Some aspects of

 new maximal supergravityAdolfo Guarino

Albert Einstein Center (ITP)

9 October 2013, Uppsala
Based on : arXiv:1209.3003, arXiv:1302.6057 with A. Borghese \& D. Roest arXiv:13XX.XXXX A.G in progress...

This talk is about the consequences of $\mathrm{U}(1)$-orientating a theory...

R-symmetry : U(1) yes or no?

R-symmetry : $\mathrm{U}(1)$ yes or no?

- Dimensional reduction of 10D SYM produces N=4 SYM

$$
\begin{array}{ll}
i=1, . ., 4 \quad L_{4 \mathrm{D}}= & -\frac{1}{2} F^{2}+i \bar{\lambda}_{i} \not D \lambda^{i}+\frac{1}{2}\left(D \phi_{i j}\right)^{2} \\
& -\frac{i}{2} g\left(f \phi^{i j} \bar{\lambda}_{i} \lambda_{j}+c . c\right) \\
& -\frac{1}{4} g^{2}\left(f \phi_{i j} \phi_{k l}\right)^{2}
\end{array}
$$

$$
\text { reduction }=\text { fermi masses }+ \text { scalar potential }
$$

R-symmetry : $\mathrm{U}(1)$ yes or no?

- Dimensional reduction of 10D SYM produces N=4 SYM

$$
L_{10 \mathrm{D}}=-\frac{1}{2} F^{2}+\frac{i}{2} \bar{\lambda} \not D \lambda \quad \begin{aligned}
& i, . ., 4 \quad L_{4 \mathrm{D}}= \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& -\frac{i}{2} g\left(f \phi^{i j} \bar{\lambda}_{i} \lambda_{j}+c . c\right) \\
& \hline
\end{aligned}
$$

> Reality condition on the 6 scalars :

```
reduction = fermi masses + scalar potential
```

$$
\phi_{i j}^{*}=\phi^{i j}=\frac{1}{2} \epsilon^{i j k l} \phi_{k l} \quad \text { R-symmetry group is } \mathrm{SU}(4) \text { and not } \mathrm{U}(4)!!
$$

R-symmetry : $\mathrm{U}(1)$ yes or no?

- Dimensional reduction of 10D SYM produces N=4 SYM

$$
L_{10 \mathrm{D}}=-\frac{1}{2} F^{2}+\frac{i}{2} \bar{\lambda} \not D \lambda \quad \begin{aligned}
& i, . ., 4 \quad L_{4 \mathrm{D}}= \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

> Reality condition on the 6 scalars :

```
reduction = fermi masses + scalar potential
```

$$
\phi_{i j}^{*}=\phi^{i j}=\frac{1}{2} \epsilon^{i j k l} \phi_{k l} \quad \text { R-symmetry group is SU(4) and not U(4) !! }
$$

[Cremmer \& Julia '78, ‘79]

- Analogous results for $\mathrm{N}=8$ gauged SUGRAs from M/Type II reductions with fluxes
> Reality condition on the 70 scalars :

$$
\begin{gathered}
\phi_{I J K L}^{*}=\phi^{I J K L}=\frac{1}{24} \epsilon^{I J K L M N P Q} \phi_{M N P Q} \quad \text { R-symmetry group is } \mathrm{SU}(8) \text { and not } \mathrm{U}(8)!! \\
I=1, \ldots, 8
\end{gathered}
$$

$$
\left[f \leftrightarrow H_{3}, F_{p}, \omega, \ldots\right]
$$

An extra $\mathrm{U}(1)$ in $\mathrm{N}=8$ gauged supergravity

Gauge fields: The theory contains $56=28$ (electric) +28 (magnetic) vectors spanning a 28-dimensional gauge symmetry group $G \subset E_{7}$

An extra $\mathrm{U}(1)$ in $\mathrm{N}=8$ gauged supergravity

Gauge fields : The theory contains $56=28$ (electric) +28 (magnetic) vectors spanning a 28-dimensional gauge symmetry group $G \subset E_{7}$
[Dall' Agata, Inverso \& Trigiante '12]

- Recently, an extra $U(1)$ rotation outside the R-symmetry group $S U(8)$ has been identified and used to orientate G inside the $\mathrm{Sp}(56)$ group of electromagnetic transf.

$>$ Therefore : $\omega=0$ (electric) , $\omega=\frac{\pi}{2}$ (magnetic) and $0<\omega<\frac{\pi}{2}$ (dyonic)

There is a one-parameter family of new maximal supergravities !!
...so what are the consequences of this $U(1)$??

In this talk we will :

1) use the embedding-tensor formalism to compute the ω-dependent scalar potential and analyse its critical points

[de Wit, Samtleben \& Trigiante '07]
[Dall' Agata, Inverso \& Trigiante '12]
[Borghese, A.G , \& Roest '13]

2) compute fermion mass terms to track singular solutions
3) build domain-wall solutions

An ω-family of new maximal supergravities : scalar potential \& critical points

Gaugings, embedding tensor \& scalar potential

Gauging procedure : Part of the global E7 symmetry group is promoted to a local symmetry group G (gauging)

Gaugings, embedding tensor \& scalar potential

Gauging procedure : Part of the global E_{7} symmetry group is promoted to a local symmetry group G (gauging)

Embedding tensor : It is a "selector" specifying which generators of E_{7} become gauge symmetries G and then will have an associated gauge field

$$
\begin{aligned}
& \quad A_{\mu}^{M}=\Theta^{M}{ }_{\alpha} t^{\alpha} \leadsto\left[A^{M}, A^{N}\right]=X^{M N}{ }_{P} A^{P} \quad \text { with } \quad X^{M N}{ }_{P}=\Theta^{M}{ }_{\alpha}\left[t^{\alpha}\right]^{N}{ }_{P} \\
& {[M=1, \ldots, 56]} \\
& {[\alpha=1, \ldots, 133]}
\end{aligned}
$$

