence of dS/Mkw vacua in any region of the parameter space when working in

the canonical basis of g .

Applying the Θ−1
1 transformation of Z → 1

−Z , the flux-induced polynomials get

simplified to

P3(Z) = 3κ2 , P2(Z) = κ2 (ε1 − 3 ε2Z) , (4.51)

having lower degree than their canonical version shown in table 4.6. In this new basis,

the non-geometric contributions to the scalar potential identically vanish, VQ =

VR = 0 , so these effective models can eventually be described as geometric type

IIA flux compactifications. The coefficients determining the quadratic polynomial

in (4.45) are now given by

l2 = 0 , l1 = 0 and l0 = ε22 κ
2
2 . (4.52)

Therefore, the condition in (4.44) excludes the existence of dS/Mkw vacua in the

limit case of ε2 = 0 since ∆V = 0 . This is algebra 13 in table 4.4.

8Observe that the (AI2, A
I
3)I=1,2,3 generators expand a u(1)6 abelian ideal in the algebra (4.49). After

taking the quotient by this abelian ideal, the resulting algebra involving the (EI , AI1)I=1,2,3 generators

becomes iso(3), so (4.49) is equivalent to g = iso(3)⊕Z3 u(1)6 as it was identified in table 4.4.
9We are always under the assumption of isotropy on both flux backgrounds and moduli VEVs.
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2. Taking κ12 = κ2 = 0 in (4.4), ggauge = su(2)+u(1)3 . The resulting effective models

were previously explored in the canonical basis of g , discarding the existence of

dS/Mkw solutions if ε1 = 0 . Applying again the Θ−1
1 inversion of Z → 1

−Z , the

flux-induced polynomials result in

P3(Z) = 3κ1Z2 , P2(Z) = κ1

(
ε1 − ε2Z3

)
, (4.53)

and the coefficients in the quadratic polynomial in (4.45) are modified to

l2 = −2κ2
1 (ImZ)2 , l1 = 2κ2

1 ε1 and l0 = ε22 κ
2
1 |Z|4 . (4.54)

As a result, dS/Mkw vacua are automatically forbidden for ε2 = 0 as long as ε1 ≤ 0 ,

corresponding to algebras 17 and 19 in table 4.4.

4.4.3 Using the Θ2-transformed basis

The last family of effective models to which eq. (4.44) applies in a useful way is that coming

from fixing κ1 = κ12 , specifically κ1 = κ12 = κ2 = κ in (4.4). It implies ggauge = so(4) .

Performing this time the Θ−1
2 transformation of Z → 1

21/3

(
Z+1
−Z+1

)
, the flux-induced

polynomials simplify to

P3(Z) = 3κZ (Z + 1) , P2(Z) = κ
(
ε−Z3 + ε+

)
, (4.55)

where ε± = ε1 ± ε2 . This Θ2-induced transformation splits g into the direct sum of

two six-dimensional pieces, g = g+ + g− , determined by the sign of the ε± parameters,

respectively. g acquires a manifest Z2 ⊕ Z2 graded structure. These effective models

result with a symmetry under the exchange of ε− and ε+. In fact, the effective action

becomes invariant under this swap, together with the moduli redefinition

Z → 1/Z∗ , S → −S∗ , T → −T ∗ , (4.56)

which arises from combining eq. (4.31) with Θ−1
2 . This symmetry was already found in the

section 3.3.2.5 of chapter 3 where we precisely used this algebra basis when computing the

effective theory based on the su(2)2 Q-algebra. Notice that the (ε−, ε+) flux parameters

in (4.55) when considering the so(4) embedding are identified to the (ε1, ε2) parameters

in the flux-induced polynomials of table 3.1 when using the su(2)2 embedding.

Working out the scalar potential from the polynomials in (4.55), the coefficients in the

quadratic polynomial of (4.45) take the form

l2 = −κ2
(
1 + 2 (ImZ)2

)
, l1 = 2κ2

(
ε−
(
|Z|2 + (ImZ)2

)
+ ε+

)
and l0 = ε2− κ

2 |Z|4 ,
(4.57)

and physically viable dS/Mkw vacua are excluded in the limiting case ε− = 0 as long as

ε+ ≤ 0. The invariance of the effective action under the exchange of ε− and ε+ together

with the moduli redefinitions of (4.56), implies that ( ε+ = 0 , ε− ≤ 0) is also excluded.

These are algebras 4 and 8 in table 4.4.



122 De Sitter Vacua in T-duality Invariant Flux Models

4.4.4 Collecting the results

Finally, the effective models with κ1 = κ12 = −κ2 = κ built from ggauge = so(3, 1) can

not be ruled out and may have dS/Mkw vacua at any point in the parameter space. Three

main results can be highlighted for our isotropic orbifold, also assuming isotropic VEVs

for the moduli:

• Eight of the twenty algebra-based effective models admit a geometrical description

as a type IIA flux compactifications, whereas the remaining twelve are forced to be

non-geometric flux compactifications in any duality frame.

• The four effective models based on the semisimple supergravity algebras 1, 3, 5 and

7 are non-geometric flux compactifications in any duality frame.

• No effective model based on a semisimple g satisfying the condition in (4.10), can

be excluded from having dS/Mkw vacua using (4.44). On the other hand, more than

half of the effective models based on non-semisimple supergravity algebras can be

discarded.

These results are presented in table 4.8 which complements the previous table 4.4 in

characterising the set of non equivalent effective models.

# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

class NG NG NG NG NG NG NG NG G G G G G NG NG G G NG NG G

V0 ≥ 0 X × X × X X X × X × X X × X X × × X × ×

Table 4.8: Splitting of the algebra-based effective models into two classes: those admitting

to be described as geometric (G) flux backgrounds by changing the duality frame, and those

being non-geometric (NG) flux backgrounds in any duality frame. The mark × indicates

that the model is excluded by the necessary condition in (4.44) from having dS/Mkw

vacua (V0 ≥ 0), whereas if it is not, we use the label X.

Let us analyse a concrete example to illustrate the usefulness of this table. We consider

an effective model in terms of the original (U, S, T ) moduli fields with the standard Kähler

potential in (2.67) and with superpotential

W (U, S, T ) = 6T
(
U3 + U2 − U − 1

)
+ 2S

(
U3 + 3U2 + 3U + 1

)
+ 2

(
−U3 + 3U2 − 3U − 3

)
,

(4.58)

where the flux entries are given by c̃1 = c̃2 = ci = −2 , i = 0, .., 3 for the non-geometric

Q-flux and b0 = b2 = −b1 = −b3 = −2, a0 = −3 a1 = −3 a2 = −3 a3 = −6 for the NS-NS

H̄3 and the R-R F̄3 fluxes. This set of flux coefficients are even and satisfy the Jacobi

identities in (2.74) and (3.1). The superpotential in (4.58) looks quite involved in terms
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of determining whether it can have dS/Mkw vacua.

By applying the GL(2,R) transformation Z = ΓU with

Γ ≡ 1

16
1
3

(
1 −1

1 1

)
, so |Γ|3/2 =

1

4
√

2
, (4.59)

the algebra underlying such a flux background results in that of 16 in table 4.4. The

commutators are given by those of table 4.3 with κ1 = 1 , κ12 = κ2 = 0, ε1 = 0 , ε2 = 1 .

Applying a shift on the moduli that enter the superpotential linearly, i.e. ξs = −1
2 ,

ξt = 1
2 ,

S = S − 1

2
, T = T +

1

2
, (4.60)

we end up with the superpotential in (4.27)

W =
1

4
√

2

[
3 T Z + S − 3

2
Z2 − 1

2
Z3

]
, (4.61)

where ξ3 = ξ7 = 1
2 . The tadpole cancellation conditions read N3 = N7 = 16. In this very

much simplified version, compare eq. (4.58) to eq. (4.61), it is easy to see, as was shown

above, that the no-go theorem in (4.44) applies,

∆V = − 3

512 y σ µ
< 0 , (4.62)

and this model does not possess dS/Mkw vacua.

Finally we present an example of non-supersymmetric dS/Mkw vacua. Let us start

with the superpotential W in (4.27) and impose ggauge = so(3, 1) by fixing κ1 = κ12 =

−κ2 = 1. To make the model simpler, we will also take Γ = I2×2 as well as ξs = ξt = 0 .

Hence,

Z = U , S = S , T = T , (4.63)

and the superpotential reads

W (U, S, T ) = − 3
(
U3 + U

)
T +

(
3 ε1 U − ε1 U3 + ε2 − 3 ε2 U

2
)
S

− ξ3

(
ε1 − 3 ε1 U

2 + ε2 U
3 − 3 ε2 U

)
+ 3 ξ7

(
U2 + 1

)
.

(4.64)

The original fluxes are given by c0 = c2 = c̃2 = 0 , c1 = c̃1 = −c3 = −1 for the

non-geometric Q-flux ; −b0 = b2 = ε2 , −b3 = b1 = ε1 for the NS-NS H̄3 flux ;

a0 = −ε1 ξ3 + 3 ξ7 , −a1 = a3 = ε2 ξ3, a2 = ε1 ξ3 + ξ7 for the R-R F̄3 flux, and satisfy

the Jacobi identities in (2.74) and (3.1).

Further taking ε1 = ξ3 = 1 and ξ7 = 16, the model is totally defined in terms of a

unique ε2 parameter and the underlying supergravity algebra is that of 1 in table 4.4.
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minimum ε2 U0 S0 T0 V0

dS 44 0.435 + 0.481 i −1.152 + 2.008 i 54.628 + 48.684 i 3.983× 10−5

Mkw 44.3086352 0.444 + 0.467 i −1.159 + 1.567 i 55.084 + 34.647 i 0

AdS4 45 0.454 + 0.444 i −1.160 + 1.184 i 55.897 + 23.237 i −2.295× 10−4

Table 4.9: Extrema of the scalar potential with positive mass for all the moduli fields.

Using the minimisation procedure that will be presented in the following section, a

non-supersymmetric minimum can be easily found. Moreover, as long as the ε2 param-

eter varies, this minimum changes from AdS4 to dS crossing a Minkowski point, as it is

shown in table 4.9 and also plotted in figure 4.3.

 0
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ImT
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Figure 4.3: Plot of the potential energy, V , as a function of the modulus ImT . To obtain

it, we have fixed all the moduli to their VEV but the lightest one, which mostly coincides

with ImT . The magenta/dotted line (AdS4) corresponds to ε2 = 45 , the green/dashed

one (Mkw) to ε2 = 44.309 and the red/solid line (dS) to ε2 = 44 . Note that a tuning of

the ε2 parameter is required to obtain a Minkowski vacuum.

The supergravity algebras involving non-geometric flux backgrounds in any duality

frame has been found to constitute the main set of algebra-based effective models where

to perform a detailed search of dS/Mkw vacua, see table 4.8. One of the main points

to be stressed here is that a plain minimisation of the scalar potential, which involves

solving very high degree polynomials, is a very inefficient (and, probably, impossible) way

of searching for vacua. On the other hand, an analytic calculation can be performed, using

the decomposition of the scalar potential (4.41)-(4.43), to work out the stabilisation of the

S and T moduli, that enter linearly the superpotential of eq. (4.27). After integrating out

these fields, the resulting effective potential for the Z modulus can be tackled numerically.
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4.5 Numerical analysis of type IIB effective models

Given the Kähler potential and the superpotential in (4.27), the dynamics of the moduli

fields Φ ≡ (Z,S, T ) is determined by the standard N = 1 scalar potential in (3.54).

Accordingly, the moduli fields are stabilised at the minimum of the potential energy,

taking a VEV Φ0 determined by the conditions

∂V

∂Φ

∣∣∣∣
Φ=Φ0

= 0. (4.65)

From now on, our objective will be to solve the above system (4.65) of high degree polyno-

mial equations together with the physical requirement of V |Φ=Φ0
>∼ 0, namely, de Sitter

(dS), almost Minkowski (Mkw) solutions. Our strategy will involve finding the exactly

Mkw solutions to the minimisation conditions, and then looking for dS extrema continu-

ously connected to them via a deformation of the parameter space.

4.5.1 Minimisation conditions

Since the moduli S and T enter the superpotential in (4.27) linearly, the scalar potential

V computed from (3.54) can be written as

V = |Γ|3 eK
(
m0 + 2mi xi +Mij xi xj

)
where i, j = 1, ..., 4 , (4.66)

and

x =
(

ReS , ReT , ImS , ImT
)
. (4.67)

Note that, because of the form of the superpotential in (4.27), m0 and mi depend on

(Z , ε1,2 , ξ3,7 ) , while the matrix M does not depend on the R-R flux parameters ξ3,7.

The VEVs of the S0 and T0 moduli that extremise the potential at V = 0 can be

computed analytically since they satisfy(
ReS0 , ReT0 , ImS0 , ImT0

)
= −M−1m

∣∣
Z=Z0

, (4.68)

where we have assumed a non-degenerate M matrix. Otherwise there would be flat direc-

tions and the stabilisation of S and T would remain incomplete. It is worth mentioning

that, when we plug a particular pair {P2(Z),P3(Z)} of polynomials from table 4.6, M

becomes box diagonal and splits into two 2×2 matrices. In other words, axion and volume

moduli do not mix10 in the quadratic polynomial of (4.66).

Using eq. (4.68), the V = 0 condition reads

m0 −M−1
ij mimj = 0 , (4.69)

10The subtle cancellation of the cross terms is a consequence of the Jacobi identities of the supergravity

algebra (2.46), in particular of the H̄x[bcQ
ax
d] = 0 constraints.
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and provides us with the first constraint between the Z modulus and the ε1,2 and ξ3,7

parameters at the Mkw vacua. The function appearing in (4.69),

V(Z) ≡ m0 −M−1
ij mimj , (4.70)

plays an important role in the calculation. The equations derived from ∂ReZV = ∂ImZV =

0 are just

∂ReZ V = 0 and ∂ImZV = 0 , (4.71)

where again we have used V = 0 and eq. (4.68). The reduced potential V(Z) captures

the Mkw extrema of V and some of their stability properties. In particular, tachyonic

Mkw extrema in V(Z) have their origin in tachyonic Mkw extrema of the full potential

V .

4.5.1.1 The nil models

We now clarify the previous procedure by explaining the nil case in detail. This algebra

is defined by the superpotential

W = |Γ|3/2
[
3 T + S (ε1 − 3 ε2Z)− ξ3

(
ε1Z3 + 3 ε2Z2

)
+ 3 ξ7Z3

]
, (4.72)

and the Kähler potential in (4.27).

The function m0, derived from this superpotential, is given by 11

m0 = 4 |Z|2
[(
|Z|2 (ε1 ξ3 − 3 ξ7) + 3 ε2 ξ3 ReZ

)2
+ 3 ε22 ξ

2
3 ImZ2

]
, (4.73)

whereas the functions mi are

m1 = 4 ReZ
[
ReZ

(
3 ε2 ReZ − ε1

)(
ReZ (ε1 ξ3 − 3 ξ7) + 3 ε2 ξ3

)
+ 3 ε2 ImZ2

(
ReZ (ε1 ξ3 − 3 ξ7) + 2 ε2 ξ3

)]
,

m2 = −12 ReZ2 [ ReZ (ε1 ξ3 − 3 ξ7) + 3 ε2 ξ3 ] ,

m3 = −4 ImZ3
[
ε1 (ε1 ξ3 − 3 ξ7) + 3 ε22 ξ3

]
,

m4 = −12 ImZ3 (ε1 ξ3 − 3 ξ7) .

(4.74)

As mentioned above, the 4 × 4 symmetric matrix M splits into two 2 × 2 matrices, the

first one acting on the axions ReS and ReT with

M11 = 4 (3 ε2 ReZ − ε1)2 + 12 ε22 ImZ2 , M22 = 36 , M12 = −12 (3 ε2 ReZ − ε1) ,

(4.75)

11To make the expressions lighter we replace (ImΦ)q with ImΦq , and similarly for any powers of ReΦ.
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and the second one on the volumes ImS and ImT with

M33 = 4 (3 ε2 ReZ − ε1)2 + 12 ε22 ImZ2 , M44 = 12 , M34 = 0 .

(4.76)

The absence of flat directions implies ε2 6= 0 . Otherwise, only the linear combination

3 T + ε1 S enters the superpotential in (4.72), and the axionic part of its orthogonal com-

bination cannot be fixed.

At this stage, we do not know yet if there will be full, stable Mkw minima. If any, the

axions of S and T will be fixed at the values

ε2 ReS0 = −ReZ2
0 (ε1 ξ3 − 3 ξ7)− 2 ReZ0 ε2 ξ3 ,

3 ReT0 = −ReS0 ε1 + 3 ReS0 ReZ0 ε2 + ReZ3
0 (ε1 ξ3 − 3 ξ7) + 3 ReZ2

0 ε2 ξ3 ,
(4.77)

while their volume partners will be given by

ImS0 = − m3

M33

∣∣∣∣
Z=Z0

, ImT0 = − m4

M44

∣∣∣∣
Z=Z0

. (4.78)

Finally we analyse the Z modulus stabilisation at Mkw vacua, described by the re-

duced potential V(Z) in (4.70). The physical Mkw extrema conditions require both

{ V , ∂ReZ V , ∂ImZ V }Z=Z0
= 0 (4.79)

and

{ detM , M44 m3 , M33 m4 }Z=Z0
6= 0 . (4.80)

The last three conditions ensure a complete stabilisation of S and T at non-vanishing

ImS0 and ImT0 values. Plugging the above expressions for (m0 ,mi ,M), it can be shown

that these two condition sets are incompatible. Hence we can conclude that there are no

Mkw extrema in the supergravity models based on the nil B-field reduction.

4.5.2 Parameter space, discrete symmetries and strategy

We want to perform a detailed search of Minkowski extrema for the set of supergravity

models based on the non-semisimple iso(3) and su(2) + u(1)3 , as well as the semisimple

so(4) and so(3, 1) B-field reductions introduced in section 4.3.1. The task will be that of

solving the set (4.79) of polynomial equations

V|Z=Z0
= 0 ,

∂ V
ReZ

∣∣∣∣
Z=Z0

= 0 ,
∂ V
ImZ

∣∣∣∣
Z=Z0

= 0 . (4.81)

The method we will use to find the solutions of (4.81) makes use of the symmetries and

the scaling properties of the supergravity models which are now introduced.
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• It is worth noticing that the form of the superpotential in (4.27), in particular that

of the polynomials P2(Z) in table 4.6, allows us to remove the factor |ε| ≡
√
ε21 + ε22

from it (provided it is non-zero) by a rescaling of the S modulus and a redefinition

of the ξ3 parameter. Therefore, the angle tan θε ≡
ε2
ε1

is the only free parameter

coming from the NS-NS H̄3 fluxes.

• Analogously, the (non-vanishing) combination |ξ| ≡
√
|ε|2 ξ2

3 + ξ2
7 can be globally

factorised in the superpotential by rescaling both the S and T moduli. This leaves

the angle given by tan θξ ≡
ξ7

|ε| ξ3
as the free parameter coming from the R-R F̄3

fluxes.

These parameter redefinitions and moduli rescalings are given by

ε1 → |ε| cos θε , ε2 → |ε| sin θε , ξ3 →
|ξ|
|ε| cos θξ , ξ7 → |ξ| sin θξ , (4.82)

together with

S → S |ξ||ε| and T → T |ξ| , (4.83)

generating a global factor in the superpotential of (4.27) and, therefore, also in the scalar

potential built from (3.54),

W → |Γ| 32 |ξ| W (Φ ; θε, θξ) and V → |Γ|
3 |ε|
|ξ|2 V (Φ ; θε, θξ) .

This also implies a rescaling of the F-term for all the moduli fields

FZ → |Γ|
3
2 |ξ|FZ (Φ ; θε, θξ) , FS → |Γ|

3
2 |ε|FS (Φ ; θε, θξ) , FT → |Γ|

3
2 FT (Φ ; θε, θξ) ,

(4.84)

where FΦ ≡ DΦW in eq. (3.54). Then, at any non-supersymmetric extremum with

FΦ=Z,S,T 6= 0, supersymmetry will be mostly broken by FS (FZ) when the |ε| (|ξ|) param-

eter is large, and also by FT when both |ε| and |ξ| are small. Furthermore, the normalised

moduli masses are also sensitive to these rescalings. From now on, we will always take

|ε| = |ξ| = 1 when presenting examples of moduli masses at an extremum of the potential.

After applying (4.82) and (4.83), the parameter space of the supergravity models can

be understood as a 2-torus with coordinates (θε, θξ) shown in figure 4.4.

The set of discrete symmetries in (4.28), (4.29) and (4.30) now act on the moduli fields

and the parameter space as follows:

i) W is invariant under

S → −S , ( θε , θξ ) → ( θε + π , π − θξ ) . (4.85)
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θǫ

θξ

Figure 4.4: The parameter space (θε, θξ) as coordinates of a two-dimensional torus.

ii) W goes to −W under these two transformations:

T → −T , ( θε , θξ ) → ( θε + π , 2π − θξ ) . (4.86)

Z → −Z , ( θε , θξ ) → ( 2π − θε , θξ + π ) . (4.87)

iii) Finally, since the parameters entering the superpotential are real, we can combine

field conjugation with the above transformations to obtain an additional symmetry

(Z , S , T ) → − (Z , S , T )∗ , ( θε , θξ ) → ( 2π − θε , θξ ) ,

(4.88)

which relates physical extrema at ±θε.

These symmetries of the supergravity models will be extensively used when scanning the

parameter space looking for the physical solutions (ImΦ0 > 0) to the system (4.65).

The strategy to perform such a search will be the following: our scanning parameter

is the angle θε, which needs to be evaluated only in the interval θε ∈ [0, π] because of the

symmetry (4.88). The value of θξ can be obtained from the first equation in (4.81) since

tan θξ enters it quadratically. Substituting θξ(θε,Z0) into the original system (4.81), it

reduces to

∂ V
ReZ

∣∣∣∣
Z=Z0

= h1(θε,Z0) = 0 and
∂ V
ImZ

∣∣∣∣
Z=Z0

= h2(θε,Z0) = 0 , (4.89)

where h1 and h2 are complicated functions depending on the supergravity model under

consideration. Provided a value for the angle θε, the VEV of Z0 can be numerically

computed from (4.89). After that, and using the value obtained for θξ(θε,Z0) , the VEVs

for the moduli fields S and T can be obtained from (4.68).

In this sense, the modulus Z is the key field in the stabilisation process, whereas S
and T simply get adjusted to generate the extremum of the potential. However, there are

singular points given by ImZ0 = 0. We find that the value of the θε parameter and the

VEV of the ReZ modulus at such points can be obtained12 from P2(Z0) = P3(Z0) = 0.

12Notice that these conditions correspond to the stabilisation of the S and T moduli at a globally

supersymmetric extremum, namely ∂SW = ∂TW = 0.
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4.5.3 Models based on non-semisimple B-field reductions

The first supergravity models we will deal with are those based on non-semisimple B-field

reductions, namely, the iso(3) and the su(2) + u(1)3 reductions. These models exhibit a

special feature: the functions h1 and h2 in (4.89) become homogeneous functions, so the

set of Mkw extrema for these models has a scaling nature,

Z0(θε) ∝ | tan θε|n . (4.90)

4.5.3.1 The iso(3) models

Let us start by exploring Minkowski solutions for the supergravity model based on the

iso(3) non-semisimple B-field reduction. This model is specified by the Kähler potential

in (4.27) and the superpotential

W = |Γ|3/2
[
−3 T Z + S (3 ε1Z + ε2)− ξ3

(
ε2Z3 − 3 ε1Z2

)
+ 3 ξ7Z2

]
. (4.91)

Using the procedure introduced in the previous section, we find Mkw extrema in the

ε1 < 0 range, as shown in figure 4.5. They are all rescaled solutions of the form

Z0(θε) = | tan θε| (±0.30920 + 0.11495 i) , (4.92)

and have a tachyonic direction, hence being unstable.

0

0.5

1

1.5

2

0 0.5 1 1.5 2

0.5

1

1.5

0.5 1 1.5

θ ξ
/π

θǫ/π

0

0.5

1

1.5

2

0 0.5 1 1.5 2

0.5

1

1.5

0.5 1 1.5

θ ξ
/π

θǫ/π

A

0

0.5

1

1.5

2

0 0.5 1 1.5 2

0.5

1

1.5

0.5 1 1.5

θ ξ
/π

θǫ/π

A

B

0

0.5

1

1.5

2

0 0.5 1 1.5 2

0.5

1

1.5

0.5 1 1.5

θ ξ
/π

θǫ/π

A

B

A’

Tachyon

0

10

20

30

40

-120 -90 -60 -30 0 30 60 90 120
0

10

20

30

40
-120 -90 -60 -30 0 30 60 90 120

Im
Z 0

ReZ0

0

10

20

30

40

-120 -90 -60 -30 0 30 60 90 120
0

10

20

30

40
-120 -90 -60 -30 0 30 60 90 120

Im
Z 0

ReZ0

A

0

10

20

30

40

-120 -90 -60 -30 0 30 60 90 120
0

10

20

30

40
-120 -90 -60 -30 0 30 60 90 120

Im
Z 0

ReZ0

A

B
0

10

20

30

40

-120 -90 -60 -30 0 30 60 90 120
0

10

20

30

40
-120 -90 -60 -30 0 30 60 90 120

Im
Z 0

ReZ0

A

B

A’

Tachyon

Figure 4.5: Left: location of the Mkw solutions within the parameter space for the su-

pergravity models based on the iso(3) B-field reduction, highlighting the singular points.