Gaugings, embedding tensor \& scalar potential

Gauging procedure : Part of the global E7 symmetry group is promoted to a local symmetry group G (gauging)

Embedding tensor : It is a "selector" specifying which generators of E_{7} become gauge symmetries G and then will have an associated gauge field

$$
A_{\mu}^{M}=\Theta^{M}{ }_{\alpha} t^{\alpha} \quad \square\left[A^{M}, A^{N}\right]=X^{M N}{ }_{P} A^{P} \quad \text { with } \quad X^{M N}{ }_{P}=\Theta^{M}{ }_{\alpha}\left[t^{\alpha}\right]^{N}{ }_{P}
$$

$$
[M=1, \ldots, 56]
$$

$$
[\alpha=1, \ldots, 133]
$$

Scalar potential : Straightforward once the embbeding tensor $\Theta^{M}{ }_{\alpha}(\omega)$ is known

$$
V=\frac{1}{672} X_{M N P} X_{Q R S}\left(M^{M Q} M^{N R} M^{P S}+7 M^{M Q} \Omega^{N R} \Omega^{P S}\right)
$$

where $M(\phi) \in \frac{E_{7}}{S U(8)}$ contains the 70 scalar fields of the theory

Truncating the scalar sector: 70 scalars are intractable

- Truncate most of the 70 scalars and look for critical points of $V(\phi)$ with large residual symmetry groups $G_{0} \subset G$

Some relevant truncations :

- the $G_{0}=G_{2}$ invariant sector

- the $\mathrm{G}_{0}=\mathrm{D}_{4} \times \mathrm{SO}(4)$ invariant sector $\quad \mathrm{N}=0,2$ real scalar

Simple and interesting!!

- the $G_{0}=\operatorname{SU}(3)$ invariant sector

Example 1: G_{2} invariant sector of $\mathrm{G}=\mathrm{SO}(8)$

$\omega=\frac{\pi}{4}$

critical point	residual sym G_{0}	SUSY	Stability
\bigcirc	$S O(8)$	$\mathcal{N}=8$	\checkmark
\square	$S O(7)_{-}$	$\mathcal{N}=0$	\times
\diamond	$S O(7)_{+}$	$\mathcal{N}=0$	\times
Δ	G_{2}	$\mathcal{N}=1$	\checkmark
\diamond	G_{2}	$\mathcal{N}=0$	\checkmark

Example 1: G_{2} invariant sector of $\mathrm{G}=\mathrm{SO}(8)$

$\omega=\frac{\pi}{4}$

> Mass spectra insensitive to ω
$>\frac{\pi}{4}$-periodicity with transmutation of $S O(7)_{ \pm}$
$>$ Runaway of points at $\omega=n \frac{\pi}{4}$

critical point	residual sym G_{0}	SUSY	Stability
\diamond	$S O(8)$	$\mathcal{N}=8$	\checkmark
\square	$S O(7)_{-}$	$\mathcal{N}=0$	\times
\diamond	$S O(7)_{+}$	$\mathcal{N}=0$	\times
Δ	G_{2}	$\mathcal{N}=1$	\checkmark
\diamond	G_{2}	$\mathcal{N}=0$	\checkmark

Example 2: $\mathrm{D}_{4} \times \mathrm{SO}(4)$ invariant sectors of $\mathrm{G}=\mathrm{SO}(8)$

- Three embeddings $S O(4)_{v, s, c}$ related by Triality :

Example 2: $\mathrm{D}_{4} \times \mathrm{SO}(4)$ invariant sectors of $\mathrm{G}=\mathrm{SO}(8)$

- Three embeddings $S O(4)_{v, s, c}$ related by Triality :
i) the vectorial embedding : $8 \mathrm{v}=(1,1)+(3,1)+(1,1)+(1,3)$

$$
\omega=0
$$

critical point	residual sym G_{0}	SUSY	Stability
\circ	$S O(8)$	$\mathcal{N}=8$	\checkmark
	$S O(4)_{v}$	$\mathcal{N}=0$	\checkmark

Example 2: $\mathrm{D}_{4} \times \mathrm{SO}(4)$ invariant sectors of $\mathrm{G}=\mathrm{SO}(8)$

- Three embeddings $S O(4)_{v, s, c}$ related by Triality :
i) the vectorial embedding : $8_{\mathrm{v}}=(1,1)+(3,1)+(1,1)+(1,3)$

critical point	residual sym G_{0}	SUSY	Stability
\circ	$S O(8)$	$\mathcal{N}=8$	\checkmark
	$S O(4)_{v}$	$\mathcal{N}=0$	\checkmark

[Warner '84]
[Fischbacher, Pilch \& Warner '10]
ii) spinorial (upper) \& conjugate (lower) embeddings : $8_{\mathrm{s} / \mathrm{c}}=(1,1)+(3,1)+(1,1)+(1,3)$
$\omega=0$

critical point	residual sym G_{0}	SUSY	Stability
\circ	$S O(8)$	$\mathcal{N}=8$	\checkmark
\sim	$S O(4)_{s}$	$\mathcal{N}=0$	\times
\sim	$S O(4)_{c}$	$\mathcal{N}=0$	\times

ii) spinorial (upper) \& conjugate (lower) embeddings : $8_{s / c}=(1,1)+(3,1)+(1,1)+(1,3)$

critical point	residual sym G_{0}	SUSY	Stability
\circ	$S O(8)$	$\mathcal{N}=8$	\checkmark
	$S O(4)_{s}$	$\mathcal{N}=0$	\times
	$S O(4)_{c}$	$\mathcal{N}=0$	\times

Runaway... but where to?

Runaway... but where to?

Limitation : If looking at the scalar potential, then the critical points are prisoners of the theory (gauging)

Runaway... but where to?

Limitation : If looking at the scalar potential, then the critical points are prisoners of the theory (gauging)

Hope : "Sit on top" of a critical point and travel with it to see what happens

Runaway... but where to?

Limitation : If looking at the scalar potential, then the critical points are prisoners of the theory (gauging)

Hope : "Sit on top" of a critical point and travel with it to see what happens...

Answer : It wants to migrate to a different theory (gauging) \longrightarrow the fermion masses can be used to monitoring its story !!

Fermion mass terms as solution trackers

Tracking solutions using fermion masses

Going to the origin : If a critical point is found at $\phi=\phi_{0}$ with a residual symmetry G_{0}, it can always be brought to $\phi_{0}=0$ via an E_{7}-transformation
[Dibitetto, A.G \& Roest'11]
[Dall'Agata \& Inverso '11]
[Kodama \& Nozawa '12]

Applicability : After going to the origin, the quantities in the theory, e.g. fermi masses, will adopt a form compatible with G_{0}
[Borghese, A.G \& Roest '12, '13]
$\mathcal{L}_{\text {fermi }}=\frac{\sqrt{2}}{2} \mathcal{A}_{\mathcal{I J}} \bar{\psi}_{\mu}^{\mathcal{I}} \gamma^{\mu \nu} \psi_{\nu}^{\mathcal{J}}+\frac{1}{6} \mathcal{A}_{\mathcal{I}} \mathcal{J K L}^{\mathcal{L}} \bar{\mu}^{\mathcal{I}} \gamma^{\mu} \chi_{\mathcal{J K L}}+\mathcal{A}^{\mathcal{I J K}, \mathcal{L M N}} \bar{\chi}_{\mathcal{I J K}} \chi_{\mathcal{L M N}}$
gravitino-dilatino
mass
dilatino-dilatino
mass (dependent)

Example 1: Critical point with $\mathrm{G}_{0}=\mathrm{G}_{2}(\diamond)$

Example 1 : Critical point with $\mathrm{G}_{0}=\mathrm{G}_{2}(\diamond)$

- Pattern of fermi masses :

i) gravitino-gravitino mass $\mathcal{A}^{I J}\left(\phi_{0}\right) \quad \Rightarrow \quad \mathcal{A}^{11}=\alpha_{1}, \mathcal{A}^{m n}=\alpha_{2} \delta^{m n}$
ii) gravitino-dilatino mass $\mathcal{A}_{I}{ }^{J K L}\left(\phi_{0}\right) \quad \Rightarrow \mathcal{A}_{1}{ }^{m n p}=\beta_{1} \kappa^{m n p}, \mathcal{A}_{m}{ }^{1 n p}=\beta_{2} \kappa_{m}{ }^{n p}$
$>$ Four parameters $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \mathbb{C}$

Example 1 : Critical point with $\mathrm{G}_{0}=\mathrm{G}_{2}(\diamond)$

- Pattern of fermi masses :

i) gravitino-gravitino mass $\mathcal{A}^{I J}\left(\phi_{0}\right) \quad \Rightarrow \quad \mathcal{A}^{11}=\alpha_{1}, \mathcal{A}^{m n}=\alpha_{2} \delta^{m n}$
ii) gravitino-dilatino mass $\mathcal{A}_{I}{ }^{J K L}\left(\phi_{0}\right) \quad \Rightarrow \mathcal{A}_{1}{ }^{m n p}=\beta_{1} \kappa^{m n p}, \mathcal{A}_{m}{ }^{1 n p}=\beta_{2} \kappa_{m}{ }^{n p}$
$>$ Four parameters $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \mathbb{C}$

Solving QC \& EOM : One-parameter family of theories compatible with $G_{0}=G_{2}$

$$
\alpha_{1}(\theta), \alpha_{2}(\theta), \beta_{1}(\theta), \beta_{2}(\theta)
$$

A boring excursion through theories (gaugings)

- The whole story of a solution preserving $G_{0}=G_{2}$ can be tracked

A boring excursion through theories (gaugings)

- The whole story of a solution preserving $G_{0}=G_{2}$ can be tracked
i) $0 \leq \theta<\frac{3 \pi}{50} \rightarrow G=S O(8)$
[stable AdS4 solutions]

A boring excursion through theories (gaugings)

- The whole story of a solution preserving $G_{0}=G_{2}$ can be tracked
ii) $\theta=\frac{3 \pi}{50} \rightarrow G=I S O(7)$
[stable AdS4 solutions]

A boring excursion through theories (gaugings)

- The whole story of a solution preserving $G_{0}=G_{2}$ can be tracked
iii) $\frac{3 \pi}{50}<\theta<\frac{19 \pi}{100} \rightarrow G=S O(7,1)$
[stable AdS_{4} solutions]

$\omega \in\left[0, \frac{\pi}{4}\right]$

A boring excursion through theories (gaugings)

- The whole story of a solution preserving $G_{0}=G_{2}$ can be tracked
iv) $\theta=\frac{19 \pi}{100} \rightarrow G=I S O(7)$
[stable AdS4 solutions]

A boring excursion through theories (gaugings)

- The whole story of a solution preserving $G_{0}=G_{2}$ can be tracked
v) $\frac{19 \pi}{100}<\theta \leq \frac{\pi}{4} \rightarrow G=S O(8)$
[stable AdS4 solutions]

Example 2 : Critical point with $\mathrm{G}_{0}=\mathrm{D}_{4} \times \mathrm{SO}(4)_{\mathrm{s}}(\nleftarrow)$