Right: the set of VEVs of the modulus Z , reflecting its scaling nature. The points A and

A’ correspond to a singular limit |Z0| → ∞.

The set of singular points in the figure, as well as the supergravity algebras underlying

the different regions in the plots, are summarised as follows:
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i) Points A and A’ have an underlying g = iso(3) ⊕Z3 u(1)6 and are conjugate points

with respect to the transformations in (4.85) and (4.88). As we flow towards them,

the tachyon aligns with the ImS modulus direction and |Φ0| → ∞ for all the moduli

fields. Due to their underlying supergravity algebra, these points were excluded to

have dS/Mkw extrema in table 4.8.

In the following, we will generically refer to such points as points of excluded super-

gravity algebras. They will show up as singularities in the moduli VEVs.

ii) All along the AA’ line, including point B located at (θε, θξ) = (π, π4 ) , there is a

unique underlying supergravity algebra g = so(4) ⊕Z3 u(1)6 . As we flow towards

this point B, the tachyon aligns with the ImZ modulus direction, and |Φ0| → 0 for

all the moduli fields, becoming again a singularity in the moduli VEVs.

Unlike the previous A and A’ points, the supergravity algebra underlying the point B

is not excluded to have dS/Mkw extrema in table 4.8. Therefore, with some abuse of

the language, we will refer to these points as dynamical singularities in the moduli

VEVs. Observe that the AA’ line in the left plot of figure 4.5 is smooth at the

singular point B.

4.5.3.2 The su(2) + u(1)3 models

Let us continue with the second set of supergravity models based on a non-semisimple B-

field reduction. Those models are based on the su(2) + u(1)3 reduction. They are defined

by (4.27) with the superpotential

W = |Γ|3/2
[
3 T Z + S

(
ε1Z3 + ε2

)
+ ξ3

(
ε1 − ε2Z3

)
− 3 ξ7Z2

]
. (4.93)

The set of Minkowski solutions for this model is very similar to that previously anal-

ysed. This time, they correspond to solutions of the form

Z0(θε) = | tan θε|
1
3 (±0.99368 + 0.55061 i) , (4.94)

and also have a tachyonic direction, being unstable.

The results are shown in the two plots of figure 4.6, where the singular points can be

described as follows:

i) Points A and A’ have an underlying g = iso(3) + nil and, as in the previous case,

are conjugate points with respect to the transformations in (4.85) and (4.88). As

we flow towards these points, the tachyon aligns with the ImS modulus direction

and also |Φ0| → ∞ for all the moduli fields. Therefore they are again singularities

associated to points of excluded supergravity algebras in table 4.8.
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Figure 4.6: Left: location of the Mkw solutions within the parameter space for the su-

pergravity models based on the su(2) + u(1)3 B-field reduction, highlighting the singular

points. Right: set of VEVs of the modulus Z , reflecting its scaling nature. Again, the

points A and A’ are singular since |Z0| → ∞.

ii) Along the AB and BA’ lines, the supergravity algebra is g = so(4) + nil. However,

this time point B corresponds to a different algebra, g = so(4) + u(1)6 , which cannot

have Minkowski extrema as it is shown in table 4.8. As we flow towards this point

B, |Φ0| → 0 for all the moduli fields, resulting in a singularity in the moduli VEVs.

Observe that the line of Mkw extrema is no longer smooth at this point, around

which the tachyon aligns itself along the ImS modulus direction.

4.5.4 Models based on semisimple B-field reductions

In the final part of this section we concentrate on the supergravity models based on the

semisimple B-field reductions of so(4) and so(3, 1). Their distribution of Minkowski

extrema is more involved than that of the previous models based on non-semisimple re-

ductions. This is mainly because the scaling property in (4.90) no longer takes place.

As we will see, the distribution of Minkowski extrema draws closed curves in both the

parameter space and the Z0 complex plane. Although the former has to be understood

as a closed curve up to some of the discrete transformation in (4.85) and (4.86), the latter

is a truly closed curve in the Z0 complex plane.

4.5.4.1 The so(4) models

The first supergravity model based on a semisimple B-field reduction we are going to

describe is that of the so(4) reduction. This model is defined in eqs (4.27) with the
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superpotential given by

W = |Γ|3/2
[
3 T

(
Z3 −Z

)
+ S

(
ε1Z3 + 3 ε2Z2 + 3 ε1Z + ε2

)
+ ξ3

(
ε1 − 3 ε2Z + 3 ε1Z2 − ε2Z3

)
− 3 ξ7

(
1−Z2

)]
.

(4.95)

As it happens for the supergravity models studied so far, there are only Minkowski

solutions with a tachyonic direction. These unstable Mkw solutions are shown in figure 4.7,

where the singular points highlighted in the plots are now explained:
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Figure 4.7: Left: location of the Mkw solutions within the parameter space for the su-

pergravity models based on the so(4) B-field reduction, highlighting the singular points.

Right: set of VEVs of the modulus Z . Note that, up to discrete transformations, the

Mkw extrema describe closed curves in both plots.

i) Points D and D’ have an underlying g = iso(3) + so(4) and are conjugate points

with respect to the transformation in (4.88). They are points of excluded super-

gravity algebras in table 4.8. As we flow towards these points, ImS0 → ∞ while

ImT0 , ImZ0 → 0. The tachyonic direction in field space is aligned with the ImS
modulus direction.

ii) The DD’ line, going through the singular point B, has an underlying g = so(4)2

supergravity algebra. As we flow towards point B, the tachyon is still mostly aligned

with ImS , and ImΦ0 → 0 for all the moduli fields, becoming once more a dynamical

singularity in the moduli VEVs. However the axions behave differently when ap-

proaching the B point: ReZ0 → 0, ReS0 → ±∞ and ReT0 → ∓∞ , with the upper

sign choice if approaching from the left, and the other way around when approach-

ing from the right. Notice, again, that this DD’ line in the left plot of figure 4.7 is

smooth.

iii) The DD’ line going through the singular points C, C’ and A, has an underlying

g = so(3, 1) + so(4) supergravity algebra. This path, shown in the left plot of
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figure 4.7, is discontinuous at points C, C’ and A because of the vanishing of the ImT
modulus. The pairs of points with identical labels are conjugate points with respect

to the transformation in (4.86). As we flow towards points C and C’, ImT0 → 0 ,

and the tachyonic direction aligns 50% in the ImS direction and 50% in the ReS
one. Finally, moving towards point A, ImT0 → 0 and the tachyon is aligned with

the ImZ direction. These points C, C’ and A are, then, dynamical singularities in

the moduli VEVs.

4.5.4.2 The so(3, 1) models

The last, but not least, supergravity model based on a semisimple B-field reduction is

so(3, 1) . This model is defined in eqs (4.27) by the superpotential

W = |Γ|3/2
[
−3 T

(
Z3 + Z

)
+ S

(
ε2 + 3 ε1Z − 3 ε2Z2 − ε1Z3

)
− ξ3

(
ε1 − 3 ε1Z2 − 3 ε2Z + ε2Z3

)
+ 3 ξ7

(
1 + Z2

)]
.

(4.96)

The most interesting feature of this model is that it contains stable, Minkowski vacua

within a certain region of the parameter space as well as unstable Mkw solutions, like

those of the previously analysed models, in a different one.
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Figure 4.8: Left: location of the Mkw solutions within the parameter space for the super-

gravity models based on the so(3, 1) B-field reduction, highlighting the singular points.

Right: set of VEVs of the modulus Z . Notice that, up to discrete transformations, the

Mkw extrema describe closed curves in both plots.

Another property of this model is that any point in the parameter space has a g =

so(3, 1)2 supergravity algebra underlying it. Therefore, any singularity in the moduli

VEVs is a dynamical singularity. The entire set of Minkowski solutions are shown in fig-

ure 4.8.

With respect to the highlighted points in the figure, let us divide the parameter space

in three pieces: the DD’ line going through the points C and C’; the EE’ line going
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through the point B; and the DE & D’E’ lines, containing the stable Mkw vacua:

i) At the points D, D’, E and E’, the Mkw extrema have a flat direction associated to

volume directions 13. This direction is, roughly, 58% ImS and 42% ImT at the

D and D’ points, whereas it becomes 72% ImS, 25% ImT and 3% ImZ at the E

and E’ points.

ii) The EE’ line contains the singular point B. When moving towards it, the tachyon

mostly aligns with the ImS direction and ImΦ0 → 0 for all the moduli fields. The

axions behave differently when approaching this point: ReZ0 → 0, ReS0 → ∓∞
and ReT0 → ±∞ , with the upper sign choice if flowing from the left and the other

choice when flowing from the right. Again, the EE’ line in the left plot of figure 4.8

is smooth.

iii) The DD’ path goes through the singular points (F,F’) and (C,C’). At (F,F’) 14, it

is discontinuous due to the double limits ImS0 →
0

0
and ImT0 →

0

0
in eq. (4.68).

However, as we flow towards points C and C’, a vanishing ImS0 → 0 takes place,

and the tachyonic direction mainly aligns with the ImT volume direction. These

points are, again, dynamical singularities in the moduli VEVs. Observe that points

equally labelled in figure 4.8 are conjugate points with respect to the transformation

in (4.85).

iv) The DE & D’E’ lines contain the stable Mkw vacua and will be explored separately.

There are two specially symmetric points which belong to part iii) of the parameter

space. The first one comes from noticing that this piece exhibits the novel feature of

having a crossing at the point (θε, θξ) = (π, 1.43082π). This crossing takes place in the

parameter space, not in the moduli space, so two separate unstable Minkowski extrema

Z0 = ±0.27527 + 0.80635 i , |ε||ξ|−1S0 = ∓0.87477 + 0.30709 i , |ξ|−1T0 = ∓0.44718 + 1.19429 i,

(4.97)

with the tachyonic direction mostly along the ImT volume direction, coexist at this point.

The second point, located at (θε, θξ) = (0, 1.48913π), gives rise to an axion-vanishing

unstable Mkw solution

Z0 = 1.16280 i , |ε||ξ|−1S0 = 0.30849 i , |ξ|−1T0 = 0.78019 i , (4.98)

invariant under the Φ→ −Φ∗ transformation of (4.88). The tachyonic direction is totally

contained within the axion field space, with the relative contributions of 37% for ReS,

40% for ReT and 23% for ReZ.

13At these points, the 2× 2 reduced Hessian built from V(Z) in eq. (4.70), becomes degenerate.
14These F and F’ points can be analytically computed and correspond to (θε, θξ) =

(
±π

2
, arctan

(
1
3

))
together with the VEVs of Z0 = ± 1

3
+
√

2
3
i .
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DE & D’E’ lines of stable vacua.

Let us look into the region within the parameter space that contains totally stable Minkowski

vacua, namely, the DE & D’E’ lines shown in figure 4.8. Provided a value for θε within
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Figure 4.9: This figure shows the narrow band above the line of stable Mkw vacua con-

taining stable, dS vacua.

the region DE (and equivalently for D’E’), a stable dS vacuum emerges from varying the

θξ angle slightly with respect to its value at the Mkw vacuum,

θ
(dS)
ξ = θ

(Mkw)
ξ + δθξ with δθξ > 0 . (4.99)

There is a critical value, δθ∗ξ , beyond which the dS vacuum no longer exists15. This be-

haviour is represented in figure 4.9. The dS vacua found in this way are deformations of

the Mkw ones and are also stable along any direction in field space. Therefore, there is a

narrow region above the line of Mkw vacua, shown in figure 4.9, which incorporates dS sta-

ble vacua. Moreover if we choose δθξ < 0, the original Mkw vacuum becomes stable AdS4.

At these Mkw/dS vacua, supersymmetry is broken by a non-vanishing F-term for all

the moduli fields16, i.e. FΦ=Z,S, T 6= 0 . This agrees with the general results concerning

the existence of non-supersymmetric, stable, Minkowski vacua stated in refs [183, 184].

Given that supersymmetry is broken by all directions considered here, seven complex ones

in total, the constraint on the Kähler potential outlined in these works, formulated as the

number of fields breaking supersymmetry being larger than three, is fulfilled.

15As an example, in the case of θε = 49π
100

, the moduli VEVs at the Mkw vacuum are given by Z0 =

0.45089 + 0.46042i , |ε||ξ|−1S0 = −1.07734 + 1.28783i and |ξ|−1T0 = 1.15629 + 0.60267i. This Mkw

vacuum is compatible with θ
(Mkw)
ξ = 0.10821π , while the critical value for deforming it to dS (with

V0 = 3.4× 10−3 |Γ|3 |ε| |ξ|−2 m4
p) is given by δθ∗ξ = 0.00079π.

16In the case of θε = 49π
100

, the values of the F-terms at the Mkw vacuum are given by |Γ|−
3
2 |ξ|−1 FZ =

4.00933 + 3.48324i , |Γ|−
3
2 |ε|−1 FS = 0.46460− 0.00623i and |Γ|−

3
2 FT = −4.67506 + 5.76899i.
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The (positive) smallest eigenvalue of the mass matrix is mostly associated to a com-

bination of the ImS and ImT moduli fields. At the Mkw vacua, the rest of the moduli

masses are about a couple of order of magnitudes above the lightest one, unlike in scenarios

including gaugino condensation or other non-perturbative effects [12]. In the absence of

large hierarchies we cannot split the stabilisation process into a 2 + 1 fields problem, but

the problem intrinsically becomes a 3 fields one. This property is related to the fact that

all the moduli are stabilised due to fluxes, so one would not expect to have mysterious

cancellations in the mass terms in order to generate a hierarchy.

At this stage, it would be interesting to know whether the potential has other minima

with lower energy (i.e. AdS4 vacua). The case of supersymmetric minima is tractable

using the techniques developed in chapter 3. We find that they cannot coexist with the

Mkw/dS vacua shown in figure 4.9. On the other hand, an exhaustive analysis of non-

supersymmetric AdS4 vacua is much more involved and we have not addressed it in this

thesis.

4.6 Comparison with type IIA scenarios

The set of type IIB supergravity models we have explored in the previous sections are dual

to type IIA generalised flux models through applying three T-duality transformations along

internal space directions [7,8,95]. Several no-go theorems (see section 4.2) concerning the

existence of Mkw/dS extrema in these type IIA generalised flux models have been stated

as well as ways for circumventing them [13, 14, 16, 17, 137]. In this section we will use the

mapping introduced in section 4.3.2 between the set of generalised flux models we derived

in a type IIB with O3/O7-planes language, and their generalised type IIA dual flux models

with O6-planes. Our purpose will be to investigate how the different sources of potential

energy in (4.41), (4.42) and (4.43) do conspire to produce the Mkw extrema we have found.

The scalar potential in the type IIA dual supergravity models then splits as

VIIA = VNS-NS + Vloc + VR-R , (4.100)

with VNS-NS = VH̄3
+ Vω + VQ + VR accounting for the generalised NS-NS fluxes, Vloc =

V
(1)

loc +V
(2)

loc accounting for the O6/D6 localised sources (types 1 and 2 shown in figures 4.1

and 4.2 respectively) and VR-R = VF̄0
+ VF̄2

+ VF̄4
+ VF̄6

accounting for the R-R fluxes. It

is worth recalling that the axions ReS and ReT enter the scalar potential only through

the R-R piece VR-R ⊂ VIIA in (4.43), which can be rewritten as

VR-R =
6∑

p=0 (even)

VF̄p = eK
6∑

p=0 (even)

ImZ(6−p)
(
fp(ReΦ)

)2
. (4.101)

The functions fp , with p = 0, 2, 4 and 6, depend on ReS and ReT linearly, as stated in

section 4.3.2.
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For dS/Mkw extrema to exist in these supergravity models, the terms in the scalar

potential of (4.100) induced by the generalised NS-NS fluxes and the R-R fluxes have to

satisfy the conditions in (4.18) and (4.21),(
Vω − VF̄2

)
+ 2

(
VQ − VF̄4

)
+ 3

(
VR − VF̄6

)
≥ 0 ,(

VF̄0
− VH̄3

)
+

(
VQ − VF̄4

)
+ 2

(
VR − VF̄6

)
≥ 0 ,

(4.102)

where all the R-R flux-induced terms, VF̄p , are positive definite, as well as the VH̄3
and

VR terms coming from the fluxes H̄3 and R , respectively (see section 4.3.2). The in-

equalities in (4.102) are saturated at the Mkw extrema. Therefore, if restricting ourselves

to the set of geometric IIA flux models described above, there is a VF̄0
6= 0 condition

(non-vanishing Romans parameter) needed for having dS extrema.

It was shown in table 4.8 that the IIA duals of the IIB supergravity models based on

the nil and iso(3) B-field reductions yield VQ = VR = 0, hence resulting in geometric

IIA flux models [84,93,99,136,175,176,185]. This is also the case for the models based on

the su(2) + u(1)3 B-field reduction at the special circles θε = ±π
2 within the parameter

space. Far from these circles as well as in those supergravity models based on the so(4)

and so(3, 1) B-field reductions, VQ 6= 0 and/or VR 6= 0, giving rise to non-geometric IIA

flux models.

At this point, and before presenting our results in type IIA language, it is convenient

to highlight the similarities and differences with related work published in the literature

on the existence of de Sitter solutions and no-go theorems:

• As we already mentioned, our framework is also that of ref. [14], which we have

extended to include the set of generalised fluxes needed to restore T-duality.

• Our initial setup does not contain KK5-branes [16,17] or NS5-branes [13,17].

• The minimisation procedure considers the dependence of the scalar potential on the

axions which are treated as dynamical variables. In the above references, they are

set to constant values and do not feature in the scalar potential.

There are also substantial differences between our work with that of ref. [137]. On

the one hand, these authors consider Kähler and complex structure moduli in addition to

the dilaton and volume moduli considered in the previous works reviewed here. However,

the potential contains the effect of just geometric fluxes, in addition to the usual NS-NS

3-form flux, R-R fluxes and O6/D6 sources. Nevertheless they manage to find a couple of

Z2×Z2 orbifold models that, within their working numerical precision, are compatible with

de Sitter vacua. These are both anisotropic models and cannot, therefore, be compared

to ours. In any case it is worth mentioning that, throughout their analysis, these authors

find plenty of solutions with one tachyonic direction, just as it happens in our analysis.
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4.6.1 Minkowski extrema in geometric type IIA flux models

As we have stated above, there are three sets of type IIB supergravity models that become

dual to geometric type IIA flux models with

VQ = VR = 0 . (4.103)

They are the models based on the nil and iso(3) B-field reductions together with those

based on the su(2) + u(1)3 reduction at the circles defined by θε = ±π
2 in the parameter

space.

A common feature in all these IIA dual geometric models is that only the f4 and f6

functions appearing in (4.101) depend (linearly) on the ReS and ReT axions. Then, their

stabilisation conditions, provided ImZ0 6= 0, translate into

VF̄4
= VF̄6

= 0 . (4.104)

Substituting (4.103) and (4.104) into the inequalities of (4.102), we obtain, for any Minkowski

extremum, that

VH̄3
= VF̄0

and Vω = VF̄2
, (4.105)

so VNS-NS = VR-R > 0 at such extrema17. Then, the negative energy contribution needed

to set VIIA = 0 in (4.100) will come from the localised sources, i.e. Vloc < 0 (see fig-

ure 4.10).

The IIB supergravity models based on the nil reduction were found in section 4.5.1.1

not to accommodate for Mkw extrema while those based on the su(2) + u(1)3 reduction

at the circles θε = ±π
2 were excluded to possess Mkw extrema in table 4.8. Therefore, the

tachyonic Mkw extrema we found in the supergravity models based on the iso(3) B-field

reduction, constitute the entire set of geometric IIA dual Minkowski flux extrema for the

isotropic Z2 × Z2 orbifold. These extrema have an underlying g = so(4) ⊕Z3 u(1)6 su-

pergravity algebra.

The IIA dual contributions to the scalar potential at the geometric Mkw flux extrema

are shown in figure 4.10 (where mp = 1/
√

8πGN ≈ 2 × 1018 GeV). Although they are

plotted for a particular point within the parameter space, the profile of the contributions

does not change when moving from one point to another, due to the scaling property in

(4.90) explained in section 4.5.3. Observe that the negative energy contribution needed

to obtain VIIA = 0 comes from type 1 O6/D6 sources. Specifically, from O6-planes which

carry negative charge. Moreover, additional positive energy coming from type 2 D6-branes

17Notice that due to the positiveness of VF̄2
, the Vω contribution to the scalar potential coming from

the (negative) curvature of the internal space (induced by the metric flux ω ) results also positive as it was

stated in refs [16,17].
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Figure 4.10: IIA dual contributions to the scalar potential at the Mkw extrema for the

supergravity models based on the iso(3) B-field reduction. They are computed at the

circle θε = 3π
4 in the parameter space which implies θξ = 0.22375π and the moduli VEVs

of Z0 = 0.30920 + 0.11495 i , |ε||ξ|−1S0 = −0.00171 + 0.01276i and |ξ|−1T0 = 0.01579 +

0.00092i. It can be seen that VQ = VR = VF̄4
= VF̄6

= 0 as well as VH̄3
= VF̄0

> 0 and

Vω = VF̄2
> 0.

with positive charge is also required. These type 2 sources are forbidden in the Z2 orb-

ifold compactifications of refs [7, 8, 95], so these geometric IIA dual Mkw extrema are not

expected to exist there.

Finally, for these IIB supergravity models based on the iso(3) B-field reduction, the

IIA dual Romans parameter which generates the VF̄0
contribution required for having dS

extrema, reads

f2
0 = 4 |Γ|3 |ε|2 |ξ|2 (sin θε)

2 (cos θξ)
2 , (4.106)

so it vanishes at the A, A’ and B singular points shown in figure 4.5. Far from these points,

an unstable dS extremum emerges from varying the θξ angle slightly with respect to its

value at the Mkw extremum, θ
(dS)
ξ = θ

(Mkw)
ξ + δθξ with δθξ > 0, as it has been previously

explained for the case of the stable dS vacua in the so(3, 1)-based models. Also a critical

value δθ∗ξ appears beyond which dS solutions no longer exist.

4.6.2 Minkowski extrema in non-geometric type IIA flux models

Now we present the IIA dual energy contributions at the Mkw extrema for the supergravity

models which are non-geometric type IIA generalised flux models. These models are those

based on the su(2) + u(1)3 (with θε 6= ±π
2 ), so(4) and so(3, 1) B-field reductions.
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4.6.2.1 The su(2) + u(1)3 models

As it was stated in section 4.5.3, these models also have the scaling property in (4.90) of

the geometric IIA dual models. Therefore, their profile of energy contributions, shown in

figure 4.11, does not change from one point within the parameter space to another.
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Figure 4.11: IIA dual contributions to the scalar potential at the Mkw extrema for the

supergravity models based on the su(2) + u(1)3 B-field reduction. They are computed,

again, at the circle θε = 3π
4 in the parameter space implying this time θξ = 0.13055π

and the moduli VEVs of Z0 = 0.99368 + 0.55061 i , |ε||ξ|−1S0 = −1.01524 + 0.28041i and

|ξ|−1T0 = 0.82169 + 0.01611i.

These non-geometric type IIA dual flux models (note that VQ 6= 0 and VR 6= 0 ) need

again of localised sources to achieve Minkowski (unstable) solutions. Analogously to the

geometric case, type 1 O6-planes and type 2 D6-branes are required, as it can be seen in

figure 4.11. Also each contribution in VNS-NS and VR-R is positive at the Mkw solutions.

Finally, unstable dS solutions can again be obtained by deforming these Mkw extrema, as

for the geometric IIA dual models.

4.6.2.2 The so(4) models

The next supergravity models whose IIA duals become non-geometric flux models are

those based on the semisimple so(4) B-field reduction. The contributions to the potential

energy at the Minkowski extrema do not fit a unique pattern, as it has been the case for

the supergravity models analysed so far. Such contributions do depend on the point in

the parameter space under consideration, since the scaling property in (4.90) is no longer

present in these models.

In order to illustrate the above statement, let us recall the form of the contributions

to the scalar potential coming from the localised sources. They were computed in sec-
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Figure 4.12: IIA dual contributions to the scalar potential at a Mkw extremum for the

supergravity models based on the so(4) B-field reduction. In the left plot, they are

computed at the circle θε = 1255
1000π which belongs to the DC piece of the parameter space

and implies θξ = 0.40225π together with the moduli VEVs of Z0 = −1.48023+0.59103i ,

|ε||ξ|−1S0 = −1.15549 + 3.44203i and |ξ|−1T0 = 0.13871 + 0.00708i. In the right plot they

are computed at the circle θε = 3π
8 which belongs to the CA piece of the parameter space

and implies θξ = 1.93558π together with the moduli VEVs of Z0 = −0.73422+2.12313i ,

|ε||ξ|−1S0 = −0.57723 + 0.74810i and |ξ|−1T0 = 0.33682 + 0.04399i.

tion 4.3.2, and given by

V
(1)

loc = − |ε| |Γ|3
4 |ξ|2 ImT 3

cos θξ and V
(2)

loc =
3 |ε| |Γ|3

4 |ξ|2 ImT 2 ImS sin θξ , (4.107)

for the supergravity models based on semisimple B-field reductions. Then V
(1)

loc = 0 at

the D and D’ singular points shown in figure 4.7, while V
(1)

loc < 0 in all the Mkw solu-

tions. On the other side, V
(2)

loc = 0 at the singular point A, whereas V
(2)

loc > 0 for the

Mkw solutions along the CC’ line that goes through point B, and V
(2)

loc < 0 if doing so

through point A. An example is shown in figure 4.12, where the sign of the energy contri-

bution provided by type 2 localised sources is different for the two Mkw solutions. In the

left plot type 2 D6-branes are required, while type 2 O6-planes are needed in the right one.