Example 2: Critical point with $\mathrm{G}_{0}=\mathrm{D}_{4} \times \mathrm{SO}(4)_{\mathrm{s}}$ (*)

- Pattern of fermi masses :

i) gravitino-gravitino mass $\mathcal{A}^{I J}\left(\phi_{0}\right) \quad \Rightarrow \quad \mathcal{A}^{i j}=\alpha \delta^{i j} \quad, \quad \mathcal{A}^{\hat{i} \hat{j}}=\alpha \delta^{\hat{i} \hat{j}}$
ii) gravitino-dilatino mass $\mathcal{A}_{I}{ }^{J K L}\left(\phi_{0}\right) \Rightarrow \mathcal{A}_{i}{ }^{j k l}=\beta \epsilon_{i}{ }^{j k l}, \mathcal{A}_{i}{ }^{\hat{j} \hat{k} l}=\delta \epsilon_{i}{ }^{\hat{j} \hat{k} l}+\gamma \delta_{i} \delta^{[\hat{j}} \delta^{\hat{k}] l}$ $\mathcal{A}_{\hat{i}}^{\hat{j} \hat{k} \hat{l}}=-\beta \epsilon_{\hat{i}}{ }^{\hat{j} \hat{l} \hat{l}}, \mathcal{A}_{\hat{i}}{ }^{j k \hat{l}}=-\delta \epsilon_{\hat{i}}{ }^{j k \hat{l}}+\gamma \delta_{\hat{i}}^{[j} \delta^{k] \hat{l}}$
$>$ Four parameters $\alpha, \beta, \gamma, \delta \in \mathbb{C}$

Example 2: Critical point with $\mathrm{G}_{0}=\mathrm{D}_{4} \times \mathrm{SO}(4)_{\mathrm{s}}$ (* ${ }_{\text {w }}$)

- Pattern of fermi masses :

$$
[I \rightarrow i \oplus \hat{i}]
$$

i) gravitino-gravitino mass $\mathcal{A}^{I J}\left(\phi_{0}\right) \quad \Rightarrow \quad \mathcal{A}^{i j}=\alpha \delta^{i j} \quad, \quad \mathcal{A}^{\hat{i} \hat{j}}=\alpha \delta^{\hat{i} \hat{j}}$
ii) gravitino-dilatino mass $\mathcal{A}_{I}^{J K L}\left(\phi_{0}\right) \Rightarrow \mathcal{A}_{i}{ }^{j k l}=\beta \epsilon_{i}{ }^{j k l}, \mathcal{A}_{i}{ }^{\hat{j} \hat{k} l}=\delta \epsilon_{i}{ }^{\hat{j} \hat{k} l}+\gamma \delta_{i}^{[\hat{j}} \delta^{\hat{k}] l}$ $\mathcal{A}_{\hat{i}}^{\hat{j} \hat{k} \hat{l}}=-\beta \epsilon_{\hat{i}}{ }^{\hat{j} \hat{l} \hat{l}}, \mathcal{A}_{\hat{i}}{ }^{j k \hat{l}}=-\delta \epsilon_{\hat{i}}{ }^{j k \hat{l}}+\gamma \delta_{\hat{i}}^{[j} \delta^{k] \hat{l}}$
$>$ Four parameters $\alpha, \beta, \gamma, \delta \in \mathbb{C}$

Solving QC \& EOM : One-parameter family of theories compatible with $G_{0}=S O(4)_{s}$

$$
\alpha(\theta), \beta(\theta), \gamma(\theta), \delta(\theta)
$$

A funny excursion through theories (gaugings)

- The whole story of a solution preserving $G_{0}=\mathrm{SO}(4)_{\mathrm{s}}$ can be tracked

A funny excursion through theories (gaugings)

- The whole story of a solution preserving $G_{0}=\mathrm{SO}(4)_{\mathrm{s}}$ can be tracked
i) $0 \leq \theta<\frac{\pi}{6} \quad \rightarrow \quad G=S O(8)$
[unstable AdS4 solutions]

A funny excursion through theories (gaugings)

- The whole story of a solution preserving $G_{0}=\mathrm{SO}(4)_{\mathrm{s}}$ can be tracked
ii) $\theta=\frac{\pi}{6} \rightarrow G=S O(2) \times S O(6) \ltimes T^{12}$
[unstable AdS_{4} solution]

A funny excursion through theories (gaugings)

- The whole story of a solution preserving $G_{0}=\mathrm{SO}(4)_{\mathrm{s}}$ can be tracked
iii) $\frac{\pi}{6}<\theta<\frac{\pi}{4} \rightarrow G=S O(6,2)$
[unstable AdS_{4} solutions]

$\omega \in\left[0, \frac{\pi}{4}\right]$

A funny excursion through theories (gaugings)

- The whole story of a solution preserving $G_{0}=\mathrm{SO}(4)_{\mathrm{s}}$ can be tracked
iv) $\theta=\frac{\pi}{4} \rightarrow G=S O(3,1)^{2} \ltimes T^{16}$
[Mkw solution with flat directions]

A funny excursion through theories (gaugings)

- The whole story of a solution preserving $G_{0}=\mathrm{SO}(4)_{\mathrm{s}}$ can be tracked
v) $\frac{\pi}{4}<\theta \leq \frac{\pi}{2} \rightarrow G=S O(4,4)$ [dS_{4} solutions with tachyon dilution]