Finally, one observes that the flux-induced P2,3(Z) polynomials for these models re-

duce to those of the geometric ( iso(3)-based) models around Z = 0, as it can be seen

from their form in table 4.6. As long as we take the limit θε → π , the profile (up to some

scale factor) of the energy contributions to the Mkw extrema tend to that of the geometric

models in figure 4.10. Once more, unstable dS extrema can be obtained by a continuous

deformation of the Mkw solutions, namely, by taking θξ → θξ + δθξ for a given θε circle.

4.6.2.3 The so(3, 1) models

Let us conclude by looking into the energy contributions to the Mkw extrema for the IIA

duals of the supergravity models based on the so(3, 1) B-field reduction. As for the pre-

vious semisimple models, such contributions depend critically on the specific point within
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the parameter space under consideration.

The set of Minkowski solutions for this model is shown in figure 4.8, where a narrow

region within the parameter space, that of the DE & D’E’ lines, was found to contain sta-

ble vacua. At these stable vacua, Vω < 0 and V
(1)

loc < 0 , while the rest of the contributions

to the scalar potential are positive. Then, these stable vacua need type 1 O6-planes and

type 2 D6-branes to exist. As long as we flow between the points D and E in figure 4.8,

the main contributions to |ξ|2
|Γ|3 |ε|m4

p
VIIA change from being of order O(10−2) around the

point D, to become of order O(1) around the point E. An intermediate point in the DE

line is shown in figure 4.13.
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Figure 4.13: IIA dual contributions to the scalar potential at a stable Mkw vacuum for

the supergravity models based on the so(3, 1) B-field reduction. They are computed at

the circle θε = 49π
100 which belongs to the DE piece of the parameter space and implies

θξ = 0.10821π , together with the moduli VEVs of Z0 = 0.45089 + 0.46042i , |ε||ξ|−1S0 =

−1.07734 + 1.28783i and |ξ|−1T0 = 1.15629 + 0.60267i.

For these supergravity models, the contributions to the potential energy coming from

localised sources are still given by (4.107). By inspection of figure 4.8, we conclude that

there are unstable Mkw solutions having V
(2)

loc ≷ 0. Even more, there is a particularly in-

teresting solution with V
(2)

loc = 0. It is located at the point (θε, θξ) = (0.40904π, 0) within

the parameter space, and its profile of the contributions to VIIA is shown in figure 4.14.

Naturally, its image point under the transformation Φ → −Φ∗ of (4.88) is also a

solution with V
(2)

loc = 0. These unstable Mkw solutions are the only ones that would

also exist in the Z2 orbifold compactification of refs [7, 8, 95], that does not allow type

2 O6/D6 sources. We will see in chapter 5 that, in the absence of such sources, these

unstable solutions could presumably be lifted to solutions of a N = 4 gauged supergrav-

ity [84,155,176,178,180,186] built from an SL(2,Z)S electric-magnetic gauging.
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Figure 4.14: IIA dual contributions to the scalar potential at a unstable Mkw

solution for the supergravity models based on the so(3, 1) B-field reduction.

It is computed at the point (θε, θξ) = (0.40904π, 0) which belongs to the

CD line in the parameter space. The VEVs for the moduli fields result in

Z0 = 0.18657 + 0.41905i , |ε||ξ|−1S0 = 0.12569 + 0.32326i and |ξ|−1T0 = 0.76855 +

0.49656i.
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Figure 4.15: Left: IIA dual contributions to the scalar potential at the unstable Mkw

solutions that coexist at the point (θε, θξ) = (π, 1.43082π) in the parameter space. Right:

same for the axion-vanishing solution at the point of parameter space given by (θε, θξ) =

(0, 1.48913π).

Furthermore, it can also be seen in figure 4.8 that, unlike in the previous supergravity

models, unstable solutions with V
(1)

loc > 0 exist along the CC’ line with π < θξ <
3π
2 .

These solutions require type 1 D6-branes Sare compatible with V
(2)

loc < 0 , so type 2 O6-

planes have to be present. The point in the parameter space in which the two separate

moduli solutions of (4.97) coexist, belongs to this set of solution and its sources of potential

energy are shown in the left plot of figure 4.15. The point in the parameter space having

the axion-vanishing moduli VEVs of (4.98), also belongs to this class. In this solution,

ReFΦ = 0 and VH̄3
= VF̄4

= 0 together with VF̄0
= 0, as it is displayed in the right plot
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of figure 4.15.

Finally, the flux induced polynomials P2,3(Z) in table 4.6 for this supergravity models,

also reduce to those of the geometric IIA models in the limit case of Z → 0. Therefore,

one would expect that, as we approach point B in figure 4.8, the profile of the potential

energy contributions should match that of figure 4.10, again up to a scale factor. Indeed,

VQ → 0 and VR → 0 when we approach this singular point, i.e. |Φ0| → 0 , of the moduli

VEVs. As for all the previous supergravity models, dS extrema can again be obtained by

continuously deforming the Mkw solutions.



146 De Sitter Vacua in T-duality Invariant Flux Models



Chapter 5

Supersymmetric Vacua in T- and

S-duality Invariant Flux Models

The present chapter mainly follows the line started in chapter 3 when studying supersym-

metric vacua in the T-duality invariant effective models and extends it to include the effect

of a new non-geometric P -flux tensor induced by S-duality when both T- and S-duality are

simultaneously considered. In other words, this chapter is devoted to look for supersym-

metric moduli vacua of the N = 1 four-dimensional effective supergravity theory defined

by the Kähler potential and the superpotential in (2.67).

A large obstacle to investigating this effective theory is that the flux backgrounds are

to be constrained by an enlarged set of non-trivial polynomial equations through Jacobi

identities of the flux algebra. Additionally, non-zero flux-induced tadpoles relate the fluxes

to the localised sources living in the space. This is further complicated when we consider

S-duality transformations which introduce new flux objects, as well as superpositions of

fluxes of the same tensor type. This means that they each contribute to both the Jacobi

and the tadpole constraints because of the enhanced duality invariance of the effective

theory.

Algebraic geometry is the mathematical discipline which involves the study of com-

plex polynomial systems and their solution spaces [187]. Recent papers [174, 188, 189]

demonstrate how previously unwieldy techniques, due to the size and complexity of the

equations found in the supergravity descriptions, of algebraic geometry can be applied to

finding solutions to the aforementioned flux constraints through such programs as Singu-

lar [173,190], thanks to the continued increase in computer speeds and memories. Useful

background material for the methods used in this chapter can be found in the appendices

of ref. [188] or the first few chapters of ref. [187]. Ref. [174] provides a way of applying alge-

braic geometry to supergravity without having to learn the specifics of Singular or similar

programs. Though the procedures outlined in refs [174,188,189] will be used in part, un-
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fortunately they do not immediately lend themselves to the algebraic geometry methods

we use in this chapter. However, there is another interface [191] between Mathematica

and Singular which allows for direct access to many of Singular ’s algorithms.

5.1 The non-geometric (Q,P ) background fluxes.

First of all, we try to clarify the role played by the non-geometric P -flux in terms of

deformations of Lie algebras. Before considering the algebraic problem of solving the

constraints PP = 0 and QP+PQ = 0 in (2.49), we focus our attention on understanding

the problem from a different point of view: that of the effect of the P -flux over the gauge

subalgebra ggauge generated by the Q-flux in the T-duality invariant effective theory

studied in the previous chapters.

5.1.1 A note on deformations of Lie algebras.

To start with, we present a brief introduction to the topic of deformations of Lie algebras,

in which we take the notation and conventions from refs [192–194]. Let us start with a

general Lie algebra L defined by its brackets1

[Xa, Xb] = Cabc Xc . (5.1)

These relations define an algebra iff Jacobi identities are fulfilled, namely C
[ab
e C

c]e
d = 0.

For our purposes, it will be interesting to define the second cohomology class of the algebra,

H2(L,L). It contains 2-cocycles ϕ ∈ H2(L,L) that are closed under the action of an

exterior derivation d without being coboundaries. More formally, a cocycle ϕ ∈ H2(L,L)

is a bilinear antisymmetric form that satisfies the constraint

dϕ(Xa, Xb, Xc) := [Xa, ϕ(Xb, Xc)] + [Xc, ϕ(Xa, Xb)] + [Xb, ϕ(Xc, Xa)] +

+ ϕ(Xa, [Xb, Xc]) + ϕ(Xc, [Xa, Xb]) + ϕ(Xb, [Xc, Xa]) = 0 ,

(5.2)

for any Xa, Xb and Xc of L.

Moreover, for ϕ to define a deformation of L that is also a Lie algebra, i.e. it also

satisfies the new Jacobi identities, an additional integrability condition has to be imposed.

The 2-cocycle ϕ is integrable if it satisfies

ϕ(ϕ(Xa, Xb), Xc) + ϕ(ϕ(Xc, Xa), Xb) + ϕ(ϕ(Xb, Xc), Xa) = 0 . (5.3)

If both conditions, named the cohomology and the integrability conditions, are fulfilled

then the linear deformation L+ϕ is also a Lie algebra [195], which we will denote as Lϕ
1We define generators with an upper index in analogy with the commutation relations [Xa, Xb] =

Qabc Xc in (2.46).
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with the deformed bracket

[Xa, Xb]ϕ = Cabc Xc + ϕ(Xa, Xb) . (5.4)

In particular, nullity of H2(L,L) implies that any deformation Lϕ is isomorphic to L and

in that case L is called rigid or stable. However, in general, Lϕ and L are not isomorphic.

To clarify the utility of deformed Lie algebras in the problem of S-duality and the

non-geometric (Q,P ) fluxes, let us consider a deformation ϕ(Xa, Xb) := αabc Xc with

αabc = −αbac , so the cohomology condition in (5.2) can be rewritten as

C [ab
x α

c]x
d + α[ab

x C
c]x
d = 0 , (5.5)

while the integrability condition results in

α[ab
x α

c]x
d = 0 . (5.6)

At this point, the role of the non-geometric P -flux becomes clear by identifying

Cabc = Qabc and αabc = P abc . (5.7)

The non-geometric Q-flux defines the gauge subalgebra of the T-duality invariant effective

theory while the non-geometric P -flux can be implemented as deformations of this sub-

algebra by an element of its second cohomology class. The P 2 = 0 and QP + PQ = 0

constraints in (2.49) are simply the integrability (5.6) and cohomology (5.5) conditions for

the non-geometric P -flux to define such deformations.

The gauge subalgebra of the T-duality invariant theory is trivially recovered when

the deformation vanishes, i.e. P = 0, and just the original condition Q2 = 0 remains

unchanged. Another possibility to recover it is to fix P = Q, which is related to the

P = 0 case by an SL(2,Z)S transformation. This can be interpreted as a deformation of

the original gauge subalgebra by itself.

5.1.2 Solving the integrability condition.

The integrability condition P 2 = 0 is straightforwardly solved by imposing that the P -flux

becomes the structure constants of a Lie algebra gP belonging to the set of non-trivial

six-dimensional Lie algebras compatibles with the Z2 ×Z2 isotropic orbifold symmetries.

As we already know from the previous chapters, there are only five isotropic non-trivial

Lie algebras with such properties2: so(3, 1), so(4), su(2) + u(1)3, iso(3) and nil. We do

not consider the abelian u(1)6 since it is equivalent to a trivial P = 0 background flux.

This is totally analogous to what we made for solving the Q2 = 0 condition in chapter 3.

2All these algebras are quasi-classical Lie algebras, i.e. they have an invariant non-degenerate metric

built from their quadratic Casimir operator [192–194].
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To solve both the Q2 = 0 and P 2 = 0 conditions simultaneously, we pick two algebras,

gQ and gP and specify their embedding into the the original Q and P fluxes through

the modular parameters

ΓQ =

(
αq βq

γq δq

)
and ΓP =

(
αp βp

γp δp

)
. (5.8)

We end up with a general parameterisation of the non-geometric fluxes Q = Q(αq, βq, γq, δq)

and P = P (αp, βp, γp, δp), analogous to that derived in section 3.1 for the non-geometric

Q-flux.

Recalling the Γ-matrices in (5.8), we can now define the two modular variables

ZQ =
αq U + βq
γq U + δq

and ZP =
αp U + βp
γp U + δp

. (5.9)

Expressing the flux-induced polynomials in (2.70) and (2.71) due to the non-geometric Q

and P fluxes in terms of these modular variables, we have

P3(U) = (γq U + δq)
3 P3(ZQ) and P4(U) = −(γp U + δp)

3 P4(ZP ) . (5.10)

The polynomials P3,4(ZQ,P ) associated to gQ and gP can be simply read off from the

table 5.1 after replacing Z by ZQ and ZP respectively.

algebra P3,4(Z)/3 polynomials modular roots

so(3, 1) −Z(Z2 + 1) Z = 0 , +i , −i

so(4) Z(Z + 1) Z = 0 , ∞ , −1

su(2) + u(1)3 Z Z = 0 , ∞ (double)

iso(3) 1−Z Z =∞ (double) , +1

nil 1 Z =∞ (triple)

Table 5.1: Algebras and non-geometric flux-induced polynomials.

When using this parameterisation for the non-geometric fluxes, the roots structure

of their flux-induced polynomials can be expressed in terms of the modular parameters,

namely, the number and type of coincident roots becomes manifest. Moreover, it is not

possible to do an SL(2,Z)S transformation which alters this, so different algebras lead to

different root structures (see table 5.1).

To analyse this we define the following two-dimensional generic vectors,

Z0 = (α, β) , Z∞ = (γ, δ) ,

Z−1 = (α+ γ, β + δ) , Z+1 = (α− γ, β − δ) , (5.11)

Z+i = i

(√
α2 + γ2,

(αβ + γδ) + i|Γ|√
α2 + γ2

)
, Z−i = i

(√
α2 + γ2,

(αβ + γδ)− i|Γ|√
α2 + γ2

)
,
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in such a way that they carry the information about the roots values once they are con-

tracted with the vector

(
U

1

)
. Then the non-geometric flux-induced polynomials for each

algebra can be easily reconstructed from its roots structure as

P3,4(U) = 3
∏

�=roots

ZQ,P�

(
U

1

)
, (5.12)

with � ≡ 0,∞,−1,+1,+i,−i according with the modular roots, as it is shown in table 5.1.

As an example, we reconstruct the cubic P3(U) induced by the non-geometric Q-flux in

the case of an algebra so(4) . In this case, it reads

P3(U) = 3ZQ0

(
U

1

)
· ZQ∞

(
U

1

)
· ZQ−1

(
U

1

)
= 3 (αq U + βq) (γq U + δq) [(αq + γq)U + (βq + δq)]

= 3 (γq U + δq)
3ZQ (ZQ + 1) .

(5.13)

Note that so(3, 1) is unique in the above results, in that it generates non-geometric

flux-induced polynomial whose roots are certain to be complex, given the real and non-

degenerate nature of the Γ’s matrices.

5.1.3 Solving the cohomology condition.

In terms of the flux entries, the cohomology QP + PQ = 0 constraints are those in

(2.75). Since the expressions for the entries of Q and P are in terms of the modular

parameters the cohomology condition puts constraints on their possible values. Finding

the space of valid flux entries is difficult because the constraints are polynomials in terms

of the eight modular parameters. However, these polynomials form the generators of the

ideal 〈QP +PQ〉 in the ring of polynomials C[αq, . . . , δp] and so we can use an algebraic

geometry method of prime decomposition to split 〈QP + PQ〉 into its prime ideals, Ji.

One such method is the Gianni-Trager-Zacharias (GTZ) algorithm, which is implemented

within Singular. Each prime ideal has a solution space, the variety Vi, which is a subset

of V, the variety of 〈QP + PQ〉 and because we are working with prime ideals, their

varieties do not intersect other than at a finite number of disjoint points. Therefore, given

the decomposition

〈 QP + PQ 〉 = J1 ∩ . . . ∩ Jn , (5.14)

in order to satisfy QP + PQ = 0, we need only to solve the set of equations fi,j = 0,

where Ji = 〈 fi,1, fi,2, . . . , fi,m 〉, though to completely account for all possible solutions

each prime ideal must be analysed. An ideal automatically has at least one prime ideal

but in the case of some of the (gQ, gP ) pairings, we find as many as three prime ideals

of varying complexity. These relate the ΓQ and ΓP modular matrices in (5.8) and so
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restrict the transformations which are needed to bring the Q and P fluxes (understood

as structure constants) to their standard form giving rise to the flux-induced polynomials

of table 5.1.

For purpose of illustration we consider the example of gQ = su(2) + u(1)3 and

gP = so(4). We have individual parameterisation of the following format,

• Q-flux fixing the gauge subalgebra in the T-duality invariant supergravity to be

gQ = su(2) + u(1)3,

c0 = βq δ
2
q , c3 = −αq γ2

q ,

c1 = βq δq γq , c2 = −αq γq δq ,

c̃2 = γ2
q βq , c̃1 = −αq δ2

q .

(5.15)

• P -flux fixing the original gauge subalgebra in the T-duality invariant supergravity

to be deformed by gP = so(4),

d0 = βp δp (βp + δp) , d3 = −αp γp (αp + γp) ,

d1 = βp δp (αp + γp) , d2 = −αp γp (βp + δp) ,

d̃2 = γ2
p βp + α2

p δp , d̃1 = − (γp β
2
p + αp δ

2
p) .

(5.16)

This leads to a 〈QP + PQ〉 cohomology condition ideal which has three prime ideals in

its decomposition,

J1 = 〈 αqβp − βqαp , γqδp − δqγp 〉 ,

J2 = 〈 αqδp − βqγp , γqβp − δqαp 〉 ,

J3 = 〈 γq(βp + δp)− δq(αp + γp) 〉 .

(5.17)

These constraints can be rewritten in terms of entries in two-dimensional vectors

u =

(
u1

u2

)
, v =

(
v1

v2

)
⇒ u1v2 − u2v1 = 0 ⇔ u× v = 0 . (5.18)

If two vectors satisfy u× v = 0 then they are parallel, which we denote by u ‖ v. With

this notation and using the vectors given in (5.11), the cohomology condition becomes

J1 = 〈 ZQ0 ×ZP0 , ZQ∞ ×ZP∞ 〉 ⇔ ZQ0 ‖ ZP0 , ZQ∞ ‖ ZP∞ .

J2 = 〈 ZQ0 ×ZP∞ , ZQ∞ ×ZP0 〉 ⇔ ZQ0 ‖ ZP∞ , ZQ∞ ‖ ZP0 .

J3 = 〈 ZQ∞ ×ZP−1 〉 ⇔ ZQ∞ ‖ ZP−1 .

(5.19)

In each case the prime ideal’s generating functions can be rewritten as a vanishing cross

product. In fact, this happens for all prime ideals of all possible pairings (gQ, gP ). There-

fore, the prime ideals of 〈QP+PQ〉 can be viewed as geometric constraints on the position

of the vectors representing the roots of the cubic polynomials P3(U) and P4(U) . Specif-

ically, when the polynomials themselves are computed, this is equivalent to P3(U) and
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P4(U) sharing some roots. It is worth noticing here that the J1 = 0 and J2 = 0 solutions

also imply the piecewise vanishing QP = PQ = 0, unlike J3 = 0. Moreover, J1 = 0 can

be translated into ZP ∝ ZQ while J2 = 0 implies ZP ∝ SZQ, where S is the inversion

generator in (1.22).

The full list of the vector alignments arising from the different prime ideals of the

cohomology condition are given in table 5.2 for each algebra pairing.

gP deformation

gQ original so(4) so(3, 1) su(2) + u(1)3 iso(3) nil

ZQ0 ‖ ZP0 , ZQ∞ ‖ ZP∞ ZQ0 ‖ ZP0 , ZQ∞ ‖ ZP∞
so(4) ZQ0 ‖ ZP∞ , ZQ∞ ‖ ZP0 ZQ−1 ‖ ZP0 (∗) ZQ0 ‖ ZP∞ , ZQ∞ ‖ ZP0 ZQ−1 ‖ ZP+1 (∗) ZQ−1 ‖ ZP∞ (∗)

ZQ−1 ‖ ZP−1 (∗) ZQ−1 ‖ ZP∞ (∗)
ZQ+i ‖ ZP+i , Z

Q
−i ‖ ZP−i

so(3, 1) ZQ0 ‖ ZP−1 (∗) ZQ+i ‖ ZP−i , Z
Q
−i ‖ ZP+i ZQ0 ‖ ZP∞ (∗) ZQ0 ‖ ZP+1 (∗) ZQ0 ‖ ZP∞ (∗)

ZQ0 ‖ ZP0 (∗)
ZQ0 ‖ ZP0 , ZQ∞ ‖ ZP∞ ZQ0 ‖ ZP∞ , ZQ∞ ‖ ZP0

su(2) + u(1)3 ZQ0 ‖ ZP∞ , ZQ∞ ‖ ZP0 ZQ∞ ‖ ZP0 (∗) ZQ∞ ‖ ZP+1 (∗) ZQ∞ ‖ ZP∞
ZQ∞ ‖ ZP−1 (∗) ZQ∞ ‖ ZP∞

ZQ∞ ‖ ZP∞ ZQ∞ ‖ ZP∞
iso(3) ZQ+1 ‖ ZP−1 (∗) ZQ+1 ‖ ZP0 (∗) ZQ+1 ‖ ZP∞ (∗)

ZQ+1 ‖ ZP+1 (∗) ZQ+1 ‖ ZP∞ (∗)
ZQ∞ ‖ ZP∞

nil ZQ∞ ‖ ZP−1 (∗) ZQ∞ ‖ ZP0 (∗) ZQ∞ ‖ ZP∞ ZQ∞ ‖ ZP∞
ZQ∞ ‖ ZP+1 (∗)

Table 5.2: Cohomology condition in terms of the root alignments. The branches labelled

by (∗) disappear under the more restrictive condition QP = PQ = 0. Under the inver-

sion S → −1/S transformation, the algebras gQ and gP are exchanged resulting in the

symmetry of this table (and all the forthcoming ones).

At this point, two comments must be done concerning the SL(2,Z)7-duality invariance

of the solutions found, as discussed in section 2.4.3.

1. Most of these solutions (those labelled by (∗) ) disappear under the more restrictive

condition QP = PQ = 0 that occurs in an SL(2,Z)7-duality invariant supergravity.

In other words, not all the pairings are allowed in the SL(2,Z)7-duality invariant

theory [155].

2. Apart from each algebra being deformed by itself, there are the following possi-

bilities in an SL(2,Z)7-duality invariant supergravity: so(4) can be deformed by

su(2) + u(1)3 ; su(2) + u(1)3 can be deformed by so(4) and by nil ; iso(3) can be

deformed by nil and nil can be deformed by su(2) + u(1)3 and by iso(3).
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We note how in several (gQ, gP ) pairings there are two, even three, different ways

(branches) to solve the cohomology condition. In section 5.3 we will provide an example

based on gQ = su(2) + u(1)3 and gP = so(4) for which supersymmetric Minkowski vacua

only exist in one of these branches, i.e. ZQ∞ ‖ ZP−1. According to table 5.2, this solution

disappears when imposing SL(2,Z)7-duality invariance on the flux backgrounds. However,

supersymmetric AdS4 solutions can be found in the other branches, i.e. ZQ0 ‖ ZP0 together

with ZQ∞ ‖ ZP∞.

5.2 The gauge (F̄3, H̄3) background fluxes.

Now, we shall proceed to solve the set of constraints in (2.76) coming from the SL(2,Z)-

singlet Jacobi identity in (2.50). Schematically, these constraints can be written as a linear

system

(ΦQ) ji bj = (ΦP ) ji aj , (5.20)

where ΦQ and ΦP are 4× 4 rank two matrices depending on the non-geometric Q and

P fluxes respectively.

Since modular variables are more transparent to work with, we decide to use a universal

parameterisation for NS-NS H̄3 and R-R F̄3 fluxes based on the complete decomposition

P2(U) = (γq U + δq)
3 P2(ZQ) , P1(U) = −(γp U + δp)

3 P1(ZP ) , (5.21)

with

P2(ZQ) =
3∑
i=0

εiZ iQ and P1(ZP ) =
3∑
i=0

ρiZ iP . (5.22)

Under this decomposition, the NS-NS H̄3 flux entries are parameterised as
b0

b1

b2

b3

 =


−β3

q −βqδ2
q −β2

q δq −δ3
q

αqβ
2
q

1
3δq (2βqγq + αqδq)

1
3βq (βqγq + 2αqδq) γqδ

2
q

−α2
qβq −1

3γq (βqγq + 2αqδq) −1
3αq (2βqγq + αqδq) −γ2

q δq

α3
q αqγ

2
q α2

qγq γ3
q




ε0

ε1

ε2

ε3


(5.23)

and those for R-R F̄3 flux, ai, have the same form3 upon replacing the subscript q → p

and εi → ρi.

Fixing a pairing (gQ, gP ) and using the parameterisation Q = Q(αq, βq, γq, δq) and

P = P (αp, βp, γp, δp) of the non-geometric fluxes as well as that in (5.23) for the gauge

fluxes (F̄3, H̄3), the above system in (5.20) can be rewritten as

(Φ̃Q) ji εj = (Φ̃P ) ji ρj , (5.24)

3These universal parameterisations are well defined because their Jacobian have determinants −|ΓQ|6/9
and −|ΓP |6/9 so they never vanish, provided the isomorphisms used for bringing non-geometric fluxes to

their standard form are not singular.
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where Φ̃Q and Φ̃P depend on the modular matrices ΓQ and ΓP defined in (5.8). Both

Φ̃Q and Φ̃P are linear transformations and therefore the solutions space of (5.24) can be

obtained from the intersection of their images

IQP ≡ Im(Φ̃Q) ∩ Im(Φ̃P ) . (5.25)

The parameters εi and ρi belong to the Φ̃Q and Φ̃P anti-images of IQP respectively,

~ε ∈ Φ̃−1
Q (IQP ) ,

~ρ ∈ Φ̃−1
P (IQP ) .

(5.26)

Therefore we denote a background for the H̄3 and F̄3 fluxes solving (5.24) by a

pair of vectors (~ε, ~ρ ) satisfying (5.26). The main features of this background, such as

its dimension or its flux-induced C ′8 tadpole, are severely restricted by the non-geometric

background we have previously imposed. Furthermore, we are able to distinguish between

two non-geometric flux configurations by seeing whether or not IQP becomes trivial.

• Non-geometric type A configuration: A non-geometric background satisfying

IQP = {0} , (5.27)

fixes the NS-NS and R-R background fluxes to be ~ε ∈ ker(Φ̃Q) (H̄3Q = 0) and

~ρ ∈ ker(Φ̃P ) (F̄3P = 0). This has dimension 4 and, according to (2.61), does not

generate a flux-induced C ′8 tadpole,

N ′7 = 0 (type A). (5.28)

• Non-geometric type B configuration: A non-geometric background satisfying

IQP 6= {0} , (5.29)

results in a less restricted one for the NS-NS and R-R fluxes. It is a six-dimensional

background for which a flux-induced C ′8 tadpole can be generated. This can always

be written as

N ′7 = ∆Q |ΓQ|3 + ∆P |ΓP |3 (type B) , (5.30)

with ∆Q and ∆P depending on εi and ρi respectively4 and vanishing in the special

case of ~ε ∈ ker(Φ̃Q) and ~ρ ∈ ker(Φ̃P ).

Let us explain a little bit more about the preceding classification. Starting with a

non-geometric background for the Q and P fluxes, that satisfies both the integrability

and the cohomology conditions, it will be either a type A or a type B configuration. For

4ker(Φ̃Q), ker(Φ̃P ), ∆Q and ∆P differ for each pairing (gQ, gP ), being easily computed in each case.
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this to be a type B it has to fulfil the condition in (5.29), which can be rephrased as a

single roots alignment as shown in table 5.3 for all the possible pairings (gQ, gP ). If the

non-geometric background we are working with generates that alignment, we are dealing

with a type B configuration. Otherwise it is type A configuration. This is determined by

the way (branch) we followed for solving the cohomology condition (see table 5.2).

gP deformation

gQ original so(4) so(3, 1) su(2) + u(1)3 iso(3) nil

so(4) ZQ−1 ‖ ZP−1 ZQ−1 ‖ ZP0 ZQ−1 ‖ ZP∞ ZQ−1 ‖ ZP+1 ZQ−1 ‖ ZP∞

so(3, 1) ZQ0 ‖ ZP−1 ZQ0 ‖ ZP0 ZQ0 ‖ ZP∞ ZQ0 ‖ ZP+1 ZQ0 ‖ ZP∞

su(2) + u(1)3 ZQ∞ ‖ ZP−1 ZQ∞ ‖ ZP0 ZQ∞ ‖ ZP∞ ZQ∞ ‖ ZP+1 ZQ∞ ‖ ZP∞

iso(3) ZQ+1 ‖ ZP−1 ZQ+1 ‖ ZP0 ZQ+1 ‖ ZP∞ ZQ+1 ‖ ZP+1 ZQ+1 ‖ ZP∞

nil ZQ∞ ‖ ZP−1 ZQ∞ ‖ ZP0 ZQ∞ ‖ ZP∞ ZQ∞ ‖ ZP+1 ZQ∞ ‖ ZP∞

Table 5.3: Roots alignment in non-geometric type B configurations.

To illustrate this, we consider an example where gQ = su(2) + u(1)3 and gP = so(4).

Solving the cohomology condition through the ZQ∞||ZP−1 branch (see table 5.2), leaves us

with a non-geometric type B configuration (see table 5.3). The ker(Φ̃Q) is expanded by

(ε0, ε3) while that of Φ̃(gP ) is expanded by (ρ0, ρ3) for this pairing. In this case, the NS-NS

and R-R fluxes account for six degrees of freedom and generate a flux-induced C ′8 tadpole

given in (5.30) with ∆Q = ε2/3 and ∆P = (ρ2 − ρ1)/3.

gQ P2(ZQ)

so(3, 1) ε3Z3
Q − 3 ε0Z2

Q − 3 ε3ZQ + ε0

so(4) ε3Z3
Q + ε0

su(2) + u(1)3 ε3Z3
Q + ε0

iso(3) ε1ZQ + ε0

nil ε1ZQ + ε0

Table 5.4: H̄3 flux-induced polynomials in the non-geometric type A configurations.
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The H̄3 and F̄3 background fluxes determine the flux-induced P2(ZQ) and P1(ZP )

polynomials in the superpotential. Fixing a non-geometric type A configuration, P2(ZQ)

is shown in table 5.4 for each gQ algebra. The equivalent expression for the polynomial

P1(ZP ), resulting from the gP algebra, is obtained upon replacing εi ↔ ρi and ZQ ↔ ZP .

5.3 Supersymmetric solutions.

In this section, we provide some examples of supersymmetric vacua of the T and S-duality

invariant effective supergravity given by the standard Kähler potential and the moduli po-

tential induced by the (F̄3, Q) and (H̄3, P ) fluxes using the methods we have developed

in this work. We will focus on solutions with the axiodilaton S and Kähler T moduli

being completely stabilised.

The starting point is the N = 1 four-dimensional effective theory defined by the

Kähler potential and the superpotential in (2.67). The latter can be rewritten as

W = −(γp U + δp)
3

[( 3∑
i=0

ρiZ iP
)

+ 3T S P4(ZP )

]

+ (γq U + δq)
3

[
S
( 3∑
i=0

εiZ iQ
)

+ 3T P3(ZQ)

]
,

(5.31)

with P3(ZQ), P4(ZP ) taken from table 5.1 according with a fixed pairing (gQ, gP ) and

ZQ and ZP the modular variables in (5.9). In general, ZQ 6= ZP , and we will have

to deal with two modular variables instead of just one, Z. Each pairing (gQ, gP ) gives

rise to a specific superpotential due to the relationship between the roots structure of a

polynomial and its associated algebra.

A supersymmetric vacuum implies the vanishing of the F-terms

FT = ∂TW +
3iW

2 ImT
= 0 , FS = ∂SW +

iW

2 ImS
= 0 , FU = ∂UW +

3iW

2 ImU
= 0 ,

(5.32)

bringing about either Minkowski or AdS4 solutions because the potential in (2.62) at

the minimum is given by V0 = −3 eK0 |W0|2 ≤ 0. Restricting our search to Minkowski

solutions, i.e. V0 = 0, simplifies the supersymmetric equations of motion in (5.32) to

∂SW = ∂TW = ∂UW = W = 0 . (5.33)

Working with the generic expression in (2.67) for the superpotential, the Kähler moduli

and axiodilaton equations of motion fix both moduli to

S0 = −P3(U0)

P4(U0)
=

(
γq U + δq
γp U + δp

)3 P3(ZQ)

P4(ZP )

∣∣∣∣
U0

,

T0 = −P2(U0)

P4(U0)
=

(
γq U + δq
γp U + δp

)3
∑3

i=0 εiZ iQ
P4(ZP )

∣∣∣∣∣
U0

,

(5.34)
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where S0, T0 and U0 are moduli values at the vacuum. As we have already discussed in

the previous chapters, these VEVs are subject to physical considerations. ImS0 must be

positive because it is the inverse of the string coupling constant gs. ImT0 = e−φA where A

is the area of a 4-dimensional subtorus, so it also has to be positive. Also, for the modular

variables ZQ and ZP at the minimum, it happens that ImZQ =ImU0|ΓQ|/|γqU0 + δq|2
and ImZP =ImU0|ΓP |/|γpU0 + δp|2. Therefore, necessarily ImZQ 6= 0 and ImZP 6= 0

because for ImU0 = 0 the internal space is degenerate. Without loss of generality, we

choose again ImU0 > 0.

The remaining W = 0 and ∂UW = 0 conditions can be rewritten, using the stabili-

sation in (5.34), as [8]

E(U0) = P1(U0)P4(U0)− P2(U0)P3(U0) = 0 ,

E′(U0) = 0 ,
(5.35)

provided5 P4(U0) 6= 0. The prime denotes differentiation with respect to U and, there-

fore, E(U) has a double root. The root must, given our definition for the Kähler potential,

be complex and therefore E(U) contains a double copy of complex conjugate pairs, ac-

counting for 4 of its 6 roots. Therefore, we have the following factorisation property of

E(U),

E(U) = (f2 U
2 + f1 U + f0) Ẽ(U) , (5.36)

with Ẽ(U) ≡ (g2 U
2 + g1 U + g0)2 accounting for the double root that becomes complex

iff g2
1 − 4 g2 g0 < 0.

Information about the nature of the six roots of E(U) can be immediately obtained

from the generic superpotential polynomials once a (gQ, gP ) pairing is chosen and the

full set of Jacobi identities, i.e. integrability, cohomology and singlet Jacobi constraints,

are applied. Four cases are automatically discarded because their E(U) possesses at least

four real roots, so they can never have a double complex root for the Minkowski vacua to

be physically viable, i.e. ImU0 6= 0. The number of real roots for each (gQ, gP ) pairing

is summarised6 in table 5.5. A priori, all branches with E(U) having a number of real

roots less than three could accommodate supersymmetric Minkowski solutions. This is

a necessary but not sufficient condition for the existence of Minkowski vacua because for

E(U) to split into the form of eq. (5.36), additional constraints on H̄3 and F̄3 fluxes

are needed. Therefore, several branches in table 5.5 will exclude Minkowski vacua, even

though they have a sufficient number of complex roots and we will provide an example of

this.

5This has to be the case for ImU0 6= 0 in all gP but gP = so(3, 1) that has complex roots ZP = ±i.
For this singular case, P4(U0) = 0 implies Pi(U0) = 0 for i = 1, 2, 3, 4 as can be seen from (5.33). Then

S and T can not be simultaneously stabilised in a supersymmetric Minkowski vacuum.
6Entries in table 5.5 are in one to one correspondence with entries in table 5.2.
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gP deformation

gQ original so(4) so(3, 1) su(2) + u(1)3 iso(3) nil

2 2

so(4) 2 1 2 1 1

1 1

2

so(3, 1) 1 2 1 1 1

1

2 2

su(2) + u(1)3 2 1 1 2

1 2

4 4

iso(3) 1 1 1

1 1

4

nil 1 1 2 6

1

Table 5.5: Number of real roots of E(U) defined in (7.8) after imposing the full set of

Jacobi constraints.

Despite this, several results can be read from table 5.5 :

i) There are no supersymmetric Minkowski solutions in the (nil, nil) case because all

E(U) roots become real for this pairing.

ii) For supersymmetric Minkowski solutions to exist in (iso(3), iso(3)), (iso(3), nil) and

(nil, iso(3)) pairings, it is necessary to have non-geometric type B configurations (see

table 5.3), generating an eventually non vanishing flux-induced C ′8 tadpole.

iii) The rest of the pairings are richer and supersymmetric Minkowski solutions could,

in principle, exist in all branches that solve the cohomology condition (see table 5.2).

5.3.1 Some simple solutions

For our first example, we shall continue to investigate the case gQ = su(2) + u(1)3 de-

formed by gP = so(4), in order to show how simple supersymmetric solutions can be

easily obtained using these methods. For the sake of simplicity, we will look for H̄3 and

F̄3 background fluxes with ~ε ∈ ker(Φ̃Q) and ~ρ ∈ ker(Φ̃P ), so N ′7 = 0 but the net charges

N7 and Ñ7 are considered as free variables. In these solutions, P2(ZQ) and P1(ZP ) can
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be obtained from table 5.4 leaving us with a set (ε0, ε3 ; ρ0, ρ3) of free parameters in the

superpotential determining the H̄3 and F̄3 background fluxes.

Taking the relevant polynomials from the table 5.1 and the table 5.4, the superpotential

in (5.31) becomes

W = −(γp U + δp)
3
[
(ρ3Z3

P + ρ0) + 3T S ZP (ZP + 1)
]

+ (γq U + δq)
3
[
S (ε3Z3

Q + ε0) + 3T ZQ
]
,

(5.37)

and the tadpole cancellation conditions can be expressed in terms of the roots as

N3 = A33 (ZQ0 ×ZP0 )3 +A30 (ZQ∞ ×ZP0 )3 +A03 (ZQ0 ×ZP∞)3 +A00 (ZQ∞ ×ZP∞)3 ,

N7 = ρ3 (ZQ0 ×ZP0 ) (ZQ∞ ×ZP0 )2 + ρ0 (ZQ0 ×ZP∞) (ZQ∞ ×ZP∞)2 , (5.38)

Ñ7 = −ε3 (ZQ0 ×ZP0 )(ZQ0 ×ZP∞)(ZQ0 ×ZP−1)− ε0 (ZQ∞ ×ZP0 ) (ZQ∞ ×ZP∞) (ZQ∞ ×ZP−1),

with Aij = −ρi εj .

We now impose the constraints coming from one of the prime ideals of the cohomology

condition, of which there are three to choose for this pairing, as shown in table 5.2 and

explicitly stated in (5.19). The case J1 = 0 is automatically fulfilled with an embedding

ΓP = ΓQ ≡ Γ, or equivalently ZP = ZQ ≡ Z, while the J2 = 0 results are equivalent to

this after applying a T-duality transformation Z → −1/Z. The case J3 = 0 is a little bit

different from the previous ones. It can not be transformed into J1,2 = 0 and the resultant

solutions are distinct from those of the first two branches. We will solve for each of the

three branches and clarify their relation to the existence of both AdS4 and Minkowski

vacua.

Simple type A AdS4 solutions.

Imposing7 J1 = 0 and just fixing the modular embeddings to be

ΓP = ΓQ ≡ Γ =

(
α β

γ δ

)
, (5.39)

provides us with a much simplified superpotential given by

W

(γ U + δ)3
= −(ρ3Z3 + ρ0) + S (ε3Z3 + ε0) + 3T Z − 3T S Z (Z + 1) , (5.40)

where

Z ≡ ΓU =
αU + β

γ U + δ
. (5.41)

7Imposing J2 = 0 is T-dual to J1 = 0 just with Z → −1/Z.
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Under the transformation U → Z in (5.41), the effective theory is known to suffer a

Kähler transformation such that eKW → eKW with

K = −3 ln
(
− i(T − T̄ )

)
− ln

(
− i(S − S̄)

)
− 3 ln

(
− i(Z − Z̄)

)
,

W = |Γ|3/2
[
−(ρ3Z3 + ρ0) + S (ε3Z3 + ε0) + 3T Z − 3T S Z (Z + 1)

]
,

(5.42)

and the tadpole cancellation conditions in (5.38) simplify to

N3 = |Γ|3(A03 −A30) = |Γ|3(ε0 ρ3 − ε3 ρ0) ,

N7 = Ñ7 = 0 .
(5.43)

It is worth noting that, by simply imposing the embedding in (5.39), it becomes impos-

sible to have non-geometric type B configurations, as we can see from table 5.3. Indeed,

the alignment Z∞||Z−1 results in |Γ| = 0 and the isomorphism is no longer valid. So

whenever we impose the embedding of (5.39), automatically ε1 = ε2 = ρ1 = ρ2 = 0 and

then N ′7 = N7 = Ñ7 = 0.

It can also be proven that this system does not possess Minkowski vacua. To do this,

let us compute restrictions on the NS-NS H̄3 and R-R F̄3 background fluxes needed for

the polynomial E(U) to be factorised as in (5.36). From table 5.5 we know that E(U) has

at least two real roots. Factorising out and dropping these real roots, E(U) → Ẽ(U), it

can be shown that for Ẽ(U) to possess a double complex root, the H̄3 and F̄3 background

fluxes must satisfy

8 ε0 ρ3 + (ε3 − 9 ρ3) ρ0 = 0 ,

(ε3 − ρ3)3 − 8 ρ2
3 ρ0 = 0 ,

(5.44)

so that g2
1 − 4 g2 g0 = 12

(
ρ

1/3
3 ρ

1/3
0

)2
≥ 0, fixing all six roots of E(U) to be real and

producing non physical vacua, i.e. ImU0 = 0.

However, we find that supersymmetric AdS4 vacua with all the moduli stabilised can

exist without introducing localised sources. This result is new compared to the T-duality

invariant effective theory which was deeply studied in chapter 3. Let us fix ε3 = ρ3 = 0 so

as to have N3 = 0 and, for instance, ρ0 = 2 ε0. Solving the F-flatness conditions in (5.32)

we obtain

Z0 = −1.0434 + 0.4758 i , S0 = −2.3802 + 4.1685 i , ε−1
0 T0 = −0.4022 + 1.1483 i ,

(5.45)

with a vacuum energy V0 ε0/|Γ|3 = −2.3958 and with N3 = N7 = Ñ7 = N ′7 = 0. In terms

of the original complex structure modulus, U0 = Γ−1Z0 with Γ the modular matrix given

in (5.39). Fixing for example β = γ = 0, this solution corresponds to a0 = −2 ε0 δ
3,

b0 = −ε0 δ3, c̃1 = d̃1 = −α δ2 and d̃2 = α2 δ. Large positive values of the ε0 parameter

translate into large absolute values of the NS-NS and R-R fluxes and also a large internal

volume.
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Simple type B Minkowski solutions.

Now we explore the case J3 = 0, or equivalently ZQ∞||ZP−1. As an example of this alignment

involving just two modular parameters let us take

ΓQ =

(
α −δ
α δ

)
, ΓP =

(
α 0

0 δ

)
. (5.46)

This results in a two-dimensional family of non-geometric type B configurations. Substi-

tuting directly into (5.34) we obtain

S0 =
αU0

δ
− δ

αU0
and T0 =

1

3α δ

ε3 (αU0 − δ)3 + ε0 (δ + αU0)3

U0 (δ + αU0)
. (5.47)

Let us compute again restrictions on the NS-NS H̄3 and R-R F̄3 background fluxes

needed for the polynomial E(U) to be factorised as in (5.36). From table 5.5, this time

E(U) has at least one real root. Factorising out this real root, E(U)→ (f1 U + f0) Ẽ(U),

this imposes

ρ0 = 0 , ε0 = −ε3 =
ρ3

8
, f1 = g1 = 0 ,

g0

g2
=

(
δ

α

)2

(5.48)

and therefore g2
1 − 4 g2 g0 < 0, producing physical vacua U0 = i

(
δ
α

)
. Substituting directly

in (5.47), the moduli get stabilised to

U0 =

(
δ

α

)
i , S0 = 2 i , T0 =

ρ3

12
(1 + i) . (5.49)

This family is physical for ρ3 > 0 and |ΓP | > 0. The tadpole conditions for these super-

symmetric Minkowski vacua are

N3 =
ρ3

4
, N7 = ρ3 , Ñ7 = |ΓP |3

ρ2
3

4
, (5.50)

with |ΓP | = α δ, so N3 > 0, N7 > 0 and Ñ7 > 0 is required.

In terms of the original fluxes, this solution corresponds to c3 = −α3, c2 = c̃2 = −d̃2 =

−α2 δ, c1 = c̃1 = d̃1 = −α δ2 and c0 = −δ3 for non-geometric fluxes; b0 = −δ3 ρ3

4 and

b2 = −α2 δ ρ3

4 for the NS-NS flux; and a3 = α3 ρ3 for the R-R flux. Again, large values

of the ρ3 parameter translate into large absolute values of the NS-NS and R-R fluxes and

a large internal volume. However, this also increases the number of localised sources and

therefore their backreaction, which we are not taking into account.

5.3.2 More Minkowski vacua examples.

In our previous example, we gave simple Minkowski solutions with all moduli stabilised

in a physical vacuum with a vanishing flux-induced C ′8 tadpole, i.e. N ′7 = 0. Now, we

provide Minkowski solutions with N ′7 6= 0 (examples 3 and 4).
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Our main goal in this work has been to develop a systematic method to compute

supersymmetric Minkowski vacua based on different (gQ, gP ) pairings which fulfil all al-

gebraic constraints. To show how these methods work, we conclude by presenting several

simple non-geometric type B configurations involving all the six-dimensional Lie algebras

compatible with the orbifold symmetries. Besides finding analytic VEVs for the moduli,

we also relate them to the net charge of localised sources which can exist, as well as some

features of such vacua.

Example 1: vacua with unstabilised complex structure modulus.

Let us work out a simple family of Minkowski solutions with a vanishing flux-induced

C ′8 tadpole for which all the moduli but the complex structure modulus are fixed by the

fluxes. These solutions were previously found in ref. [110] and we now clarify their flux

structure.

Let us fix the non-geometric Q and P fluxes to be isomorphic to gQ = so(4) and

gP = iso(3) respectively8 under the modular embeddings

ΓQ =

(
αq 0

0 δq

)
, ΓP =

(
αp βp

0 δp

)
. (5.51)

The cohomology condition for this pairing has an unique branch (see table 5.2) implying

ZQ−1 ‖ ZP+1 and it is a type B configuration, as is shown in table 5.3. This relates the

modular matrices in (5.51) so that, αq = λαp and δq = λ (βp − δp) .

Taking for simplicity ~ε ∈ ker(Φ̃Q) and ~ρ ∈ ker(Φ̃P ) results in ε1 = ε2 = ρ2 = ρ3 = 0.

Moreover, we will also fix ε3 = 0 and therefore, substituting into (5.34), we obtain

S0 = −λ3

(
αp
δ2
p

)
(βp − δp)U0 and T0 = − λ3 ε0 (βp − δp)3

3 δ2
p (αp U0 + (βp − δp))

. (5.52)

When plugging the above stabilisation of the axiodilaton and Kähler moduli into the

superpotential we obtain

W (U0) = −
(
αp
δ2
p

) (
λ6 (βp − δp)4 ε0 + δ4

p ρ1

)
U0 − δ2

p

(
δp ρ0 + βp ρ1

)
, (5.53)

so that, for Minkowski solutions to exist, ∂UW = W = 0 . Moreover, because of αp δp 6= 0

(otherwise |ΓP | = 0), Minkowski vacua with the complex structure modulus unstabilised

do exist provided

λ6 (βp − δp)4 ε0 + δ4
p ρ1 = 0 , (5.54)

δp ρ0 + βp ρ1 = 0 . (5.55)

8In this case, ∆Q = (ε2 − ε1)/3 and ∆P = −ρ3 − ρ2/3.
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Under these restrictions for ρ0 and ρ1, the tadpole cancellation conditions simplify to

N3 = Ñ7 = N ′7 = 0 and N7 =
λ9 ε0

3

(
α3
p

δ2
p

)
(βp − δp)5 . (5.56)

From the axiodilaton and Kähler stabilisation in (5.52), taking a physical vacuum with

ImU0 > 0 implies that

λαp (βp − δp) < 0 and λαp (βp − δp) ε0 > 0 , (5.57)

for ImS0 > 0 and ImT0 > 0 and therefore ε0 < 0. Otherwise the vacuum is not physical.

Therefore N7 > 0 and so D7-branes are needed. Several configurations of these necessary

D7-branes were presented in ref. [110]. Large values of |λ| and |ε0| favour a small string

coupling constant and increase the internal volume, i.e. gs ∝ 1/|λ|3 and Vint ∝ |ε0|3/2, for

a fixed ΓP modular matrix and a given VEV for the complex structure modulus, U0.

Example 2: vacua with a hierarchy of fluxes.

In this example we work out a family of solutions with a richer structure of localised

sources. This time we fix the non-geometric Q and P fluxes to be isomorphic to gQ = so(4)

and gP = so(4) respectively9. Just to illustrate some vacua with this algebraic structure,

we fix the modular embeddings to be

ΓQ =

(
α δ

−λα λ δ

)
, ΓP =

(
(1− λ)α 0

0 (1 + λ) δ

)
, (5.58)

with α δ 6= 0 and λ (1− λ2) 6= 0 for the isomorphism to be well defined.

The cohomology condition has three branches, as seen in table 5.2, and the embeddings

in (5.58) satisfy ZQ−1 ‖ ZP−1 , giving a type B configuration (see table 5.3). For simplicity

we will fix again ~ε ∈ ker(Φ̃Q) and ~ρ ∈ ker(Φ̃P ), and so this time ε1 = ε2 = ρ1 = ρ2 = 0

which results in N ′7 = 0. Under this fluxes choice, E(U) has 1 real root, as table 5.5 shows.