$\omega \in\left[0, \frac{\pi}{4}\right]$

The $\operatorname{SU}(3)$ invariant sector \& Domain-walls

The $\operatorname{SU}(3)$ invariant sector

- R-symmetry branching : $\quad \mathbf{8} \rightarrow \mathbf{1}+\mathbf{1}+\mathbf{3}+\overline{\mathbf{3}} \quad \Rightarrow \mathcal{N}=2$ SUSY

$$
\text { gravitini : } \quad \psi_{\mu}^{I} \rightarrow \psi_{\mu}^{1}, \psi_{\mu}^{\hat{1}}, \psi_{\mu}^{a}, \psi_{\mu}^{\hat{a}}
$$

- Scalars fields : $\quad \mathbf{7 0} \rightarrow \mathbf{1}(\times 6)+$ non-singlets $\quad \rightarrow \quad 6$ real scalars
scalars :

$$
\begin{aligned}
& \varpi=\lambda e^{i \alpha} \\
& \varpi_{1}=\lambda^{\prime}\left(e^{i \phi} \cos \theta \cos \psi-e^{-i \phi} \sin \theta \sin \psi\right), \\
& \varpi_{2}=\lambda^{\prime}\left(e^{i \phi} \cos \theta \sin \psi+e^{-i \phi} \sin \theta \cos \psi\right),
\end{aligned}
$$

$$
\lambda, \alpha, \lambda^{\prime}, \phi, \theta, \psi
$$

- $\mathcal{N}=2$ supergravity coupled with 1 vector +1 hyper

$$
\mathcal{M}_{\text {scalar }}=\underbrace{\frac{\mathrm{SL}(2)}{\mathrm{SO}(2)}}_{(\lambda, \alpha)} \times \underbrace{\frac{\mathrm{SU}(2,1)}{\mathrm{SU}(2) \times \mathrm{U}(1)}}_{\left(\lambda^{\prime}, \phi, \theta, \psi\right)}
$$

Superpotentials $=$ mass terms for the two $\operatorname{SU(3)}$-singlet gravitini ψ_{μ}^{1} and $\psi_{\mu}^{\hat{1}}$

$$
W_{1}=e^{i \omega} \mathcal{A}_{+}^{11}+e^{-i \omega} \mathcal{A}_{-}^{11} \quad \text { or } \quad W_{\hat{1}}=e^{i \omega} \mathcal{A}_{+}^{\hat{1} \hat{1}}+e^{-i \omega} \mathcal{A}_{-}^{\hat{1} \hat{1}}
$$

Fermi mass terms:

$$
\begin{aligned}
& \mathcal{A}_{+}^{11}=\frac{3}{2} e^{i(2 \alpha+2 \phi)} \cosh (\lambda) \sinh ^{2}(\lambda) \sinh ^{2}\left(2 \lambda^{\prime}\right)+\cosh ^{3}(\lambda) f\left(\lambda^{\prime}, \phi\right) \\
& \mathcal{A}_{-}^{11}=\frac{3}{2} e^{i(\alpha+2 \phi)} \sinh (\lambda) \cosh ^{2}(\lambda) \sinh ^{2}\left(2 \lambda^{\prime}\right)+e^{3 i \alpha} \sinh ^{3}(\lambda) f\left(\lambda^{\prime}, \phi\right)
\end{aligned}
$$

where $f\left(\lambda^{\prime}, \phi\right)=\cosh ^{4}\left(\lambda^{\prime}\right)+e^{4 i \phi} \sinh ^{4}\left(\lambda^{\prime}\right)$ and with $\mathcal{A}_{ \pm}^{\hat{1} \hat{1}}$ obtained by $\phi \rightarrow-\phi$

Scalar potential: $\quad V\left(\lambda, \alpha, \lambda^{\prime}, \phi\right)=g^{2}\left[\frac{2}{3}\left|\partial_{\lambda} W\right|^{2}+\frac{1}{2}\left|\partial_{\lambda^{\prime}} W\right|^{2}-6|W|^{2}\right]$

$$
\begin{aligned}
& =g^{2}\left[\frac{2}{3}\left(\partial_{\lambda}|W|\right)^{2}+\frac{2}{3 \cosh ^{2}(\lambda) \sinh ^{2}(\lambda)}\left(\partial_{\alpha}|W|\right)^{2}\right. \\
& \left.+\quad \frac{1}{2}\left(\partial_{\lambda^{\prime}}|W|\right)^{2}+\frac{1}{2 \cosh ^{2}\left(\lambda^{\prime}\right) \sinh ^{2}\left(\lambda^{\prime}\right)}\left(\partial_{\phi}|W|\right)^{2}-6|W|^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& V\left(\lambda, \alpha, \lambda^{\prime}, \phi\right)= \\
& =\frac{g^{2}}{128\left(c^{2}+1\right)}\left[4 \left(\left(c^{2}+1\right) \cosh (6 \lambda) \sinh ^{2}\left(2 \lambda^{\prime}\right)\left(19 \cosh \left(4 \lambda^{\prime}\right)+21\right)\right.\right. \\
& -4 \sinh ^{2}(2 \lambda)\left(2 \sinh ^{2}(2 \lambda) \cos (4 \phi) \sinh ^{4}\left(2 \lambda^{\prime}\right)\left(\left(c^{2}-1\right) \cos (3 \alpha)-2 c \sin (3 \alpha)\right)\right. \\
& +\sinh ^{2}\left(2 \lambda^{\prime}\right)\left(3 (c ^ { 2 } - 1) \operatorname { c o s } (\alpha) \left(\cosh (4 \lambda)\left(3 \cosh \left(4 \lambda^{\prime}\right)+2 \cos (2 \phi)+3\right)\right.\right. \\
& \left.+\cosh \left(4 \lambda^{\prime}\right)-6 \cos (2 \phi)-7\right)+\sinh ^{2}(2 \lambda)\left(\cosh \left(4 \lambda^{\prime}\right)+3\right)\left(\left(c^{2}-1\right) \cos (3 \alpha)-2 c \sin (3 \alpha)\right) \\
& \left.+6 c \sin (\alpha)\left(\cosh \left(4 \lambda^{\prime}\right)-2(\cosh (4 \lambda)-3) \cos (2 \phi)-7\right)\right) \\
& \left.\left.+3 \sinh ^{2}\left(4 \lambda^{\prime}\right)\left(3 c \sin (\alpha) \cosh (4 \lambda)-\left(c^{2}+1\right) \cos (2 \alpha) \sinh (4 \lambda) \cos (2 \phi)\right)\right)\right) \\
& +32\left(c^{2}+1\right) \cosh (2 \lambda) \cos (4 \phi) \sinh ^{4}\left(2 \lambda^{\prime}\right) \\
& +3\left(c^{2}+1\right) \cosh (2 \lambda)\left(3\left(\cosh \left(8 \lambda^{\prime}\right)-45\right)-124 \cosh \left(4 \lambda^{\prime}\right)\right) \\
& \left.-192 \sinh (2 \lambda) \cosh ^{2}(2 \lambda) \cos (2 \phi) \sinh ^{2}\left(2 \lambda^{\prime}\right) \cosh \left(4 \lambda^{\prime}\right)\left(\left(c^{2}-1\right) \cos (\alpha)-2 c \sin (\alpha)\right)\right]
\end{aligned}
$$