We find that E(U) can be factorised as in (5.36) with g1 = 0 and

ε3 =
1− λ2

8λ

(
(λ−1)3ρ3+(λ+1)3ρ0

)
, ε0 =

1− λ2

8λ4

(
(λ−1)3ρ3−(λ+1)3ρ0

)
, (5.59)

so that
g0

g2
=

(
δ

α

)2

and
f0

f1
= −

(
δ

α

)
(λ− 1)3ρ3

(λ+ 1)3ρ0
. (5.60)

Since g2
1 − 4 g2 g0 < 0, these are physical vacua with U0 = i

(
δ
α

)
. From eqs (5.34), the

axiodilaton and Kähler moduli get stabilised to

S0 =

(
2λ

λ2 − 1

)
i ,

T0 =
λ2 − 1

12λ(λ2 + 1)

( (λ+ 1)4

λ2 − 1
ρ0 −

(λ− 1)4

λ2 − 1
ρ3 + i

(
(λ− 1)2 ρ3 + (λ+ 1)2ρ0

) )
.

(5.61)

9In this case ∆Q = (ε2 − ε1)/3 and ∆P = (ρ2 − ρ1)/3.
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The resultant tadpole conditions for these vacua are

N3 =
|ΓQ|3
2λ2

(λ2 − 1)
(

(λ− 1)6 ρ̃2
3 + (λ+ 1)6 ρ̃2

0

)
, (5.62)

together with

N7 =
|ΓQ|3

2λ
(λ2 − 1)

(
(λ− 1)2 ρ̃3 + (λ+ 1)2 ρ̃0

)
,

Ñ7 =
|ΓQ|3
8λ3

(
λ2 − 1

)3 (
(λ− 1)2 ρ̃3 + (λ+ 1)2 ρ̃0

)
,

(5.63)

where ρ3 = 4λρ̃3 and ρ0 = 4λρ̃0. Then N3 > 0, N7 > 0 and Ñ7 > 0 is necessary for

vacua to be physical10.

In terms of the original fluxes, this solution corresponds to c3 = −α3 λ (λ−1), c2 = c̃2 =

α2 δ λ (λ + 1), c1 = c̃1 = −α δ2 λ (λ − 1), c0 = δ3 λ (λ + 1) and d̃1 = α δ2 (λ2 − 1) (λ + 1),

d̃2 = α2 δ (λ2 − 1) (λ − 1) for non-geometric fluxes; b0 = δ3 (λ2 − 1) (λ − 1)3 ρ̃3, b1 =

−α δ2 (λ2 − 1) (λ+ 1)3 ρ̃0, b2 = α2 δ (λ2 − 1) (λ− 1)3 ρ̃3 and b3 = −α3 (λ2 − 1) (λ+ 1)3 ρ̃0

for NS-NS flux and a0 = −4 δ3 λ (λ+ 1)3 ρ̃0 and a3 = −4α3 λ (λ− 1)3 ρ̃3 for R-R flux.

By considering the fluxes’ dependency on the parameter λ, we note that generically

a hierarchy between F̄3, H̄3 and non-geometric Q,P fluxes occurs, in which the NS-NS

and R-R fluxes, i.e. ai ∝ λ4, bj ∝ λ5 are large compared to the non-geometric fluxes, i.e.

ci ∝ λ2, dj ∝ λ3, given λ > 1 for ImS0 > 0. However, there is a critical value λ0 = 1 +
√

2

for which gs ≥ 1 if λ ≥ λ0. Hence, there is a narrow range, 1 < λ < λ0, for which

non-perturbative string effects can be neglected, i.e. λ = 2 implies gs = 3/4. Finally, large

values of the ρ̃0 and ρ̃3 parameters favour a large internal volume.

Example 3: vacua with a non vanishing flux-induced C ′8 tadpole.

We now consider a simple family of solutions with a non vanishing flux-induced C ′8 tadpole

for which all moduli get stabilised. Let us fix the non-geometric Q and P fluxes to be

isomorphic to gQ = so(3, 1) and gP = so(4) respectively11. Examples belonging to this

pairing were also found in ref. [8].

For simplicity, we fix the modular embeddings to be

ΓQ =

(
α δ

α −δ

)
, ΓP =

(
α 0

0 δ

)
, (5.64)

so that the cohomology condition for this pairing has an unique branch ZQ0 ‖ ZP−1 as is

shown in table 5.2. It is a non-geometric type B configuration (see table 5.3) and there-

fore, has a potentially non vanishing flux-induced C ′8 tadpole. The modular embeddings

10Fixing |ΓQ| > 0 implies λ > 0 for ImU0 > 0, (λ2−1) > 0 for ImS0 > 0 and (λ−1)2 ρ̃3+(λ+1)2 ρ̃0 > 0

for ImT0 > 0. This fixes the net charge of the tadpoles.
11In this case ∆Q = −ε2/3− ε0 = −ε′0/24 and ∆P = (ρ2 − ρ1)/3.
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in (5.64) belong to this branch.

First of all, we will redefine our NS-NS flux parameters as
ε′3

ε′1

ε′2

ε′0

 = 8


3 1 0 0

3 −1 0 0

0 0 −1 3

0 0 1 3




ε3

ε1

ε2

ε0

 . (5.65)

Solutions with NS-NS and R-R fluxes for which ~ε /∈ ker(Φ̃Q) and ~ρ /∈ ker(Φ̃P ) can be given

parametrically in terms of the (κ1, κ2) parameters as

ε′3 = κ1 + κ2 , ε′0 = κ1 − κ2 , ρ1 = κ2 , ρ2 = κ1 , (5.66)

with (ε′1, ε
′
2) expanding the ker(Φ̃Q) and (ρ0, ρ3) expanding the ker(Φ̃P ) being completely

free. For simplicity, we will deal just with a non vanishing κ2 parameter plus the R-R fluxes

ρ0 and ρ3. All the Jacobi identities are by construction satisfied. In general, E(U) has 1

real root (see table 5.5) for this algebra pairing, but under this specific fluxes configuration,

it has two real roots. Factorising out these real roots, E(U)→ Ẽ(U), and requiring it to

factorise as in (5.36) we find

f1 = g1 = ρ0 = 0 , ρ3 =
4

3
κ2 ,

g0

g2
=

(
δ√
2α

)2

, f0 g
2
2 = −16α4 δ κ2 .

(5.67)

These values give g2
1 − 4 g2 g0 < 0, producing physical vacua with U0 = i

(
δ√
2α

)
.

Using the VEVs in (5.34), the moduli get stabilised to

U0 =

(
δ√
2α

)
i , S0 =

√
2 i , T0 = −κ2

27
(1 +

√
2 i) , (5.68)

which is physical for κ2 < 0 and |ΓP | > 0. The tadpole conditions for these vacua are

Ñ7 = 0 , (5.69)

N3 =
κ2

15
N7 = −κ2

3
N ′7 =

2

9
|ΓP |3 κ2

2 , (5.70)

with |ΓP | = α δ, so N3 > 0, N7 < 0 and N ′7 > 0 is required.

In terms of the original fluxes, this solution corresponds to c3 = 2α3, c2 = c̃2 = 2 d̃2 =

2α2 δ, c1 = c̃1 = 2 d̃1 = −2α δ2 and c0 = −2 δ3 for non-geometric fluxes; b0 = −κ2
6 δ3 for

NS-NS flux and a3 = 4
3 κ2 α

3, a1 = 1
3 κ2 α δ

2 for R-R flux. The string coupling constant

turns out to be gs = 1/
√

2 and the internal volume increases for large values of |κ2|. This

also increases the number of localised sources cancelling the flux-induced tadpoles.
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Example 4: vacua with a non defined flux-induced C8 tadpole sign.

Finally, and for the sake of completeness, we fix the non-geometric Q and P fluxes to be

isomorphic to gQ = so(4) and gP = nil respectively12.

Now we fix the modular embeddings to be

ΓQ =

(
α 0

0 δ

)
, ΓP =

(
α −δ
α δ

)
, (5.71)

with α δ 6= 0 for the isomorphism to be well defined. In this case, we obtained a single

cohomology condition, see table 5.2, ZQ−1 ‖ ZP∞ which is satisfied by (5.71) and is again

a type B configuration (see table 5.3). Once more, solutions with NS-NS and R-R fluxes

for which ~ε /∈ ker(Φ̃Q) and ~ρ /∈ ker(Φ̃P ) can be given parametrically,

ε1 = −4 (κ1 − 3κ2) , ε2 = −4 (κ1 + 3κ2) , ρ3 = κ2 , ρ2 = κ1 , (5.72)

depending on the (κ1, κ2) parameters and with (ε0, ε3) expanding the ker(Φ̃Q) and (ρ0, ρ1)

expanding the ker(Φ̃P ), being completely free.

For this pairing, E(U) has 1 real root as was shown in table 5.5. Again, we find that

E(U) can be factorised as in (5.36) with g1 = f1 = 0 and

ε3 =
2B2

A
− 2B + 4A , ε0 = −4A , κ1 =

1

4
(B − 5A) , κ2 =

B −A
4

, (5.73)

together with

g0

g2
=

(
δ

α

)2 A

B
, f0 g

2
0 = −2Aδ5 , (5.74)

where A = ρ1− ρ0 and B = ρ1− 5ρ0. Then g2
1 − 4 g2 g0 < 0 provided AB > 0 and there

are physical vacua with U0 = i
(
δ
α

) (√
A√
B

)
. In addition, from eqs (5.34), the axiodilaton

and Kähler moduli get stabilised to

S0 =

√
A
√
B

(A+B)2

(
2
√
A
√
B + i (B −A)

)
and T0 =

4A

3(A+B)

(
A+ i

√
A
√
B
)
.

(5.75)

The resultant tadpole conditions for these vacua are

N3 =
16

3
|ΓQ|3

(
(B −A)2 +AB

)
, (5.76)

as well as

N7 = −2

3
|ΓQ|3(B − 2A) , Ñ7 = −|ΓQ|3

2(A+B)2

A
, N ′7 = −4|ΓQ|3(B −A) ,

(5.77)

12In this case ∆Q = (ε2 − ε1)/3 and ∆P = −ρ3.



168 Supersymmetric Vacua in T- and S-duality Invariant Flux Models

from which it follows that N3 > 0, N7 has no defined sign, Ñ7 < 0 and N ′7 < 0 is required

for physical vacua13.

In terms of the original fluxes, this solution corresponds to d3 = −α3, −d2 = d̃2 =

c̃2 = α2 δ, d1 = −d̃1 = −c̃1 = α δ2 and d0 = δ3 for non-geometric fluxes; b0 = 4 δ3A,

b1 = 2
3 α δ

2 (A + B), b2 = 4
3 α

2 δ (B − 2A) and b3 = 2α3
(

(B−A)2

A + (A + B)
)

for NS-NS

flux and a0 = 2 δ3A, a2 = 2
3 α

2 δ (B− 2A) for R-R flux. This family of solutions gives rise

to gs > 1 for A,B > 0 and then, non-perturbative string effects can not be neglected.

5.4 Lifting to N = 4 gauged supergravities

The flux algebra in (2.24) was originally obtained by performing dimensional reduction

of the N = 1 10d heterotic theory into a 6d internal space which incorporates het-

erotic metric fluxes as well as a non-trivial background H̄3 for the NS-NS field strength

H3 = dB2 [157]. Notice that the heterotic string does not contain R-R gauge potentials

Cp in its spectrum. After reducing without breaking supersymmetries, one obtains 4d

gauged supergravities with an extended N = 4 supersymmetry.

It is well known that the heterotic and the type I theories are related by S-duality and

that the type I theory in turn represents a N = 2 → N = 1 orientifold of the type IIB

theory including O9-planes (see section 1.2.1). Therefore, in the type IIB with O9-planes

orientifold theory, the correct starting point for an electric flux algebra would then be

given by [161]

[Za , Zb] = ωcab Zc + F̄abcX
c ,[

Za , X
b
]

= −ωbacXc ,[
Xa , Xb

]
= 0 ,

(5.78)

and no longer by that in (2.24). The main difference is that the R-R gauge flux F̄3 is now

entering the isometry-isometry commutators, unlike in (2.24) where the NS-NS gauge flux

H̄3 does. Consequently, the ωcab fluxes in (5.78) are now type II metric fluxes.

According to (4.32) and (4.33), and after applying six T-dualities along the compact

internal space coordinates in order to go from a type IIB with O9-panes to a type IIB with

O3-planes orientifold theory, the electric flux algebra in (5.78) transforms into [155,161][
Xa , Xb

]
= Qabc Xc + F̃ abc Zc ,[

Za , X
b
]

= Qbca Zc ,

[Za , Zb] = 0 ,

(5.79)

13Fixing |ΓQ| > 0, then A,B > 0 for ImT0 > 0 and (B − A) > 0 for ImS0 > 0. This fixes the net

charge of tadpoles but N7 depends on the sign of (B − 2A), with N7 > 0 for (B − 2A) < 0 and N7 < 0

for (B − 2A) > 0.



5.4 Lifting to N = 4 gauged supergravities 169

where F̃ abc = 1
3! ε

abcdef F̄def . The algebra in (5.79) clearly differs from that of (2.46)

in a crucial point, as originally noticed in ref. [161]: it always corresponds to a non-

semisimple Lie algebra unlike the one in (2.46). This makes sense since the algebra in

(5.79) has been obtained by performing duality transformations upon that in (2.24), and

the semisimple/non-semisimple character of the algebra holds under these transformations.

As introduced in section 2.4, the half-maximal N = 4 four-dimensional gauged su-

pergravities are specified by two constant embedding tensors, ξαA and fαABC , under the

global symmetry [9, 160]

SL(2,Z)× SO(6, 6,Z) , (5.80)

where the index α = ± denotes electric-magnetic components of the embedding tensors,

and the index A = (1, . . . , 6 , 1̄, . . . , 6̄) refers to the SO(6, 6,Z) components when using

light-cone coordinates14 as in ref. [161]. By setting ξαA = 0 (as it happens in the case of

the Z2 × Z2 toroidal orbifold), the gauge group fulfils the general commutation relations[
TAα , TBβ

]
= fαABC TCβ , (5.81)

with the generators splitting of TAα = (Zαa , X
aα). In addition, the structure constants

fαABC are forced to obey the Jacobi identities arising from this algebra.

At this point it becomes clear that the flux algebra in (2.46) corresponds to the iden-

tification [161]

f+abc = H̄abc , f+ab̄c̄ = f+a
bc = Qbca ,

f−abc = F̄abc , f−ab̄c̄ = f−a
bc = P bca ,

(5.82)

between flux parameters and structure constants of the algebra in (5.81). Notice that we

have also included in (5.82) what would be the magnetic F̄3 and P partners of the H̄3

and Q fluxes under an SL(2,Z) type IIB self-duality transformation.

In contrast, the flux algebra in (5.79) corresponds to identify the flux parameters and

the structure constants in a different manner [161],

f+āb̄c̄ = f+
abc = F̃ abc , f+ab̄c̄ = f+a

bc = Qbca ,

f−āb̄c̄ = f−
abc = H̃abc , f−ab̄c̄ = f−a

bc = P bca .
(5.83)

Under the identification of (5.83), the flux pair (F̄3, Q) corresponds to SL(2,Z)-electric

fluxes whereas (H̄3, P ) to SL(2,Z)-magnetic ones, hence in agreement with the results

derived from the spinorial embedding of the flux parameters introduced in section 2.4.1.

14Working with these coordinates, the SO(6, 6) metric is taken to be off-diagonal, i.e. ηAB =

(
0 I6
I6 0

)
,

and the SO(6, 6) vector index A has the (down/up) splitting of A = (a ,
a).
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Taking into account both SL(2,Z)-electric (Za, X
a) and SL(2,Z)-magnetic generators

(Z̄a, X̄
a) , it is easy to see that the set of isometry generators {Za , Z̄a} spans a 12-

dimensional abelian ideal. Therefore the 24-dimensional flux algebra specified by the

structure constants in (5.83) turns out with a general semidirect sum structure

g = g(Q,P ) ⊕ u(1)12 , (5.84)

where the piece g(Q,P ) represents a 12-dimensional algebra spanned by the gauge gener-

ators {Xa , X̄a} and totally determined by the non-geometric (Q,P )-fluxes.

In the absence of fluxes, the algebra in (5.84) reduces to the abelian case u(1)24. How-

ever, when gauge fluxes (F̄3, H̄3) are switched on, the possibilities for the 24-dimensional

flux algebra in (5.84) are summarised as follows:

i) If Q = P = 0, the algebra induced by the gauge fluxes (F̄3, H̄3) becomes the

non-trivial

g = u(1)12 ⊕ u(1)12 ∼ nil24(2) . (5.85)

By non-trivial we mean that it is not abelian. Specifically, it becomes nilpotent

of order two because the lower central series becomes zero after two steps (abelian

would be nilpotent of order 1).

ii) If Q 6= 0 and P = 0, the generators {Za , Z̄a , X̄a} span an enlarged 18-dimensional

solvable ideal. In particular, the solvable ideal turns out to be again nilpotent of

order 2. The algebra in (5.84) is in this case given by

g = gQ ⊕ nil18(2) , (5.86)

where gQ is the 6-dimensional algebra specified by the non-geometric Q-flux.

iii) If Q = 0 and P 6= 0, a nilpotent 18-dimensional ideal is now spanned by the

{Za , Z̄a , Xa} generators. In this case, the algebra in (5.84) takes the form of

g = gP ⊕ nil18(2) , (5.87)

with gP now being the 6-dimensional algebra induced by the non-geometric P -flux.

iv) If Q 6= 0 and P 6= 0 then the algebra results no longer simplified and corresponds

to the generic form given in (5.84).

The fluxes in (5.83), and consequently the flux-induced algebras listed above, are re-

stricted by a set of quadratic constraints [160] coming from the closure of the algebra as

well as from the orthogonality of charges [161]. These constraints are needed in order to

have a consistent 12-dimensional gauging. They turn out to imply the absence of 7-branes

(notice that their presence would break the N = 4 supersymmetry) and then the van-

ishing of the SL(2,Z)-triplet of flux-induced tadpoles in (2.57) for the (C8, C
′
8, C̃8) R-R
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gauge potentials [155,161].

Irrespective of the identification between flux parameters and structure constants of

the N = 4 gauged supergravity algebra of (5.81), the N = 1 effective theory invariant

under T- and S-duality transformations arising from the type IIB Z2 × Z2 isotropic ori-

entifold with O3/O7-planes is specified by the Kähler potential and the superpotential in

(2.67). However, from the moduli flux vacua found in the previous chapters, only those

compatible with the lack of 7-branes could in principle correspond to an underlying N = 4

gauged supergravity.

Unfortunately all the supersymmetric Minkowski solutions we found in the T- and

S-duality invariant effective models required 7-branes in order to cancel flux-induced tad-

poles. Nevertheless, in the case of the T-duality invariant supergravity models, the sin-

gle moduli flux vacuum shown in figure 4.14 did not need of such 7-branes. This non-

supersymmetric Minkowski solution was compatible with switching off the non-geometric

P -flux and turned out to be unstable (tachyonic).
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Chapter 6

Modular Inflation in Supergravity

Flux Models

The topic of inflation coming from string models is experiencing a comeback driven by

both progress in our theoretical understanding of the models and the increasing precision

of observations. Whereas the former has been commonly identified, in its phenomeno-

logical aspects, with the publication of moduli stabilisation mechanisms in a dS vacuum

(KKLT, generalised fluxes, etc.), the experimental data released by the WMAP collabo-

ration [27,28] give support to the inflationary picture, as well as provide us with stringent

limits on some of the cosmological parameters, something that can immediately be imple-

mented within inflationary model building.

This revival comprises different string models where the inflaton is normally a mod-

ulus, either parameterising the distance between branes (as proposed originally by Dvali

and Tye in ref. [111]), or the geometry/structure of the compactified space. This second

option, also denoted as modular inflation, has been studied ever since the first models

of moduli stabilisation were put forward [128]. Inflation was not working at all because

either the moduli were flat at all orders in perturbation theory or, when including non

perturbative effects, their potential would be too steep to inflate [129]. Moreover we have

to add the fact that, at that stage, all models of moduli stabilisation predicted a negative

vacuum energy. Despite of all these problems, a few partially successful examples were

built [29, 130,131].

As we have seen in the chapter 4, progress on finding dS vacua has been driven by our

increasing understanding of (generalised) flux compactifications and their crucial role in

stabilising moduli. However, before the inclusion of non-geometric fluxes, several mech-

anisms to solve the long standing problem of the appearance of AdS4 vacua had been

proposed. In particular, in the context of the type IIB theory, see also ref. [105], the

KKLT construction in ref. [12] considered the presence of anti-D3-branes as the source
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of an additional term in the scalar potential, which breaks supersymmetry explicitly and

may uplift the minima from AdS4 to dS. In order to improve the aesthetics and the con-

trol over the effective theory, an alternative, fully supersymmetric, approach based on

the presence of a non-vanishing (Fayet-Iliopoulos) D-term as the uplifting contribution

to the potential, was proposed in ref. [101]. In its original formulation, this mechanism

had important inconsistencies, that were fixed in ref. [109]. In that paper, a consistent

formulation of these so-called “uplifting” D-terms in the context of N = 1 supergravity

was established, implying the presence of chiral matter living on D-branes. Explicit viable

examples were given, where a Kähler modulus T and the chiral matter get stabilised at

phenomenologically relevant values and positive vacuum energy. The scenario was mainly

determined by the requirements of supersymmetry and gauge invariance and, therefore,

left little room for fine-tuning the parameters entering the superpotential, which increases

the predictive power1.

In this final chapter we carry on along the lines of modular inflation in this new

context of uplifted supergravities2 and propose and study a scenario based on the setup

of ref. [109] plus an extra singlet, where suitable inflation takes place. In order to do

that we take into account all possible observational constraints which, together with the

symmetries of the model, will determine the structure and size of the different couplings

in the superpotential.

6.1 Gauge fluxes, de Sitter vacua and inflation

In this section we briefly review the scenario considered in ref. [109]. It describes an N = 1

effective supergravity coming from type IIB superstring theory, although it can also be

realised in the context of heterotic strings.

Along the lines of the moduli stabilisation mechanism proposed by KKLT in ref. [12],

we assume that all moduli (axiodilaton and complex structure) but one, an overall T

modulus, have been stabilised at a high scale due to the presence of gauge fluxes (F̄3, H̄3)

which induce the GVW superpotential shown in (2.21). In addition, non-perturbative

effects involving the Kähler modulus T are also taken into account such that the resulting

effective model is then given by the Kähler potential and the superpotential

K = −3 log(T + T̄ ) ,

W = Wflux +Wn.p = W0 +Ae−aT .
(6.1)

Notice the change of convention between the volume component of the Kähler modulus

in (6.1) and that in (2.67). The W0 parameter appears as an effective quantity resulting

1Alternative approaches to achieve the desired uplifting can be found in refs [103,106,108].
2Other, related work, in the topic of string/brane inflation can be found in refs [30, 107, 112–114, 116–

124,132–134,196–198].
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from having stabilised the axiodilaton and the complex structure moduli at a higher scale,

whereas a and A are constant parameters associated to the non-perturbative term. This

model stabilises the Kähler modulus T in a supersymmetric AdS4 minimum of the scalar

potential V = VF built from the standard form in (2.62). For this vacuum to be uplifted

to dS, additional anti-D3-branes were also considered generating a contribution to the

scalar potential given by

V = VF +
k

(ReT )2
. (6.2)

For a suitable value of the parameter k, the original AdS4 vacuum is lifted to a dS one.

Nevertheless, the term k
(ReT )2 breaks supersymmetry in an explicit manner and renders

corrections difficult to be computed reliably.

6.1.1 De Sitter vacua via D-terms uplifting

As it is common in type IIB orientifold models with O3/O7-planes, we also assume that

gaugino condensation happens, with gauge group SU(N), due to stacks of N D7-branes

wrapped on some 4-cycle of the Calabi-Yau space. For each SU(N) there typically appears

a U(1) factor. Some of these U(1)’s, or combinations of them, can be anomalous.

As proposed by BKQ in ref. [101], the corresponding D part of the scalar potential,

VD ∼
π E2

(ReT )3
, (6.3)

can provide the required uplifting of the potential in order to have de Sitter vacua through

a tuning of the parameter E. This has the advantage that supersymmetry is not explicitly

broken (as it was by the anti-D3-brane contributions originally considered in KKLT), so

corrections can be more reliably computed and kept under control. However, the setup of

ref. [101] had some serious inconsistencies [91, 104], arising from the lack of gauge invari-

ance of the formulation.

Nevertheless, as shown in ref. [109], this scheme can be made gauge invariant, which im-

poses the presence of chiral matter transforming typically as (N, N̄) with abelian charges

(q, q̄), for the whole setup to be consistent. This mechanism was confirmed in explicit

string constructions in ref. [199]. As stressed in ref. [109], the constraints coming from

enforcing gauge invariance are sufficiently strong to determine the form of the superpo-

tential. Moreover, the presence of the anomalous U(1) group generates a Fayet-Iliopoulos

term which enters the D part of the scalar potential and is responsible for the uplifting.

Based on this information one can construct a simple model assuming that the sym-

metries in the hidden sector are dictated by a unique SU(N) times the anomalous U(1).

In its simplest possible form, the model contains:
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• A Kähler modulus T .

• Two chiral multiplets, Q, Q̄, transforming as (N, N̄) with abelian charges (q, q̄).

This is equivalent to have only one flavour, i.e., Nf = 1.

The modulus field transforms non trivially under the U(1) group,

T → T + i
δGS
2
ε , (6.4)

and the corresponding transformation of the Lagrangian compensates the SU(N)2× U(1)X

and U(1)3
X anomalies, according to the Green-Schwarz mechanism. The resulting condition

reads

δGS = −(q + q̄)

2πkN
= −N(q3 + q̄3)

3πkX
, (6.5)

where kN , kX are O(1) constant factors that enter in the definition of the corresponding

gauge couplings [86,200,201].

It is also well known that the theory gets strongly coupled in the infrared. As a

consequence, gaugino condensation takes place at some scale, Λ , and also squark meson

condensates

M2 = 2QQ̄ , (6.6)

are formed. A non perturbative superpotential term is generated [202–204],

Wn.p = (N − 1)

(
2 Λ3N−1

M2

) 1
N−1

= (N − 1)

(
2

M2

) 1
N−1

e
−4π kN T

N−1 , (6.7)

which is, as expected, invariant under U(1) transformations.

The N = 1 supergravity model that we will be dealing with is then defined in terms

of the the Kähler potential3 and the superpotential

K = −3 log(T + T̄ ) + |Q|2 + |Q̄|2 = −3 log(T + T̄ ) + |M |2 ,

W = W0 +Wn.p ,
(6.8)

where W0 is the (real) effective flux parameter and Wn.p is the non-perturbative super-

potential given in (6.7).

As usual in N = 1 supergravity, the scalar potential is the sum of an F-part and a

D-part,

V = VF + VD . (6.9)

Using Planck units m−2
p = 8πGN = 1, the VF piece is given by

VF = eK
[
K−1
ij DiWDjW̄ − 3|W |2

]
, (6.10)

3 We are assuming here a minimal Kähler potential for the matter fields. This is a simplification, but

it does not affect the main results and conclusions. We will come back to this point in section 6.1.3.
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where subindices denote Kähler derivatives with respect to all scalar fields as in (2.62).

In our case, VF can be computed using the complete superpotential in (6.8). In addition,

we have used |Q|2 = |Q̄|2, which is dynamically dictated by the cancellation of the SU(N)

D-term (in the Nf = 1 case). The D part of the potential associated with the U(1) is then

given by

VD =
π

2kX(T + T̄ )

(
(q + q̄)|M |2 − 3δGS

T + T̄

)2

, (6.11)

which is positive definite.

For reasonable values of N , q, q̄ and kN it is possible to choose W0 in such a way

that:

i) There are minima of the F-potential with broken supersymmetry and negative vac-

uum energy.

ii) VD is non-zero and sizeable enough to uplift these vacua from AdS4 to dS.

As explained in ref. [109], the absence of physical vacua with unbroken supersymme-

try comes from the fact that the conditions DTW = DMW = 0 can only be fulfilled

simultaneously in the decompactification limit, ReT → ∞ . This can be easily checked

by computing

1

KT
DTW −

1

KM
DMW = Wn.p

(
T + T̄

3
a+

b

|M |2
)

, (6.12)

with (a, b) defined by expressing eq. (6.7) as Wn.p ∝ M−b e−aT . The positiveness of

the (a, b) parameters implies that this equation has no solution consistent with DTW =

DMW = 0 for physical values 0 < ReT <∞ of the modulus field.

Let us now review the main features of the vacuum structure of these models. For the

remainder of this analysis it is particularly convenient to split the complex fields T and

M in the following way,

T = TR + i TI and M = ρM e iαM . (6.13)

As we have mentioned, there is always a supersymmetric vacuum at TR → ∞ . Besides

this minimum, for given values of ρM and TR, the potential gets always minimal when

αM and TI are such that W0 and Wn.p are aligned in the complex plane. For real W0

this translates into the condition

ϕn.p ≡ −
2

N − 1
(αM + 2π kN TI) = nπ , (6.14)

where ϕn.p is the phase of Wn.p and n is even or odd depending on the details of the

model [109]. Actually, αM and TI appear in the potential only through the ϕn.p com-

bination, which can thus be set to its minimising value. Hence, the minimisation can be
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Figure 6.1: Plot of the scalar potential, as a function of TR, for the example shown in the

text and ρM chosen as the value minimising the potential at each TR.

reduced to a two variable problem, namely to find the values of (TR , ρM) at the minimum.

It is worth noticing that the energy of the vacuum is controlled by the size of the flux

parameter W0. In the figure 6.1 we plot the dependence of the scalar potential with W0

as a function of TR, with the non-perturbative phase, ϕn.p, fixed to its minimising value.

The matter condensate, ρ2
M, changes along the path and is determined by the extremal

condition δρMV = 0. The particular model is defined by N = 20, q = 1, q̄ = 1/10 and

kN = 1/2. The remaining parameters kX and δGS are fixed by the anomaly cancellation

condition in (6.5).

As discussed in ref. [109], the value of W0 sets the overall scale of the F-potential.

On the other hand, from (6.11), the size of VD is always O(N−1T−3
R ) in Planck units.

Therefore, too large values of W0 result in a too large (and negative) VF, then the up-

lifting by VD is not efficient enough to promote the minimum from negative to positive.

Conversely, too small values of W0 would imply that VD dominates too much and we lose

the minimum. This explains the allowed range of W0 values shown in figure 6.1 for the

example at hand. Notice, also from that figure, that the natural scale for the potential is

about five or six orders of magnitude below the Planck scale. Consequently, to obtain a

Minkowski vacuum, or de Sitter with a small cosmological constant consistent with obser-

vation, requires the tuning of W0, as usual.

Concerning the dependence of the potential on the other fields involved in the problem,

V increases monotonically with ρM as this departs from its value at the minimum, and

has a periodic behaviour along the axionic direction defined by the relative phase ϕn.p
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Figure 6.2: Periodic structure of the potential along the relative phase ϕn.p. The model

is the same as in the previous figure and (TR , ρ
2
M) have been fixed to their values at the

minimum.

given in (6.14). The other independent phase does not appear in the potential, as already

mentioned. The latter behaviour is represented in figure 6.2, which shows (for the same

example as in figure 6.1) the scalar potential as a function of ϕn.p, with (TR , ρ
2
M) fixed

to their values at the minimum.

6.1.2 Chances and problems to implement inflation

Now we consider the problem of finding a plausible candidate to inflaton in these scenarios.

For that matter it is convenient to recall the most ubiquitous obstacles that one finds to

implement inflation in concrete models.

6.1.2.1 The η and initial condition problems

In supersymmetric theories the inflaton, φ, is generically one (real) component of some

complex scalar field, Φ. Successful inflation requires that the slow-roll parameters defined

(in Planck units) as

ε ≡ 1

2

[
V ′

V

]2

, η ≡ V ′′

V
, (6.15)

(the primes denote differentiation with respect to φ) must be � 1. On the other hand, it

is well known that supergravity theories generically present the so-called “η problem” [29],

which refers to the fact that η is naturally of order one due to the presence of the eK

factor in (6.10).
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Take, for example, the simplest form of the Kähler potential, i.e. K = |Φ|2, which

gives rise to canonical kinetic terms for Φ . If we write eq. (6.10) as

V = eK Ṽ , (6.16)

and expand the exponential to first order, we see that

V ∼ (1 + |Φ|2 + . . .) Ṽ . (6.17)

In other words, Φ, and thus φ, acquires a mass term of order Ṽ (in Planck units) and the

corresponding contribution to η in (6.15) is of order one, which totally disfavours slow-roll.

Some mechanisms have been proposed to avoid or alleviate this η problem. In parti-

cular it is obvious that if φ does not enter the Kähler potential, K, it will not pick up a

mass term coming from the expansion of the eK term. However, this is neither sufficient

nor necessary to avoid the η problem, since one also has to take into account the possible

dependence on Φ of Ṽ in (6.16). Schematically,

V ∼ (1 + |Φ|2 + . . .)
[
Ṽ
]

Φ=0
+ eK

[
∂2Ṽ

∂Φ∂Φ̄

]
Φ=0

|Φ|2 + · · · . (6.18)

Consequently, what should be required is that the various |Φ|2 terms involved in (6.18)

cancel among themselves.

Beside the η problem, we must worry about the initial condition for the inflaton. In

other words, it is desirable that we do not need to invoke tuning or unreasonable assump-

tions of any kind about the initial value of φ required to have a successful subsequent

period of inflation. Note that this is typically a problem of naturalness. To that respect,

an attractive possibility is that of eternal topological inflation [205–207], which is realized

in models where the inflaton potential has a saddle point between different, degenerate

vacua. This gives rise to domain walls forming and, in the presence of an expanding uni-

verse, the false vacuum inside the walls serves as a site of inflation. This is both topological

and eternal because, even though the field will be driven towards one of the minima, the

core of the wall grows exponentially with time, providing us with a very generic initial

state. Whether topological inflation actually takes place or not for a given potential is a

delicate question which has been studied for only a few examples [208]. Generally speak-

ing, a sufficiently flat potential satisfying the slow-roll conditions with a large VEV looks

to be necessary, according to these previous results.

6.1.2.2 Candidates to inflaton

Figures 6.1 and 6.2 suggest that both TR and ϕn.p could be inflaton candidates. The

structure of the potential along both directions shows a maximum (storing large potential

energy), which might be the starting point of topological inflation. However things are
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not that smooth. The TR field has an obvious η problem since it appears explicitly in

the Kähler potential given in (6.8). The same holds for the matter condensate ρM.

The chances of ϕn.p could be better in principle since it does not appear in the Kähler

potential. Actually, using TI (which is one of the components of ϕn.p defined in (6.14))

as the inflaton was the basic strategy followed in refs [133, 134], where they considered a

setup with no matter fields. However, as discussed above, this is not a guarantee to avoid

the η problem due to the presence of other dangerous contributions to η, see eqs (6.16)

and (6.18).

Let us analyse this possibility in more depth. For the sake of the simplicity, let us ignore

for the moment the matter fields, writing Wn.p = Ae−aT . Then the TI-dependent terms

in V are proportional to cos(−aTI), having a similar size to other terms and, thus, to the

whole V . Noting that the canonically normalised field is T̂I = (
√

6/2TR)TI, it is straight-

forward, from eq. (6.18), to see that η = O(1) × (aTR)2. Since, usually, aTR > O(1) to

provide the required suppression for the potential, then η is naturally larger than O(1),

which prevents T̂I from inflating. Actually, the η problem was also found in refs [133,134],

and was solved by tuning the parameters of the model appropriately 4.

In our case, we can be more precise since the size of Wn.p is greatly constrained from

the above-mentioned fact that the size of VF must be of the same order as VD, and the

latter is basically fixed 5. More precisely, from eqs (6.11) and (6.5) (see also eq. (6.32))

the size of VD is

VD ∼
27

128πNk3
NT

3
R

(q + q̄)3

(q3 + q̄3)
' O(1)

15Nk3
NT

3
R

. (6.19)

Now, to estimate Wn.p we can use the condition VF ∼ VD (necessary for a successful

uplifting). Actually, since VF is a sum of terms, none of these should exceed VD unless

there are unlikely delicate cancellations between them. So we can concentrate, e.g., on the

term eK KT T̄ |WT |2, which depends on Wn.p in a clear way. From eq. (6.7), the value of

Wn.p is proportional to ρ
−2/(N−1)
M . Usually ρ2

M is small, but for N = O(10) this factor

is O(1) (or maybe larger). Then the condition eK KT T̄ |WT |2 <∼ VD translates into

e−8πkNTR/(N−1) <∼ O(10−3)× 1

N(kNTR)2
. (6.20)

For example for N,TR = O(10), which is a reasonable choice, the condition becomes

kN TR/(N −1) ∼ 1/2 which, in turn, implies η = O(20). This result is quite robust since,

4The setup in these references has two different (racetrack) exponentials in W , which makes the struc-

ture of V more involved, but the previous schematic argument still applies.
5In refs [133,134] the uplifting of the potential was provided by an explicitly non-supersymmetric term

δV = E/T 2
R which, in the spirit of KKLT, could arise from anti-D3-branes. Unlike our uplifting VD

potential, the size of E is not constrained (or it is uncertain), so it represents an extra degree of freedom

that can be tuned. Besides, the exponents of Wn.p were taken as continuously varying quantities (contrary

to our case, where they go as (N − 1)−1 in (6.7)), which allowed their tuning.
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for other ranges of values of N and TR, the exponent in (6.20) cannot change much if the

balance between F and D terms is to be maintained. These results are confirmed by our

numerical analysis.

An alternative argument to exclude topological inflation driven by the non-perturbative

phase ϕn.p in figure 6.2 is that, as long as it changes from ϕn.p = ±π to ϕn.p = 0, the

minimum and the saddle point merge together and all the structure of the scalar potential

disappears giving rise to a runaway behaviour. This is shown in figure 6.3.
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Figure 6.3: Sections of the scalar potential V ( ReT, |M |, ϕn.p ) as a function of (ReT, |M |)
when the non-perturbative phase varies from ϕn.p = ±π (upper-left plot) to ϕn.p = 0

(lower-right plot).

Therefore, we can conclude that, in its simplest form, the modulus-condensate scenario

does not contain a suitable inflaton. This suggests to explore natural modifications to the

simplest setup, which we do in the next section.



6.1 Gauge fluxes, de Sitter vacua and inflation 183

6.1.3 A simple inflationary model

The most obvious extensions of the model are to allow either more matter flavours (until

now we have fixed Nf = 1) or a second gaugino condensate, but in both cases the problems

persist.

Another natural modification is to add matter charged under the anomalous U(1)

group and coupled to the squark condensate. Then the superpotential W = W0 + Wn.p,

with Wn.p given by eq. (6.7), can get extra terms such as

W →W + λMaXb , (6.21)

where λ is a coupling constant, and X is a new singlet. This potential exhibits several

degenerate vacua for a > 0, b ≥ 2 and non zero values of the singlet X, and a saddle

point at 〈X〉 = 0, which could be useful for the implementation of topological inflation.

However, as already pointed out in ref. [109], this kind of coupling between singlet and

matter condensate forces the anomalous charges of X and M to be such that the Fayet–

Iliopoulos D-term can cancel. In consequence, uplifting does not happen and there is no

Minkowski (or de Sitter with small cosmological constant) minimum towards which the

inflaton can slow-roll.

Another possibility would consist of changing the Kähler potential for the matter con-

densate M , which has been, up to now, taken to be canonical in (6.8), without introducing

any extra fields. We looked at the possibility of considering a more string-motivated ansatz,

namely

K = −3 log(T + T̄ − |M |2) , (6.22)

and we checked that the shape and position of the extrema were similar to those obtained

using (6.8). Therefore this modification of the original model would not turn any compo-

nents of T or M into a suitable inflaton.

Finally, a natural and simple extension is to consider just an additional neutral sin-

glet, χ, which is not coupled to the SU(N) sector, except gravitationally (χ may be a

superfield from another sector of the setup). The absence of terms in the superpoten-

tial coupling the singlet χ to the T and M fields implies that eq. (6.12) holds and, as in

the previous model, there are no supersymmetric vacua. Furthermore let us assume, for

simplicity, that χ has canonical Kähler potential, ∆K = |χ|2, and a polynomial superpo-

tential ∆W (χ) =
∑
λnχ

n. If χ is to play the role of the inflaton it is convenient (in order

to implement a topological inflation mechanism) that the potential has degenerate vacua

with different χ values. This condition is fulfilled, for example, when ∆W (χ) possesses

some discrete symmetry and the singlet takes a vacuum expectation value. Again for the

sake of simplicity, we will assume that the model has a Z2 symmetry χ→ −χ. Then, the



184 Modular Inflation in Supergravity Flux Models

complete superpotential (in mp units) reads

W = W0 +Wn.p + ∆W (χ2)

= W0 +Wn.p + λ2χ
2 + λ4χ

4 + λ6χ
6 ,

(6.23)

with Wn.p given by eq. (6.7). Higher other terms can be added but they get more and

more irrelevant as long as 〈χ〉 < mp. In summary, the model is characterised by the

superpotential in (6.23) and the Kähler potential

K = −3log(T + T̄ ) + |M |2 + |χ|2 . (6.24)

The independent parameters are W0 and λi. Besides, there are the parameters defining the

gauge sector, though these should be around their natural values: N ∼ O(10), kN ∼ O(1)

and q, q̄ ∼ O(1). Let us examine next the physics resulting for this simple extension of

the initial setup, as far as inflation is concerned.

6.1.3.1 The potential

We will first study the structure of the extrema of the scalar potential, after the addition

of the χ singlet. Notice that, due to the Z2 symmetry, any extremum in the modulus-

condensate sector is still an extremum of the enlarged potential for χ = 0. The stability

of these extrema will depend on the parameter λ2. In particular, for sufficiently small λ2

the extrema become saddle points. This can be understood by fixing λ2 = 0. Then, from

eq. (6.10),

∆V =
[
VF + eK |W |2

]
χ=0
|χ|2 + O(|χ|4) . (6.25)

The value of VF at χ = 0 is the same as in the original dS or Minkowski vacuum; thus,

as explained in sect. 2, VF < 0. As a matter of fact, in these scenarios the VF term in

eq. (6.25) dominates over the second one within the brackets, giving rise to an instability in

the singlet direction. It is clear that the slope of this instability is reduced once we switch

on the mass term (λ2 6= 0) in eq. (6.23). Concerning the implementation of inflation, we

can in principle use this saddle point as the source of eternal topological inflation. Then

the original vacuum must be a de Sitter (not Minkowski) vacuum.

In this setup, playing with λ2, a value for the η parameter consistent with slow-roll

and observational data for the spectral index, ns ' 1 + 2η ' 0.95, can be easily obtained

although, admittedly, this represents a certain tuning of λ2. Besides the initial saddle

point, we need of course an actual minimum of the potential corresponding to the physical

“quasi-Minkowski” vacuum, towards which the inflaton could roll. A minimum for large

enough |χ| is actually quite easy to generate due to the quadratic (and higher order) terms

in eq. (6.23). Then, the sign and size of λ4, λ6 can be chosen so that the minimum does

correspond to a quasi-Minkowski vacuum, as desired. Of course this represents a new tun-

ing and, in this case, a very severe one, though this is nothing but the usual fine-tuning to
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adjust the phenomenological cosmological constant. Finally, the values of W0 and λi must

be tuned in order to reproduce the size of the observed power-spectrum, P (k) ∼ 10−10

(more details will be given in the next subsection). In the analysed examples this requires

V at the saddle point to be ∼ O(10−16).

Let us present now one example where all these conditions are fulfilled. The modulus-

condensate sector is the same that the one described in section 6.1.1 . The other parameters

defining the superpotential are

W0 = 0.4204 , λ2 = −0.215 , λ4 = −0.055 and λ6 = −0.009 . (6.26)

The potential derived from this model has:

• a saddle point at

TR = 18.6407 , ρM = 0.03551 , χ = 0 . (6.27)

• a quasi-Minkowski minimum at

TR = 18.6554 , ρM = 0.03549 , χ = 0.0908 . (6.28)

Notice that the TR and ρM fields vary less than one per mil from one extremum to the

other. Therefore we expect that the singlet will be the main inflaton component.
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Figure 6.4: Effective potential as a function of χR.

The potential depends on six variables, TR , TI , ρM , αM , χR , χI and it is, therefore,

impossible to draw a picture to illustrate how these extrema are connected. However,

some simplifications are possible. TI and αM only enter the problem through the ϕn.p

combination, i.e. the phase of the non-perturbative superpotential given in eq. (6.14).
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Actually, for positive W0, the potential is minimised at ϕn.p = π, as in the case without

singlet. That means that −W0 and Wn.p are aligned, partially cancelling each other.

Analogously, the potential is minimised by taking χI → 0. Therefore, we can integrate

out all phases/imaginary parts, so that the potential depends on (TR, ρM, χR). We just

need one more step to illustrate the potential along which the inflaton (≡ singlet) evolves.

If the inflaton scale and effective mass along the slow-roll are much smaller than the TR

and ρM masses we can also integrate out the latter fields. In fact, since the TR and ρM

masses are not far from mp, this has to be the case if |η| � 1, as required for slow-roll to

happen6.

Consequently, we can define TR(χR) and ρM(χR) through the extremisation condi-

tions
∂TR

V (TR , ρM , χR) = 0 ,

∂ρMV (TR , ρM , χR) = 0 ,
(6.29)

and finally write

Veff(χR) ≡ V (TR(χR) , ρM(χR) , χR) . (6.30)

The resulting potential is shown in figure 6.4. It is of order O(10−16) in mp units, which

means that it involves mass scales of order O(10−4) 7. The potential is almost flat in a

wide region between χ = 0 and the minimum. Given the relatively large VEV of χR, we

consider this potential suitable for implementing topological inflation.

6.1.3.2 The moduli evolution

After analysing the potential we are ready to write and solve the equations describing the

evolution of the matter and gravitational fields during the rolling from the saddle to the

minimum. We will work in Planck units, mp = 1.

It is convenient to use here real (rather than complex) matter fields, i.e. {Φi}i=1,...,N →
{φi}i=1,...,2N , where N denotes the number of complex scalar fields. Then the supergravity

Lagrangian can be written as

|g|−1/2Lmatter = Kij g
µν∂µΦi∂νΦ̄j − V =

1

2
Gij gµν∂µφi∂νφj − V , (6.31)

where V is given by eq. (6.9). The relation between Kij and Gij can be straightforwardly

calculated.

We write the supergravity potential as a sum of the F and D parts V = VF +VD. Since

the D part is associated with the anomalous U(1), it only involves the fields T and M .

6Incidentally, this also means that we can focus on the scalar power spectrum, since the isocurvature

fluctuations are negligible, given the hierarchy of scales between the inflation and the other fields in the

system.
7This is a couple of orders of magnitude below the threshold to produce gravity waves observable in

future experiments [209].
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Its expression was given in eq. (6.11). Using the anomaly cancellation condition in (6.5)

we can rewrite it as

VD =
3π

8NkNTR

(q + q̄)3

q3 + q̄3

(
ρ2
M +

3

4πkNTR

)2

. (6.32)

The F part is given by eq. (6.10) and depends on the Kähler derivatives for the chiral

superfields,


DTW

MDMW

χDχW

 =


−3
T+T̄

− 4πkN
N−1

−3
T+T̄

−3
T+T̄

−3
T+T̄

−3
T+T̄

MM̄ − 2
N−1 MM̄ MM̄ MM̄ MM̄

χχ̄ χχ̄ χχ̄+ 2 χχ̄+ 4 χχ̄+ 6





Wn.p

W0

W2

W4

W6


,

(6.33)

where W2,4,6 stand for the monomials proportional to χ2,4,6 respectively in eq. (6.23).

Notice that the above matrix elements are real. As a consequence, the only relevant phases

are the relative ones among the different terms appearing in the superpotential.

In our case, for the range of interest of TR, ρM and χR (i.e. from the saddle point

to the minimum neighbourhood) the potential is minimal for ϕn.p = π (we assume real

W0) and χI = 0. Then if we evolve the fields from an initial configuration with all the

phases at the minimal value, they will remain constant. We can then restrict ourselves to

a reduced potential, VF(TR, ρM, χR). In terms of these three relevant variables, we get

VF =
1

8T 3
R

eρ
2
M+χ2

R3

(
A− 8πTRkN

3

(
2

ρ2
M

) 1
N−1

e
−4πkN
N−1

TR

)2

+ ρ2
M

(
A+

(
2

ρ2
M

) N
N−1

e
−4πkN
N−1

TR

)2

+ χ2
R

(
A+ 2λ2 + 4λ4χ

2
R + 6λ6χ

4
R

)2 − 3A2
}

, (6.34)

where the function A is given by

A = W0 − (N − 1)

(
2

ρ2
M

) 1
N−1

e
−4πkN
N−1

TR + λ2χ
2
R + λ4χ

4
R + λ6χ

6
R , (6.35)

and the case without the singlet is recovered by taking the limit χ→ 0 in (6.33) and (6.34).

On the other hand, we parameterise the spacetime metric gµν as a Friedmann-Robertson-

Walker metric given by

ds2 = dt2 − a(t)2dxidx
i . (6.36)

Then, the field equations (for constant fields in space) deduced from the matter and the

gravity Lagrangian are

φ̈i + 3H φ̇i + Γijk φ̇
j φ̇k + Gij ∂V

∂φj
= 0 , (6.37)
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subject to the constraint

H2 =

(
ȧ

a

)2

=
1

3

[
1

2
Gij φ̇iφ̇j + V

]
, (6.38)

where dots denote time derivatives and, as usual, Γijk are the Christoffel symbols derived

from the Gij metric

Γijk =
1

2
Gim

[
∂Gmk
∂φj

+
∂Gjm
∂φk

− ∂Gjk
∂φm

]
, (6.39)

with GijGjk = δik. In order to determine the evolution of the matter fields, we perform a

change of independent variable from time to number of e-folds, Ne,

a(t) = eNe(t) , H =
dNe(t)

dt
. (6.40)

Then, from (6.37) and (6.38), we can write the evolution equations for the matter fields

as 8

φi′′ +

[
1− 1

6
Gjk φj ′φk ′

] [
3φi′ + 3Gij 1

V

(
∂V

∂φj

)]
+ Γijk φ

j ′φk ′ = 0 , (6.41)

where prime means derivative respect to Ne. Note that in this way the scale factor is no

longer present in the evolution equations.