$$
\omega=\operatorname{Arg}(1+i c)
$$

11d lifting and domain-walls at $\omega=0$

- Reduction of 11d supergravity on $\mathrm{AdS}_{4} \times \mathrm{S}^{7}$ with a round, squashed, stretched or warped 7-sphere (SE_{7}) and 4-form flux

SUSY	Symmetry	Cosm. constant	Stability
$\mathcal{N}=8$	$\mathrm{SO}(8)$	$-6(\times 1)$	\checkmark
$\mathcal{N}=2$	$\mathrm{SU}(3) \times \mathrm{U}(1)$	$-\frac{9}{2} \sqrt{3}(\times 1)$	\checkmark
$\mathcal{N}=1$	G_{2}	$-\frac{216}{25} \sqrt{\frac{2}{5} \sqrt{3}}(\times 2)$	\checkmark
$\mathcal{N}=0$	$\mathrm{SO}(7)$	$-2 \sqrt{5 \sqrt{5}}(\times 1)$	\times
		$-\frac{25}{8} \sqrt{5}(\times 2)$	\times
$\mathcal{N}=0$	$\mathrm{SU}(4)$	$-8(\times 1)$	\times

11d lifting and domain-walls at $\omega=0$

- Reduction of 11d supergravity on $\mathrm{AdS}_{4} \times \mathrm{S}^{7}$ with a round, squashed, stretched or warped 7 -sphere (SE_{7}) and 4-form flux
[Nicolai \& Pilch '12]

SUSY	Symmetry	Cosm. constant	Stability
$\mathcal{N}=8$	SO (8)	$-6(\times 1)$	\checkmark
$\mathcal{N}=2$	$\mathrm{SU}(3) \times \mathrm{U}(1)$	$-\frac{9}{2} \sqrt{3}(\times 1)$	\checkmark
$\mathcal{N}=1$	G_{2}	$-\frac{216}{25} \sqrt{\frac{2}{5} \sqrt{3}}(\times 2)$	\checkmark
$\mathcal{N}=0$	$\mathrm{SO}(7)$	$-2 \sqrt{5 \sqrt{5}}(\times 1)$	\times
		$-\frac{25}{8} \sqrt{5}(\times 2)$	\times
$\mathcal{N}=0$	$\mathrm{SU}(4)$	$-8(\times 1)$	\times

Lifting to 11d
[Freund \& Rubin '80]
[Englert '82]
[Corrado, Pilch \& Warner '01]
[de Wit, Nicolai \& Warner '85]
[Englert '82]
[de Wit Nicolai '84]

11d lifting and domain-walls at $\omega=0$

- Reduction of 11d supergravity on $\mathrm{AdS}_{4} \times \mathrm{S}^{7}$ with a round, squashed, stretched or warped 7 -sphere (SE_{7}) and 4-form flux
[Nicolai \& Pilch '12]
[Jafferis, Klebanov, Pufu \& Safdi '11]

[Donos \& Gaunlett '11]	SUSY	Symmetry	Cosm. constant	Stability
[Bobev, Halmagyi, Pilch \& Warner '09] [Corrado, Pilch \& Warner 'O1]	$\mathcal{N}=8$	SO(8)	$-6(\times 1)$	\checkmark
,	$\mathcal{N}=2$	$\mathrm{SU}(3) \times \mathrm{U}(1)$	$-\frac{9}{2} \sqrt{3}(\times 1)$	\checkmark
Domain walls	$\mathcal{N}=1$	G_{2}	$-\frac{216}{25} \sqrt{\frac{2}{5} \sqrt{3}}(\times 2)$	\checkmark
RG-flows	$\mathcal{N}=0$	SO(7)	$\begin{array}{r} -2 \sqrt{5 \sqrt{5}}(\times 1) \\ -\frac{25}{8} \sqrt{5}(\times 2) \end{array}$	\times \times
	$\mathcal{N}=0$	SU(4)	$-8(\times 1)$	\times

Lifting to 11 d
[Freund \& Rubin '80]
[Englert '82]
[Corrado, Pilch \& Warner '01]
[de Wit, Nicolai \& Warner '85]
[Englert '82]
[de Wit Nicolai '84]
[Pope \& Warner '85]