In our case we have six real component fields, {φi} ≡ {TR, TI, ρM, αM, χR, χI}. Al-

though we have performed all the numerical computations with the complete set of φ

fields, it is possible to decouple {TI, αM, χI} since, as argued in the previous subsection,

they minimise the potential at well-defined values independent of the value of the other

fields. So they rapidly fall into their minimising values and play no role in the evolution

of the other fields.

Therefore, the matter Lagrangian in (6.31) for the three relevant fields, {TR, ρM, χR},
has the form

|g|−1/2Lmatter =

[
3

4T 2
R

∂µTR ∂
µTR + ∂µρM ∂µρM + ∂µχR ∂

µχR − V
]
, (6.42)

and the evolution equations in (6.41) applied to these fields are explicitly given by

χ′′R +

[
1− 1

3
χ′R

2 − 1

4T 2
R

T ′R
2 − 1

3
ρ′M

2

] [
3χ′R +

3

2V

(
∂V

∂χR

)]
= 0 ,

T ′′R +

[
1− 1

3
χ′R

2 − 1

4T 2
R

T ′R
2 − 1

3
ρ′M

2

] [
3T ′R +

2T 2
R

V

(
∂V

∂TR

)]
=

T ′R
2

TR
,

ρ′′M +

[
1− 1

3
χ′R

2 − 1

4T 2
R

T ′R
2 − 1

3
ρ′M

2

] [
3 ρ′M +

3

2V

(
∂V

∂ρM

)]
= 0 .

(6.43)

8In the slow-roll approximation, eq. (6.41) simplifies to φ′i + Gij 1
V
∂V
∂φj = 0.
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Figure 6.5: Plot of the total number of e-folds of inflation, N tot
e , as a function of the initial

condition for the inflaton quoted as the shift, δχR, with respect to its value at the saddle

point given by χR = 0. The dotted line indicates the 60 e-folds needed to make inflation

successful.

As argued in the previous section, the inflaton corresponds essentially to the χR field.

The total number of e-folds, N tot
e , depends on the initial condition for χR. If, initially,

χ = 0, then N tot
e →∞. Otherwise N tot

e depends on the initial shift, δχR. The figure 6.5

shows the dependence of N tot
e on δχR using the values of the parameters of the model

given in the previous subsection. Note that N tot
e ≥ 50−60, as phenomenologically required

corresponds to δχR|initial
<∼ 10−3. Recall here that, since we are using the saddle point

at χ = 0 as the origin of topological inflation, this means that all the initial conditions

are realized in practice (they correspond to different spatial points inside the associated

domain wall). The final stages of inflation are the same for all of them, the only difference

being the total number of e-folds before the end of inflation. In consequence, any region

of the domain wall with δχR|initial
<∼ 10−3 gives appropriate inflation, with no tuning of

initial conditions.

In order to show the evolution profiles for the singlet (χR), modulus (TR) and con-

densate (ρM) we have taken δχR|initial = 10−4, which corresponds to N tot
e ' 180, but we

insist that the results are the same for any other initial condition (provided N tot
e > 60)

since the last 60 e-folds take place in the same way. The corresponding profiles are shown

in figure 6.6. At Ne ∼ 180 the fields start to oscillate around their minimum values,

signalling the end of inflation.

To determine the end of inflation more precisely we need to evaluate the slow-roll

parameters. These are the ε parameter,

ε =
1

2V 2
Gij∂iV ∂jV =

1

2V 2
Gij ∂V

∂φi
∂V

∂φj
, (6.44)
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Figure 6.6: Cosmological evolution of the singlet χR (left plot) and the (TR, ρM) (right

plot) fields, normalised to their values at the minimum, as a function of the number of

e-folds, Ne.

and the η parameter defined as the most negative eigenvalue of the matrix [134]

ηij =
1

V
Gik
(
∂k∂jV − Γlkj∂lV

)
. (6.45)

The ε parameter remains O(10−9) along the evolution. The behaviour of η as a function

of Ne is shown in figure 6.7, from which we infer that inflation lasts until Ne ∼ 180.

The spectral index is defined to be

ns = 1 +
d log(P (k))

d log(k)
, (6.46)

where P (k) is the power spectrum of scalar density perturbations 9 [134]

P (k) =
1

50π2

H4

Lkin
=

1

150π2

V(
1
2Gijφ′iφ′j

)
− 1

3

(
1
2Gijφ′iφ′j

)2 , (6.47)

which is shown, as ns − 1, in figure 6.8. Recall that the window of allowed values for this

parameter coming from the WMAP data corresponds to it being evaluated ∼ 60 e-folds

before the end of inflation.

In our case this would mean Ne ∼ 120, which is the region shown in detail on the right

hand side of figure 6.8. The spectral index in (6.46) was calculated using

ns ' 1 +
d log(Pk(Ne))

dNe
, (6.48)

since d log k ∼= dNe at horizon crossing. Note that ns ∼ 0.95, as required by the WMAP

fit [27,28]. Note also that dns/d log k � 1, which is consistent with refs [27,28].

9In the slow-roll approximation, 1
2
Gijφ′iφ′j = ε, so we could compute the power spectrum as

P (k) = 1
150π2

V

ε− 1
3
ε2
' 1

150π2
V
ε

. Similarly, ns ' 1 + 2η − 6ε + · · · . However, we have done the calcula-

tion without any approximation.
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Figure 6.7: Absolute value of η as a function of Ne. The dot indicates η = 1.
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Figure 6.8: Left: ns as a function of Ne for the whole range of the evolution of the

inflaton. Right: zoom of the region where the value of ns is provided by WMAP.

We have arranged the parameters so that the slope and normalisation of P (k) (namely,

P (k) = 4 × 10−10) around 60 e-folds before the end of inflation are satisfied at the same

time.

Let us now compare our approach and results with some recent proposals which touch

upon similar models. In ref. [210] the issue of decoupling moduli which are apparently

irrelevant for inflation in the context of type IIB superstring theory compactified on a

Calabi-Yau orientifold was addressed. Some of their methods apply to the large volume

stabilisation proposed and developed in refs [94, 102, 211]. Inflation in that context has

also been reviewed in refs [132, 135], where the evolution of the imaginary part of the

relevant modulus was considered. They conclude that a minimum setup of three moduli

is needed for inflation to work, and the stabilisation of two of those is assumed before

starting the evolution of the third. Although their claim is that no fine-tuning is needed
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in these scenarios (as opposed to that of ref. [134]), we believe that there is an implicit

tuning of the shape of the potential, encoded in the dynamics of the two moduli which

are already stabilised.

As discussed above, the need of fine-tuning is also necessary in the scenario presented

here. This point is sustained as well by the results in ref. [212], where an attempt was

made to incorporate chaotic/new inflation within supergravity in a string context. The

characteristics of those models are similar to ours, namely a modulus TR and an inflaton

Φ, the latter with polynomial self interactions, but the mechanism for stabilising TR is

different. The conclusions are, however, similar to ours, namely a substantial degree of

fine-tuning is needed to arrange a successful inflation. This is unpleasant, although, as

discussed in the paper, it is a generic fact of virtually all working examples of modular

inflation. This may be an indication of a general disease in inflationary scenarios based on

supergravities coming from strings, or just a consequence of the fact that inflationary model

building in this context is still in its infancy. Given the obvious interest of such context,

the fact that models can actually be built is a sign of progress and should encourage further

work in the field. Finally, one can take a more optimistic (though less demanding) view

within a landscape philosophy. Then, the apparent fine-tuning of our “local” universe

would be a consequence of the need of inflation for the creation of large and lasting

universes with matter, where the latter can evolve to life.

6.2 A few words on generalised fluxes and modular inflation

An exhaustive exploration of whether moduli stabilisation in a de Sitter vacuum and mod-

ular inflation stand any chance of taking place simultaneously in generalised flux models

has not been carried out up to date.

Ever since modular inflation was ruled out (see ref. [13]) in the simplest type IIA super-

gravity models including gauge fluxes, O6-planes and D6-branes at any point in field space

(the slow-roll ε parameter in (6.15) has a lower bound ε ≥ 27
13 whenever V > 0), much

effort has been devoted to explore more elaborated type II scenarios with non-vanishing

geometric fluxes ωcab. To this respect, a detailed analysis of type IIA toroidal orientifolds

with metric fluxes was carried out in ref. [137], where only two IIA orientifolds based on

the Z2 × Z2 orbifold were found to survive the no-go theorems on the existence of dS

extrema (V > 0 and ε = 0 ) derived therein. However, these models suffered from the η

problem when it comes to implement slow-roll modular inflation.

The class of supergravity models based on coset spaces with non-vanishing geometric

fluxes has also been deeply investigated in ref. [14] for type IIA compactifications on SU(3)-

structure manifolds as well as in ref. [15] for type IIB orientifolds with SU(2)-structure.

Concerning the former, only those models based on reductions upon the SU(2) × SU(2)
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manifold were not ruled out to accommodate for dS extrema. Unfortunately all the dS

extrema found in ref. [14] turned out to be tachyonic with an η parameter being η < −2,

then excluding slow-roll modular inflation starting at these points.

The above results are consistent with those in section 4.6.1 where we found that any

Minkowski extremum (and its deformation to de Sitter) in a geometric type IIA isotropic

flux model results unstable (tachyonic). Notice that the IIB orientifold models based on

the Z2×Z2 isotropic orbifold that we systematically analysed in chapters 3 and 4, are T-

dual to type IIA compactifications on an SU(3)-structure space with non-geometric fluxes.

Recalling that de Sitter, almost Minkowski, stable vacua were found to exist (see sec-

tion 4.5.4.2) in the IIB supergravity models based on an so(3, 1) B-field reduction, it

would be interesting to know whether another dS extrema could live in the vicinity of one

of these stable vacua. Indeed, a dS saddle (tachyonic) point also appears close to these

Mkw/dS stable vacua in field space with a much larger energy. This saddle point is con-

tinuously connected to the Mkw/dS vacuum, hence providing us with a natural scenario

in which to investigate the possibilities for slow-roll modular inflation to take place. We

find that the evolution from the dS saddle point to the Mkw vacuum also suffers from the

standard η problem with |η| ∼ O(10). This can be overcome by lifting the Mkw vacuum

to a dS one (see figure 4.9). As we approach the critical value δθ∗ξ , beyond which the

dS vacuum disappears, the η parameter at the saddle point tends to zero. However, and

simultaneously to this process, the saddle point and the dS vacuum merge together10, and

inflation is not likely to take place. This agrees with the previous results in refs [14, 137]

derived in the absence of non-geometric fluxes. Nevertheless, nothing prevents inflation

from taking place far away from the region in the moduli space we have looked into.

In this sense, most of the work dealing with inflationary scenarios based on generalised

flux compactifications including non-geometric fluxes remains to be done.

10This behaviour was previously found in the context of the modulus-condensate setup as it was depicted

in figure 6.3.
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Fluxes have played an important role in String Theory research since the second String

Theory revolution in the mid 1990’s. Orbifolds and their later extension, orientifolds, pro-

vide explicit constructions of spaces which are intimately linked to Calabi Yau manifolds

but allow for specific calculation of the dynamics of the space and the fields which live

within them. By constructing N = 1 orientifolds from type II superstring compactifica-

tions, important properties and dynamics of the space can be investigated in a background

which is easier to describe than that of the Calabi Yaus.

Along the pages of this thesis we have gone for a stroll through the cosmological as-

pects of moduli stabilisation in type II orientifold theories including generalised fluxes and

branes. As regards the String Phenomenology challenge of stabilising the moduli fields

in a de Sitter (almost Minkowski) vacuum, as required by the current cosmological data,

one of the main recent developments has been the study of generalised flux backgrounds.

In addition to the ordinary gauge form fluxes, generalised fluxes were proposed in type II

theories to restore the invariance of the effective supergravity models under duality trans-

formations. For instance, certain tensor fluxes referred to as non-geometric fluxes were

introduced to restore T-duality between IIA and IIB theories as well as type IIB S-duality

at the effective level.

In this respect, the generalised flux models arising from N = 1 orientifolds of type

II compactifications, have become of principal interest. Specifically, those based on the

T6/(Z2×Z2) orbifold, were found to be the most promising effective models where to look

for de Sitter vacua as well as for inflation. These are precisely the N = 1 supergravity

models in four dimensions we have been looking into. In particular, we have worked on

the following subjects:

1. Classification of generalised flux backgrounds and their relation to gauged super-

gravities and the moduli stabilisation problem.

2. Prospects for inflation in scenarios including fluxes and non-perturbative effects.

As a starting point we focused on the T-duality invariant IIB orientifold models with

O3/O7-planes, which incorporate just a non-geometric Q tensor flux besides the NS-

NS H̄3 and the R-R F̄3 gauge form fluxes. In these models, the Q-flux defines a six-
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dimensional Q-algebra spanned by the vectors coming from the reduction of the B-field.

Using this property and the orbifold symmetries under the assumption of isotropic fluxes,

we identified the set of allowed Q-algebras and classified the non-geometric Q-flux back-

grounds they induced. We encountered five Q-algebras compatible with the symmetries,

each one leading to a characteristic flux-induced superpotential. Next we found the most

general fluxes solving the Jacobi identities coming from the 12-dimensional (H̄3, Q)-flux

algebra and left the flux-induced tadpoles for the C4 and C8 R-R gauge potentials as

free variables, thereby enabling us to study which values were allowed for each Q-algebra.

We succeeded in finding families of three moduli (S, T, U) supersymmetric AdS4 vacua

with all moduli stabilised at small string coupling gs. Their general properties were also

discussed: these vacua typically exist in all models defined by the inequivalent Q-algebras,

provided that arbitrary values of the flux-induced R-R tadpoles are allowed. Although in

type IIB orientifolds with only R-R and NS-NS fluxes there is a non-trivial induced tad-

pole that must be cancelled by O3-planes or wrapped D7-branes, including non-geometric

Q-fluxes can require other types of sources. For instance, similar to well understood AdS4

models in type IIA, the induced flux-tadpoles might vanish implying that sources can

be avoided. We also encountered examples in which sources of positive R-R charge are

sufficient to cancel the tadpoles. As one might expect, these latter exotic vacua occur

in models built using Q-fluxes satisfying the non-compact so(3, 1) Q-algebra. Such solu-

tions might be ruled out once a deeper understanding of non-geometric fluxes has been

developed. Another novel outcome was the appearance of multiple vacua for special sets

of fluxes. However, they generically have gs > 1 unless the net number of O3/D3 or

O7/D7 sources needed to cancel the tadpoles is large. We also discussed briefly the issues

of axionic shift symmetries and cancellation of Freed-Witten anomalies.

The next step was to investigate the interplay between the supergravity flux alge-

bra and the moduli dynamics in the previous set of T-duality invariant IIB orientifold

models including just the non-geometric Q-flux. In particular, the existence of non-

supersymmetric dS/Mkw extrema. In this IIB language, we performed a complete classi-

fication of the allowed twelve-dimensional flux algebras and then studied no-go theorems,

formulated in a type IIA language, on the existence of dS/Mkw extrema. By deriving a

dictionary between the sources of potential energy in types IIA and IIB, we were able to

combine algebra results and no-go theorems. The outcome was a systematic procedure

for identifying phenomenologically viable models where dS/Mkw extrema might exist. We

presented a complete classification of the allowed algebras and the viability of their result-

ing scalar potential, and we pointed at the models which stood any chance of producing

a fully stable vacuum. Moreover, the most promising scenarios in terms of finding such

vacua turned out to be those involving non-geometric fluxes. Once we reached this stage,

it was a matter of performing a dedicated search for minima of the potentials that survive

the no-go theorem.
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We would like to stress here that the search for phenomenologically viable vacua in

the context of String Theory will not succeed if it is understood as the brute force task

of searching for minima in a high order degree polynomial potential. We have shown that

combining apparently disconnected pieces of research, such as the classification of the al-

lowed flux algebras in type IIB with the existence of no-go theorems for the presence of

Mkw/dS vacua in type IIA, gives us the key to perform a systematic search for the most

promising potentials. This ruled out almost half of the possible scenarios and provided us

with simplified expressions for the remaining, potentially viable ones.

With the set of interesting models narrowed down, we carried out a complete and sys-

tematic analysis of the Mkw extrema of the supergravity potential for the promising cases

previously hinted. We found that only one choice of B-field reduction, that based on the

so(3, 1) Q-algebra, gives rise to minima with all moduli stabilised at a Minkowski vacuum.

These solutions can also be deformed continuously to either de Sitter or anti de Sitter by

a slight variation of the relevant parameters. Supersymmetry is broken by all moduli, at

a scale which is, as expected, large for values of the fluxes of order one. Our systematic

search showed that all the B-field reductions (but the nil based one) produce Minkowski

extrema with all but one direction stabilised. These tachyonic solutions show a specific

pattern, as they always interpolate between singular points of the parameter space where

one or several moduli go to either zero or infinity. We have also shown the breakdown of

the potential energy contributions in the language of type IIA, in order to compare our

results to those examples put forward in the context of the no-go theorems. In this way

it is obvious that the solutions with stable Minkowski vacua require non-geometric flux

contributions to the scalar potential.

After having studied the T-duality invariant orientifold models, we went one step fur-

ther and investigated how to extend them to include a new ingredient, a non-geometric

P -flux which appears when considering invariance of the IIB effective models also under

S-duality transformations. We built upon our previous results and succeeded in implement-

ing this P -flux as deformations of the Q-algebra by an element of its second cohomology

class. After that, the new Jacobi identities involving the non-geometric P -flux were rein-

terpreted as integrability and cohomology conditions over the deformation. The problem

of solving the integrability condition forced the non-geometric P -flux to define another

six-dimensional P -algebra compatible with the orbifold symmetries, in analogy with the

Q-algebra. Even though both algebras could be chosen independently, their embeddings

into isotropic Q and P fluxes were restricted by the cohomology condition.

At this stage, algebraic geometry techniques were required. We made extensive use of

the free software Singular to compute all solutions to the cohomology condition, break-

ing it into several families or branches with different implications. Different branches of
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solutions to the integrability and cohomology conditions were interpreted geometrically,

as root alignments between the non-geometric flux-induced polynomials entering the ef-

fective superpotential. Additional Jacobi identities of the twelve-dimensional flux algebra

involving also gauge fluxes (F̄3, H̄3) remained a linear system. This fact allowed us to

split non-geometric (Q,P )-background fluxes into what we referred to as type A and B

configurations. The type B configurations were found to be those for which a non vanish-

ing flux-induced C ′8 tadpole might be generated. Using these methods, supersymmetric

solutions turned out to be easily and systematically computable. We presented a simple

AdS4 solution with all moduli stabilised and for which the fluxes do not induce tadpoles,

as well as several supersymmetric Minkowski solutions. Because of the importance of the

latter from the phenomenological point of view, we further presented some families of su-

persymmetric Minkowski solutions and identified examples already found in the literature

within our construction. Finally we further discussed the lifting of these T- and S-duality

invariant orientifold models to N = 4 gauged supergravities as well as pointed to the

electric-magnetic flux algebra they would give rise to.

The point to be highlighted is that we have succeeded in connecting properties of the

vacua to the underlying flux algebra. This could help towards extending the description

of non-geometric fluxes beyond the effective action limit. At present one of the most chal-

lenging problems in need of new insights is precisely to formulate String Theory on general

backgrounds at the microscopic level.

In the home stretch of the thesis we changed to explore cosmological aspects of moduli

fixing in type IIB models. In particular we analysed simple IIB proposals considering

moduli stabilisation as a seed for inflation. We started by studying in detail the simplest

setup including gaugino condensation with gauge group SU(N) due to stacks of D7-branes

and a Fayet-Iliopoulos contribution to the D part of the scalar potential coming from the

anomalous U(1) factor that typically appears. Squark meson condensates M are formed

and a non-perturbative term, involving the Kähler modulus T , appears in the superpoten-

tial. We studied the dynamics of this coupled system and we found that neither T -driven

nor M -driven modular inflation could be accommodated within this setup. Then we

moved to its minimal extension, that of including an additional self-interacting neutral

field χ. The resultant model incorporated eternal χ-driven topological inflation with a

non-supersymmetric Minkowski vacuum and could be arranged to comply with all the

WMAP constraints. Next we looked into generalised fluxes as far as modular inflationary

models was concerned. However, we found a more pessimistic picture due to the persis-

tence of the η-problem when it comes to implement slow-roll inflation within generalised

flux scenarios of moduli stabilisation.

We are optimistic that present efforts in theoretical and experimental physics will shed

light upon the challenge of linking strings and low energy physics in the near future.



Visión General y Comentarios

Finales

Desde la segunda revolución que tuvo lugar en Teoŕıa de Cuerdas a mediados de los 90’s,

el estudio de las compactificaciones con flujos de fondo ha jugado un papel importante

en la investigación en Teoŕıa de Cuerdas. Los orbifolios y, más tarde, su extensión a

orientifolios, suponen un manera de construir espacios que están ı́ntimamente ligados con

espacios de Calabi-Yau pero que a su vez permiten calcular de forma expĺıcita su dinámica

y la de los campos que habitan en ellos.

A lo largo de esta tesis hemos explorado algunos aspectos cosmológicos relacionados

con la estabilización de moduli en orientifolios de tipo II teniendo en cuenta la presencia

de flujos generalizados y de branas. El estudio de los flujos generalizados ha significado

un gran avance en el área de la Fenomenoloǵıa de Cuerdas debido a su importancia a la

hora de estabilizar los moduli en un vaćıo de Sitter (aproximadamente Minkowski) como

requieren los datos cosmológicos actuales. Estos flujos generalizados se introdujeron en las

teoŕıas de tipo II (junto con los flujos gauge ordinarios) con la intención de restablecer la

invariancia de los modelos de supergravedad efectivos bajo transformaciones de dualidad.

Por ejemplo, determinados flujos tensoriales conocidos como flujos no geométricos se in-

trodujeron para restablecer T-dualidad entre las teoŕıas IIA y IIB al igual que S-dualidad

en la teoŕıa IIB a nivel efectivo.

Los modelos de supergravedad N = 1 basados en orientifolios de tipo II han resultado

ser un buen lugar donde explorar estas cuestiones. Concretamente, aquéllos construidos

sobre el orbifolio T6/(Z2 × Z2) son especialmente interesantes a la hora de buscar vaćıos

de Sitter e inflación. Estos modelos de supergravedad son los que hemos investigado en

esta tesis. En particular, hemos indagado en los dos siguientes aspectos:

1. Clasificación de fondos de flujos generalizados aśı como su relación con supergrave-

dades gaugeadas y con el problema de la estabilización de moduli.

2. Posibilidad de producir inflación en escenarios de cuerdas basados en flujos genera-

lizados y efectos no perturbativos.
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Como punto de partida nos centramos en los modelos orientifolios de tipo IIB con

O3/O7-planos invariantes bajo transformaciones de T-dualidad los cuales incorporan un

tensor de flujo no geométrico Q además de los flujos gauge de NS-NS H̄3 y de R-R F̄3.

En estos modelos, el flujo Q determina una Q-álgebra seis-dimensional generada por los

vectores que provienen de la reducción del campo B. Utilizando esta propiedad y las

simetŕıas del orbifolio bajo la restricción de flujos isótropos, identificamos el conjunto de

Q-álgebras permitidas y clasificamos los flujos no geométricos que éstas indućıan. Encon-

tramos cinco Q-álgebras compatibles con las simetŕıas cada una de las cuales da lugar

a un superpotencial caracteŕıstico inducido por los flujos. A continuación encontramos

las configuraciones de flujos (H̄3, Q) más generales que cumplen las identidades de Jacobi

asociadas al álgebra completa y dejamos los tadpoles inducidos para los campos de R-R

C4 y C8 como parámetros libres.

En estos modelos isótropos de supergravedad encontramos familias de vaćıos super-

simétricos AdS4 con los tres moduli (S, T, U) estabilizados a valores pequeños de la cons-

tante de acoplo de la cuerda gs. También discutimos sus propiedades generales: estos

vaćıos existen t́ıpicamente en todos los modelos definidos por las Q-álgebras inequivalentes

en tanto en cuanto los tadpoles inducidos por los flujos de R-R puedan tomar valores ar-

bitrarios. Aunque en los modelos orientifolios de tipo IIB con flujos gauge aparece un

tadpole que ha de ser cancelado mediante O3-planos y D7-branas, la inclusión de flujos

no geométricos Q puede requerir la presencia de otros tipos de fuentes. Por ejemplo,

los tadpoles inducidos por los flujos pueden anularse, lo cual es compatible con no tener

fuentes, al igual que ocurre en algunos vaćıos AdS4 en modelos basados en la teoŕıa de tipo

IIA. También encontramos ejemplos en los que tener fuentes con carga de R-R positiva es

suficiente para cancelar los tadpoles inducidos por los flujos. Como uno podŕıa esperar,

estos vaćıos exóticos ocurren en modelos basados en la Q-álgebra no compacta so(3, 1).

No obstante, estas soluciones podŕıan ser descartadas tras entender de manera más fun-

damental el origen de los flujos no geométricos. Otro resultado nuevo fue la coexistencia

de múltiples vaćıos para determinadas configuraciones de flujos. Sin embargo, estos vaćıos

dan lugar a valores no perturbativos de la constante de acoplo de la cuerda, gs > 1, a

menos que el número neto de fuentes O3/D3 y O7/D7 necesarias para cancelar los tadpoles

inducidos por los flujos sea grande. También discutimos brevemente algunas cuestiones

sobre la simetŕıa asociada a translaciones de los axiones y la cancelación de las anomaĺıas

de Freed-Witten.

El siguiente paso consistió en investigar la interrelación entre el álgebra de los flu-

jos y la dinámica de los moduli en los modelos orientifolios de tipo IIB invariantes bajo

transformaciones de T-dualidad, los cuales incluyen el flujo no geométrico Q. En parti-

cular, la existencia de extremos dS/Mkw. En este lenguaje de la teoŕıa IIB, llevamos a

cabo una clasificación completa de las álgebras doce-dimensionales permitidas y estudia-
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mos teoremas de imposibilidad, formulados en el lenguaje de la teoŕıa IIA, relacionados

con la existencia de extremos dS/Mkw. Fuimos capaces de combinar resultados sobre

álgebras y teoremas de imposibilidad gracias a una correspondencia entre las fuentes de

enerǵıa potencial en las teoŕıas IIB y IIA, lo que significó un procedimiento sistemático

para identificar modelos viables fenomenológicamente en los que pudieran existir extremos

dS/Mkw. Presentamos una clasificación completa de las álgebras permitidas aśı como de

la viabilidad de sus superpotenciales caracteŕısticos a la hora de producir vaćıos total-

mente estables. Además, los modelos más prometedores para este propósito resultaron ser

aquéllos que también involucran flujos no geométricos cuando se formulan en el lenguaje

de la teoŕıa IIA. Llegados a este punto, el objetivo era llevar a cabo una búsqueda exhaus-

tiva de mı́nimos del potencial escalar para los modelos que sobreviv́ıan a los teoremas de

imposibilidad.

Es importante resaltar que la búsqueda de vaćıos viables fenomenológicamente en el

contexto de Teoŕıa de Cuerdas no resulta eficiente si se plantea como una exploración de

mı́nimos de un potencial polinómico de order alto mediante la fuerza bruta. Hemos visto

que combinar piezas aparentemente desconectadas, tales como la clasificación de álgebras

de flujos en la teoŕıa IIB y los teoremas de imposibilidad relacionados con la existencia de

vaćıos Mkw/dS en la teoŕıa IIA, nos da la clave para llevar a cabo una identificación sis-

temática de los modelos interesantes. Esto descartó casi la mitad de los modelos posibles

y simplificó los restantes.

Tras reducir notablemente el conjunto de modelos interesantes, llevamos a cabo un

análisis sistemático y completo de los extremos Mkw de sus potenciales escalares. Encon-

tramos que únicamente los modelos de supergravedad construidos sobre una reducción del

campo B basada en la Q-álgebra so(3, 1) dan lugar a mı́nimos Minkowski con todos los

moduli estabilizados. Estas soluciones se pueden deformar continuamente para producir

vaćıos de Sitter o anti de Sitter mediante una variación pequeña de los parámetros rele-

vantes. Supersimetŕıa se rompe espontáneamente a una escala de enerǵıas muy alta (para

flujos de orden uno) debido al valor esperado en el vaćıo de todos los moduli. En nuestra

búsqueda sistemática de vaćıos encontramos que todas las reducciones del campo B, ex-

cepto la basada en la Q-álgebra nil, dan lugar a modelos de supergravedad que albergan

extremos Minkowski con todas las direcciones, a excepción de una, estabilizadas. Estas

soluciones taquiónicas siguen un patrón espećıfico ya que siempre interpolan entre puntos

singulares del espacio de parámetros en los que uno o varios de los moduli van a cero o a

infinito. También presentamos una descomposición del potencial escalar en sus diferentes

contribuciones interpretadas en el lenguaje de la teoŕıa IIA con la intención de comparar

nuestros resultados con los ejemplos propuestos en el contexto de los teoremas de imposi-

bilidad. De esta manera pudimos ver cómo los modelos de supergravedad que dan lugar

a vaćıos Minkowski tienen contribuciones al potencial escalar que vienen necesariamente

de flujos no geométricos.
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Después de estudiar los modelos orientifolios invariantes bajo transformaciones de

T-dualidad, dimos un paso adelante e investigamos cómo extenderlos para incluir un in-

grediente nuevo: un flujo no-geométrico P el cual aparece al considerar también la in-

variancia de los modelos efectivos de la teoŕıa IIB bajo transformaciones de S-dualidad.

Trabajando sobre nuestros resultados anteriores logramos implementar el flujo P como

deformaciones de la Q-álgebra mediante un elemento de su segunda clase de cohomoloǵıa.

De esta manera, las nuevas identidades de Jacobi que involucran el flujo no geométrico

P se reinterpretan como condiciones de integrabilidad y de cohomoloǵıa sobre la defor-

mación. Para satisfacer las condiciones de integrabilidad, el flujo P ha de definir una

P -álgebra seis-dimensional compatible con las simetŕıas del orbifolio de forma análoga a

como ocurŕıa con la Q-álgebra. A pesar de que ambas álgebras se pod́ıan elegir de manera

independiente, la forma en la cual se embeb́ıan dentro de los flujos Q y P resultaban

restringidas por las condiciones de cohomoloǵıa.

Para obtener las distintas ramas de la solución a las condiciones de cohomoloǵıa tuvi-

mos que hacer uso extenso de técnicas de Geometŕıa Algebraica. Utilizando el programa

Singular obtuvimos las diferentes ramas de la solución y vimos que escoger una rama u

otra se tradućıa en diferentes alineamientos entre las ráıces de los polinomios inducidos por

los flujos no geométricos en el superpotencial efectivo. Las identidades de Jacobi restantes

asociadas al álgebra completa, las cuales también involucraban los flujos gauge (F̄3, H̄3),

daban lugar a un sistema de ecuaciones lineales sencillo. Esto nos permitió dividir las

configuraciones de los flujos no geométricos (Q,P ) en dos tipo a los que denominamos

tipos A y B. Las configuraciones de tipo B resultaron ser aquellas en las que era posible

generar un tadpole para la forma de R-R C ′8. Haciendo uso de estos métodos pudimos

estudiar de forma sistemática la estabilización de los moduli de la compactificación en

vaćıos supersimétricos. Presentamos una solución AdS4 supersimétrica sencilla con todos

los moduli estabilizados en la cual los flujos de fondo no generaban tadpoles. También

presentamos varias familias de vaćıos supersimétricos Minkowski debido a su importancia

desde un punto de vista fenomenológico e identificamos en nuestra construcción algunos

de los ejemplos existentes en la literatura. Finalmente discutimos estos modelos de su-

pergravedad invariantes bajo transformaciones de T-dualidad y S-dualidad en términos de

supergravedades gaugeadas N = 4 y apuntamos hacia el álgebra de flujos (eléctricos y

magnéticos) a la que daŕıan lugar.

Un aspecto destacable es que logramos conectar propiedades de los vaćıos de moduli

con el álgebra de los flujos de fondo que les subyace. Esto podŕıa ayudar a extender la

descripción de los flujos no geométricos más allá de la acción efectiva. Por el momento,

describir los fondos de flujos generalizados a nivel microscópico representa un problema

abierto en Teoŕıa de Cuerdas.
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En la recta final de la tesis, hemos explorado aspectos cosmológicos de la estabilización

de moduli en modelos de supergravedad de tipo IIB. En particular, hemos analizado pro-

puestas sencillas que consideran la estabilización de moduli como semilla para generar

inflación. Comenzamos estudiando en detalle el escenario más sencillo que incorpora un

condensado de gauginos con grupo gauge SU(N) asociado a un conjunto de D7-branas coin-

cidentes y una contribución de Fayet-Iliopoulos a la parte D del potencial escalar debida

a un factor U(1) anómalo que genéricamente aparece en estos modelos. En este escenario

se forman mesones M compuestos de condensados de s-quarks y aparece un término no

perturbativo que involucra el modulus de Kähler T en el superpotencial. Hemos estudiado

la dinámica de este sistema acoplado y hemos concluido que inflación modular guiada por

los campos M o T no tiene lugar en estos modelos. Esto nos llevó a estudiar la mı́nima

extensión del escenario: incluir un campo neutro χ con autointeracción. El modelo resul-

tante incorporaba inflación topológica (eterna) guiada por el campo χ, estabilización en

un vaćıo Minkowski no supersimétrico y se ajustaba a todas las medidas experimentales

realizadas por WMAP. A continuación investigamos la posibilidad de generar inflación en

modelos con flujos generalizados. Esta opción se antoja complicada ya que los modelos

parećıan sufrir un problema η crónico cuando se trataba de implementar inflación, en la

aproximación de rodar lento, basada en el proceso de estabilización de los moduli.

No obstante, somos optimistas en el reto que supone conectar las cuerdas con la f́ısica

de bajas enerǵıas en un futuro próximo gracias al esfuerzo conjunto en F́ısica Teórica y

Experimental.
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Miguelito, Nuri, Pilar y a todos aquéllos con los que he compartido v́ıdeos absurdos de

Youtube y algún que otro SU(2) en el despacho: Bryan, Javi, Roberto,... Agradecer a

mis compis de piso durante estos años en Madrid por much́ısimos buenos ratos y a mis
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el Groovie: Carmalio, Dani, Florián, Srta. Ivars, Luisito, Vital, Yaisa,... También a mis

amigos de Badajoz y de Villanueva por recordarme cada vez que voy que se puede vivir

perfectamente sin agua.

Y como la ciencia tiene una parte prosaica que ocupa el 90% del tiempo, uno siempre
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Appendix A

Massless Spectrum of Type II

Superstrings

In this appendix we compute the supergravity massless spectrum of type II superstrings

freely moving1 in a ten-dimensional Minkowski spacetime M1,9. As a propagating one-

dimensional object, the embedding of a string into a ten-dimensional Minkowski spacetime

M1,9 is encoded in the bosonic fields XM (σα) with M = 0, . . . , 9 and α = 0, 1. The

coordinate σ0 ≡ τ is the worldsheet time coordinate whereas σ1 ≡ σ denotes the coordinate

along the string 0 ≤ σ < π. Furthermore, because of type II superstrings are closed strings,

these bosonic fields will satisfy the closed-string boundary conditions

XM (τ, σ + π) = XM (τ, σ) , (A.2)

Introducing the so-called light-cone spacetime coordinates, i.e., transverse coordinates

Xi = Xi with i = 1, . . . , 8 and null coordinates
√

2X± =
(
X0 ±X9

)
, and fixing the light-

cone gauge2, makes possible to eliminate the string excitations along the null coordinates

X±. In this gauge the theory will describe excitations along the transverse coordinates

Xi. These coordinates, labelled by the index i, transform as a vector 8v under the SO(8)

transverse group of rotations.

In the Green-Schwarz (GS) formalism in the light-cone gauge [1], the action of a type

II superstring propagating in a flat background geometry is given by

Sl.c = − 1

4πα′

∫
d2σ ∂αX

i ∂αXi +
i

π

∫
d2σ

(
Sa ∂+S

a + S̃a (ȧ) ∂−S̃
a (ȧ)

)
, (A.3)

1For a freely moving open/closed string, a flat 2d worldsheet metric

hαβ = ηαβ =

(
−1 0

0 1

)
, (A.1)

can be chosen for the worldsheet topology.
2This gauge turns out with the advantage that all states in the spectrum will be physical states.
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where ∂± ≡ 1
2(∂τ ± ∂σ) and the parameter α′ relates to the string length ls as

l2s = 2α′ . (A.4)

This GS formalism is supersymmetric in ten-dimensional Minkowski spacetime: the above

worldsheet action of eq.(A.3) involves not only the Xi fields describing bosonic string

excitations along the transverse spacial coordinates, but also fermionic ones Sa (right-

moving) and S̃a (ȧ) (left-moving) with either the same (IIB superstring) or opposite (IIA

superstring) chirality in eight dimensions. The index a refers to transforming in the spino-

rial representation 8s of SO(8), while that of ȧ refers to transforming in its conjugate

representation 8c of SO(8).

After quantising this free field theory imposing periodic boundary conditions in both

bosonic and fermionic worldsheet fields, they have the mode expansion of

Xi
R =

xi

2
+
pi

2
σ− +

i

2

∑
n6=0

1

n
αin e

−i2nσ− , Sa =

∞∑
−∞

San e
−i2nσ− ,

Xi
L =

xi

2
+
pi

2
σ+ +

i

2

∑
n6=0

1

n
α̃in e

−i2nσ+
, S̃a (ȧ) =

∞∑
−∞

S̃a (ȧ)
n e−i2nσ

+
,

(A.5)

where σ± = τ ± σ and we have set α′ = 1
2 . We have also the splitting Xi = Xi

R + Xi
L

for the bosonic fields into right-moving (R) and left-moving (L) parts respectively. The

mass-shell condition is given by

α′M2 = 2 (N + Ñ) , (A.6)

with N ≡
∞∑
n=1

αi−nα
i
n + nSa−nS

a
n and Ñ ≡

∞∑
n=1

α̃i−nα̃
i
n + n S̃

a (ȧ)
−n S̃a (ȧ)

n accounting for the

right- and left-moving oscillator excitations, respectively.

The massless states in the spectrum of type II superstrings will be then given by

the tensor product of the right-moving Sa0 and left-moving fermionic zero modes S̃
a (ȧ)
0

since they commute with the mass operator of eq.(A.6). Since both sectors can be

treated analogously, let us describe the right-moving one generated by Sa0 . The com-

mon fermionic relations
{
Sa0 , S

b
0

}
= δab can be expressed in terms of fermionic oscillators√

2 bm =
(
S2m−1

0 + i S2m
0

)
now satisfying{

bm, b
†
n

}
= δmn , {bm, bn } =

{
b†m, b

†
n

}
= 0 , where m = 1, . . . , 4 . (A.7)

This becomes equivalent to fix an SO(8) ⊃ SU(4) × U(1) embedding of the transverse

rotational symmetry. Under this symmetry, the {bm} transform in the fundamental rep-

resentation 4 of SO(4) with 1
2 units of U(1) charge, i.e. 4 (1

2), whereas
{
b†m
}

transform in

the conjugate representation.
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Different states are then built by successively applying creation operators
{
b†m
}

upon

the vacuum |0〉 state which is annihilated by any of the {bm} operators. They form a 16-

dimensional representation of SU(4) × U(1) in which we can distinguish between bosonic

states with an even number of creation operators

state SU(4)×U(1)

|0〉 1 (1)

b†m b†n |0〉 6 (0)

b†m b†n b
†
p b
†
q |0〉 1 (−1)

⇒ Neveu-Schwarz sector , (A.8)

and fermionic states having an odd number of them

state SU(4)×U(1)

b†m |0〉 4̄ ( 1
2 )

b†m b†n b
†
p |0〉 4 (− 1

2 )

⇒ Ramond sector . (A.9)

In the Neveu-Schwarz-Ramond formalism, the former states come from the Neveu-

Schwarz (NS) sector while the latter come from the Ramond (R) sector. Furthermore,

because of the decomposition under SU(4) × U(1) of the 8v, 8s and 8c representations

8v = 1 (1) + 6 (0) + 1 (−1)

8s = 4 (1
2) + 4̄ (−1

2)

8c = 4 (−1
2) + 4̄ (1

2) ,

(A.10)

it becomes explicit from (A.8) and (A.9) that states in the NS sector transform as a vector

8v while those in the R sector transform in the 8c spinorial representation. Then, the

states in the right-moving sector furnishes a (8v ⊕ 8c) representation of SO(8). If we had

started with the type IIA left-moving sector generated by S̃ȧ, we would have obtained

the same vector representation 8v for the states in the NS sector whereas those in the R

sector would transform in the 8s spinorial representation. Hence furnishing this time a

(8v ⊕ 8s) representation of SO(8).

The massless ground states for type II superstrings come then from combining the

right-moving and left-moving sectors, i.e. 16× 16 = 256 states,

IIB : (8v ⊕ 8c)⊗ (8v ⊕ 8c) = ( |i〉 ⊕ |ȧ〉 )⊗ ( |j〉 ⊕ ˙|b〉 )

IIA : (8v ⊕ 8c)⊗ (8v ⊕ 8s) = ( |i〉 ⊕ |ȧ〉 )⊗ ( |j〉 ⊕ |b〉 )
(A.11)

giving rise to bosonic fields in the NS-NS and R-R sectors together with fermionic fields

in the NS-R and R-NS ones.

Bosonic fields

The 64 bosonic states |i〉 ⊗ |j〉 of the spectrum coming from the NS-NS sector are the

same in both IIB and IIA superstrings, hence becoming a universal type II bosonic sector.
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Because of the decomposition

NS-NS sector : (8v ⊗ 8v) = 35v ⊕ 28v ⊕ 1 → g ⊕ B2 ⊕ ϕ , (A.12)

this sector can be described in terms of a symmetric traceless, antisymmetric and scalar

tensors representing the graviton g, the 2-form B2 and the scalar dilaton φ fields, respec-

tively.

In contrast, the 64 bosonic states coming from the R-R sector are no longer the same

for the IIB and IIA superstrings. In the case of the type IIB theory, they correspond to

states |ȧ〉 ⊗ ˙|b〉 built from the tensor product of two spinors of the same chirality. This

tensor product has the decomposition of

IIB R-R sector : (8c ⊗ 8c) = 35c ⊕ 28c ⊕ 1 → C4 ⊕ C2 ⊕ C0 , (A.13)

representing a fourth-rank antisymmetric self-dual tensor form C4, a 2-form C2 and a scalar

C0 respectively. In the type IIA theory, R-R states |ȧ〉⊗ |b〉 come from the tensor product

of two spinors with opposite chiralities. This time, the tensor product decomposition reads

IIA R-R sector : (8c ⊗ 8s) = 56v ⊕ 8v → C3 ⊕ C1 , (A.14)

hence describing a 3-form C3 and a 1-form C1 respectively. The type IIA particle con-

tent, unlike that of the IIB theory, is also obtained by dimensional reduction of d = 11

supergravity on a circle [2].

Fermionic fields

Fermions in the particle spectrum of type II superstrings arise from the NS-R and R-

NS sectors. These 128 states crucially depend on whether right-moving and left-moving

supermultiplets have the same chirality or opposite ones. For the chiral type IIB theory,

fermionic states |i〉 ⊗ |ȧ〉 and |ȧ〉 ⊗ |i〉 stem from the decompositions

(8v ⊗ 8c) = 8s ⊕ 56s → χ1 ⊕ ψ1

IIB :

(8c ⊗ 8v) = 8s ⊕ 56s → χ2 ⊕ ψ2 ,

(A.15)

resulting in two spin-1
2 fermions χ’s of the same chirality together with two gravitinos ψ’s

(spin-3
2 fermions) also with the same chirality. In the case of the non-chiral type IIA theory,

the spectrum of fermionic states |i〉 ⊗ |a〉 and |ȧ〉 ⊗ |i〉 coming from the decomposition

(8v ⊗ 8s) = 8c ⊕ 56c → χ1 ⊕ ψ1

IIA :

(8c ⊗ 8v) = 8s ⊕ 56s → χ2 ⊕ ψ2 ,

(A.16)

consists of two spin-1
2 fermions χ’s of opposite chiralities and two gravitinos ψ’s (spin-3

2

fermions) also with opposite chiralities.

The above massless spectra of type IIB and IIA superstring theories perfectly fit to the

field content of the chiral and non-chiral N = 2, d = 10 supergravities, respectively [213].



Appendix B

Parameterised R-R fluxes in

T-dual flux models

In this appendix we give the explicit expressions for the original R-R fluxes aA in terms

of the axionic shifts (ξs, ξt) and the tadpole parameters (ξ3, ξ7) or (λ2, λ3) , depending

on the Q-algebra. For the semidirect sum su(2)⊕Z3 u(1)3 ∼ iso(3) and the nilpotent nil

algebras there is another auxiliary variable λ1 as explained in section 3.2.1. In all cases

there is a non-singular rotation matrix from the aA’s to the new variables.

In principle the ξ’s and λ’s are just real constants but the resulting aA fluxes must

be integers. The exact nature of these parameters can be elucidated starting with the

non-geometric Q-fluxes of each gauge subalgebra ggauge. For example, following the dis-

cussion at the end of section 3.1.1.1, for the su(2)2 case when ε1 ε2 = 0 it transpires that

(ξ3, ξ7, ξs, ξt) ∈ Q.

There is a universal structure in the R-R fluxes that is worth noticing. For all Q-

algebras the dependence on the axionic shift parameters (ξs, ξt) is of the form

a0 = −b0 ξs + 3 c0 ξt + · · ·

a1 = −b1 ξs − (2 c1 − c̃1) ξt + · · ·

a2 = −b2 ξs − (2 c2 − c̃2) ξt + · · ·

a3 = −b3 ξs + 3 c3 ξt + · · ·

(B.1)

where · · · stands for extra terms depending on the tadpole parameters. This structure

reflects the invariance of the theory under real shifts S → S − ξs and T → T − ξt of the

linear moduli fields entering the T-duality invariant superpotential in (2.31).

Next we present the the full expression of the original R-R fluxes aA in terms of the

new flux variables for each of the Q-algebras.
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B.1 The su(2)2 case

a0 = δ3(ε1ξ3 + ε2ξs) + β3(ε1ξs − ε2ξ3) + 3δβ2(ξt − ξ7) + 3βδ2(ξt + ξ7) ,

a1 = −γδ2(ε1ξ3 + ε2ξs)− αβ2(ε1ξs − ε2ξ3)− β(βγ + 2αδ)(ξt − ξ7)− δ(αδ + 2βγ)(ξt + ξ7) ,

a2 = δγ2(ε1ξ3 + ε2ξs) + βα2(ε1ξs − ε2ξ3) + α(αδ + 2βγ)(ξt − ξ7) + γ(βγ + 2αδ)(ξt + ξ7) ,

a3 = −γ3(ε1ξ3 + ε2ξs)− α3(ε1ξs − ε2ξ3)− 3γα2(ξt − ξ7)− 3αγ2(ξt + ξ7) .

B.2 The so(3, 1) case

a0 = δ(δ2 − 3β2)(ε1ξ3 + ε2ξs) + β(β2 − 3δ2)(ε1ξs − ε2ξ3)− 3(β2 + δ2)(βξt − δξ7) ,

a1 = (γβ2 + 2αβδ − γδ2)(ε1ξ3 + ε2ξs) + (αδ2 + 2βγδ − αβ2)(ε1ξs − ε2ξ3)

+ (β2 + δ2)(αξt − γξ7) + 2(αβ + γδ)(βξt − δξ7) ,

a2 = (δγ2 − 2αβγ − δα2)(ε1ξ3 + ε2ξs) + (βα2 − 2αγδ − βγ2)(ε1ξs − ε2ξ3)

− 2(αβ + γδ)(αξt − γξ7)− (α2 + γ2)(βξt − δξ7) ,

a3 = −γ(γ2 − 3α2)(ε1ξ3 + ε2ξs)− α(α2 − 3γ2)(ε1ξs − ε2ξ3) + 3(α2 + γ2)(αξt − γξ7) .

B.3 The su(2) + u(1)3 case

a0 = δ3(ε1ξ3 + ε2ξs) + β3(ε1ξs − ε2ξ3) + 3βδ2ξt − 3δβ2ξ7 ,

a1 = −γδ2(ε1ξ3 + ε2ξs)− αβ2(ε1ξs − ε2ξ3)− δ(αδ + 2βγ)ξt + β(βγ + 2αδ)ξ7 ,

a2 = δγ2(ε1ξ3 + ε2ξs) + βα2(ε1ξs − ε2ξ3) + γ(βγ + 2αδ)ξt − α(αδ + 2βγ)ξ7 ,

a3 = −γ3(ε1ξ3 + ε2ξs)− α3(ε1ξs − ε2ξ3)− 3αγ2ξt + 3γα2ξ7 .

B.4 The su(2)⊕Z3 u(1)3 case

a0 = δ3(ε2ξs + 3ξt) + βδ2(ε1ξs − 3ξt + 3λ1) + 3δβ2λ2 + β3λ3 ,

a1 = −γδ2(ε2ξs + 3ξt)− 1
3δ(αδ + 2βγ)(ε1ξs − 3ξt + 3λ1)− β(βγ + 2αδ)λ2 − αβ2λ3 ,

a2 = δγ2(ε2ξs + 3ξt) + 1
3γ(βγ + 2αδ)(ε1ξs − 3ξt + 3λ1) + α(αδ + 2βγ)λ2 + βα2λ3 ,

a3 = −γ3(ε2ξs + 3ξt)− αγ2(ε1ξs − 3ξt + 3λ1)− 3γα2λ2 − α3λ3 .

B.5 The nil case

a0 = δ3(ε2ξs + 3ξt) + γδ2(ε1ξs + 3λ1) + 3δγ2λ2 + γ3λ3 ,

a1 = −γδ2(ε2ξs + 3ξt) + 1
3δ(δ

2 − 2γ2)(ε1ξs + 3λ1)− γ(γ2 − 2δ2)λ2 + δγ2λ3 ,

a2 = δγ2(ε2ξs + 3ξt) + 1
3γ(γ2 − 2δ2)(ε1ξs + 3λ1) + δ(δ2 − 2γ2)λ2 + γδ2λ3 ,

a3 = −γ3(ε2ξs + 3ξt) + δγ2(ε1ξs + 3λ1)− 3γδ2λ2 + δ3λ3 .
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