11d lifting and domain-walls at $\omega=0$

- Reduction of 11d supergravity on $\mathrm{AdS}_{4} \times \mathrm{S}^{7}$ with a round, squashed, stretched or warped 7 -sphere (SE_{7}) and 4-form flux
[Nicolai \& Pilch '12]
[Jafferis, Klebanov, Pufu \& Safdi '11]

[Donos \& Gaunlett '11]	SUSY	Symmetry	Cosm. constant	Stability
[Bobev, Halmagyi, Pilch \& Warner '09] [Corrado, Pilch \& Warner '01]	$\mathcal{N}=8$	$\mathrm{SO}(8)$	$-6(\times 1)$	\checkmark
,	$\mathcal{N}=2$	$\mathrm{SU}(3) \times \mathrm{U}(1)$	$-\frac{9}{2} \sqrt{3}(\times 1)$	\checkmark
Domain walls 	$\mathcal{N}=1$	G_{2}	$-\frac{216}{25} \sqrt{\frac{2}{5} \sqrt{3}}(\times 2)$	\checkmark
RG-flows	$\mathcal{N}=0$	SO(7)	$\begin{array}{r} -2 \sqrt{5 \sqrt{5}}(\times 1) \\ -\frac{25}{8} \sqrt{5}(\times 2) \end{array}$	\times \times
	$\mathcal{N}=0$	SU(4)	$-8(\times 1)$	\times

Lifting to 11d
[Freund \& Rubin '80]
[Englert '82]
[Corrado, Pilch \& Warner '01]
[de Wit, Nicolai \& Warner '85]
[Englert '82]
[de Wit Nicolai '84]
[Pope \& Warner '85]

- AdS/CMT applications : Holographic superconductivity

Critical points at $\omega \neq 0$ [with purely electric counterpart]
[Borghese, Dibitetto, A.G , Roest \& Varela '13]

* Example at $\omega=\pi / 8$

SUSY	G_{0}	V_{0}	$\left\|W_{1}\right\|$	$\left\|W_{1}\right\|$	λ_{0}	α_{0}	λ_{0}^{\prime}	ϕ_{0}	Stability
$\mathcal{N}=8$	$\mathrm{SO}(8)$	-6	1	1	0	0	0	0	\checkmark
$\mathcal{N}=2$	$\mathrm{SU}(3) \times \mathrm{U}(1)$	-8.354	1.180	1.180	0.315	0.171π	0.375	$\pm \frac{\pi}{2}$	\checkmark
						1.329π		0	
								π	
$\mathcal{N}=1$	G_{2}	-7.943	1.151^{*}	1.409	0.329	0.373π	0.329	0.373π	\checkmark
								1.373π	
						1.127π		1.127π	
								0.127π	
			1.409	1.151^{*}		0.373π		-0.373π	
								-1.373π	
						1.127π		-1.127π	
								-0.127π	
$\mathcal{N}=0$	$\mathrm{SO}(7)$	-6.748	1.232	1.232	0.210	0	0.210	0	\times
								π	
						$-\frac{\pi}{2}$		$\pm \frac{\pi}{2}$	
		-7.771	1.322	1.322	0.320	π	0.320	0	
								π	
						$\frac{\pi}{2}$		$\pm \frac{\pi}{2}$	
$\mathcal{N}=0$	SU(4)	-8.581	1.553	1.553	0.115	π	0.488	0	\times
								π	
						$\frac{\pi}{2}$		$\pm \frac{\pi}{2}$	

Critical points at $\omega \neq 0 \quad$ [without purely electric counterpart]
[Borghese, Dibitetto, A.G , Roest \& Varela '13]

* Example at $\omega=\pi / 8$

SUSY	G_{0}	V_{0}	$\left\|W_{1}\right\|$	$\left\|W_{\mathrm{f}}\right\|$	λ_{0}	α_{0}	λ_{0}^{\prime}	ϕ_{0}	Stability
$\mathcal{N}=1$	G_{2}	-7.040	1.083^{*}	1.327	0.242	$-\frac{\pi}{4}$	0.242	$-\frac{\pi}{4}$	\checkmark
								$\frac{3 \pi}{4}$	
			1.327	1.083^{*}				$\frac{\pi}{4}$	
								$-\frac{3 \pi}{4}$	
$\mathcal{N}=1$	SU(3)	-10.392	1.316^{*}	2.632	0.275	$\frac{3 \pi}{4}$	0.573	$\frac{\pi}{4}$	\checkmark
								$-\frac{3 \pi}{4}$	
			2.632	1.316^{*}				$-\frac{\pi}{4}$	
								$\frac{3 \pi}{4}$	
$\mathcal{N}=0$	G_{2}	-10.170	2.762	1.595	0.467	$\frac{3 \pi}{4}$	0.467	$\frac{3 \pi}{4}$	\checkmark
								$-\frac{\pi}{4}$	
			1.595	2.762	0.467	$\frac{3 \pi}{4}$	0.467	$-\frac{3 \pi}{4}$	
								$\frac{\pi}{4}$	
$\mathcal{N}=0$	SU(3)	-10.237	2.747	1.467	0.400	0.702π	0.512	0.785π	$?$
								1.785π	
								-0.285π	
								-1.285π	
			1.467	2.747		0.702π		-0.785π	
								-1.785π	
						0.798π		0.285π	
								1.285π	

Critical points at $\omega \neq 0 \quad$ [without purely electric counterpart]
[A.G , in progress...]

STABLE
1)
ω-dependent!
2) non-susy
3) fully stable

* Example at $\omega=\pi / 8$

SUSY	G_{0}	V_{0}	$\left\|W_{1}\right\|$	$\left\|W_{1}\right\|$	λ_{0}	α_{0}	λ_{0}^{\prime}	ϕ_{0}	Stability
$\mathcal{N}=1$	G_{2}	-7.040	1.083^{*}	1.327	0.242	$-\frac{\pi}{4}$	0.242	$-\frac{\pi}{4}$	\checkmark
								$\frac{3 \pi}{4}$	
			1.327	1.083^{*}				$\frac{\pi}{4}$	
								$-\frac{3 \pi}{4}$	
$\mathcal{N}=1$	SU(3)	-10.392	1.316*	2.632	0.275	$\frac{3 \pi}{4}$	0.573	$\frac{\pi}{4}$	\checkmark
								$-\frac{3 \pi}{4}$	
			2.632	1.316^{*}				$-\frac{\pi}{4}$	
								$\frac{3 \pi}{4}$	
$\mathcal{N}=0$	G_{2}	-10.170	2.762	1.595	0.467	$\frac{3 \pi}{4}$	0.467	$\frac{3 \pi}{4}$	\checkmark
								$-\frac{\pi}{4}$	
			1.595	2.762	0.467	$\frac{3 \pi}{4}$	0.467	$-\frac{3 \pi}{4}$	
								$\frac{\pi}{4}$	
$\mathcal{N}=0$	SU(3)	-10.237	2.747	1.467	0.400	0.702π	0.512	0.785π	STABLE
								1.785\%	
								-0.285π	
								-1.285π	
			1.467	2.747		0.702π		-0.785π	
								-1.785π	
						0.798π		0.285π	
								1.285π	

Dyonic domain-walls ?

- Domain-wall ansatz : $\quad S_{\text {scalar }}=\int d^{4} x \sqrt{-g}\left(\frac{1}{2} R-\frac{1}{2} K_{i j}\left(\partial_{\mu} \Sigma^{i}\right)\left(\partial^{\mu} \Sigma^{j}\right)-V\left(\Sigma^{i}\right)\right)$

$$
d s^{2}=e^{2 A(z)} \eta_{\alpha \beta} d x^{\alpha} d x^{\beta}+d z^{2} \quad \text { with } \quad \eta_{\alpha \beta}=\operatorname{diag}(-1,+1,+1)
$$

where $\quad \Sigma^{i}=\left(\lambda, \alpha, \lambda^{\prime}, \phi\right) \quad$ and $\quad K_{i j}=\left(\begin{array}{cccc}6 & 0 & 0 & 0 \\ 0 & \frac{3}{2} \sinh ^{2}(2 \lambda) & 0 & 0 \\ 0 & 0 & 8 & 0 \\ 0 & 0 & 0 & 2 \sinh ^{2}\left(2 \lambda^{\prime}\right)\end{array}\right)$

- Energy per unit of transverse area
[Skenderis \& Townsend '99]

$$
\begin{aligned}
E_{D W}\left(A, \Sigma^{i}\right) & =-\frac{1}{a} S_{D W}\left(A, \Sigma^{i}\right) \\
& =\frac{1}{2} \int_{-\infty}^{\infty} d z e^{3 A}\left[-6\left(\partial_{z} A\right)^{2}+K_{i j}\left(\partial_{z} \Sigma^{i}\right)\left(\partial_{z} \Sigma^{j}\right)+2 V\left(\Sigma^{i}\right)\right]
\end{aligned}
$$

[A.G , in progress...]

- First order flow-equations :

$$
\begin{aligned}
& \partial_{z} \lambda= \pm g \frac{\sqrt{2}}{3} \partial_{\lambda}|W| \quad, \quad \partial_{z} \alpha= \pm g \frac{\sqrt{2}}{3 \cosh ^{2}(\lambda) \sinh ^{2}(\lambda)} \partial_{\alpha}|W| \quad, \\
& \partial_{z} \lambda^{\prime}= \pm g \frac{1}{2 \sqrt{2}} \partial_{\lambda^{\prime}}|W| \quad, \quad \partial_{z} \phi= \pm g \frac{\sqrt{2}}{3 \cosh ^{2}\left(\lambda^{\prime}\right) \sinh ^{2}\left(\lambda^{\prime}\right)} \partial_{\phi}|W| .
\end{aligned}
$$

- DW with purely electric counterpart: $\quad \mathrm{N}=8 \mathrm{SO}(8) @$ UV to $\mathrm{N}=2 \mathrm{SU}(3) x \mathrm{U}(1) @ \operatorname{IR}$

- Genuine DW without purely electric counterpart:

$$
\mathrm{N}=8 \mathrm{SO}(8) @ \mathrm{UV} \text { to } \mathrm{N}=1 \mathrm{SU}(3) @ \mathrm{IR}
$$

\square
Lifting to 11d supergravity?? , What about dual RG flows ??

Final remarks

- Electromagnetic $U(1)$ rotations pick up a physically relevant direction in the space of the embedding tensor deformations and provide new vacua of $\mathcal{N}=8$ supergravity
- Small residual symmetry groups like $\mathrm{SO}(4) \& \operatorname{SU}(3)$ show ω-dependent mass spectra.

Triality restores $\frac{\pi}{4}$-periodicity.

- Critical points running away at $\omega=n \frac{\pi}{4}$ in one theory, show up in another. The entire story of a solution can be tracked by computing fermi masses in the GTTO approach
- Tachyon dilution around AdS/Mkw/dS transitions \Rightarrow stable dS in extended SUGRA ?
- Dyonic domain-walls can be constructed \leadsto dual RG flow interpretation ?
- All these solutions can be obtained as $Z_{2} \times Z_{2}$ Type II orientifolds with non-geometric fluxes (both electric and magnetic). Democratic lifting to M-theory including vectors from A_{3} and A_{6} ? And oxidation to DFT ?

Thanks for your attention !!

