Dualities and the landscape

of extended supergravity

Adolfo Guarino
University of Groningen

Uppsala 14 ${ }^{\text {th }}$ December 2011
with G. Dibitetto and D. Roest: arXiv:1102.0239
arXiv:1104.3587
arXiv:11xx.xxxx (...in progress)

The footprint of extra dimensions

* 4 d supergravities appear when compactifying string theory
>Fluctuations of the internal geometry translates into massless 4d scalar fields known as "moduli"

$$
\mathcal{L}=\frac{1}{2} R-\frac{1}{2} \partial_{\mu} \phi_{i} \partial^{\mu} \phi^{i}
$$

Deviations from GR !!
massless scalars $=$ long range interactions (precision tests of GR)

Linking strings to observations
\square Mechanisms to stabilise moduli !!

$$
V(\phi)=m_{i j}^{2} \phi^{i} \phi^{j}+\ldots
$$

${ }^{2}$ Moduli VEVs $\langle\phi\rangle=\phi_{0}$ determine 4d physics

$$
\Lambda_{c . c} \equiv V\left(\phi_{0}\right)
$$

g_{s} and $\mathrm{Vol}_{i n t}$ fermi masses

How to deform massless theories to have $V(\phi) \neq 0$?

> Supersymmetry dictates what deformations are allowed

gaugings $=$ part of the global symmetry is promoted to local $($ gauge $)$

- Gauged supergravities can be systematically studied

undeformed $=$ abelian $=$ massless

- Reducing 10d supergravities down to 4 d

$$
\text { global symmetry } G \quad=\text { stringy features } \quad \text { (i.e. } \mathrm{U} / \mathrm{T} / \mathrm{S} \text {-duality) }
$$

> The physical scalar sector parameterises the coset space $\mathcal{M}=G / H$ where H is the maximal compact subgroup of G

$$
\begin{gathered}
\mathcal{N}=8 \\
G=E_{7} \quad H=S U(8) \\
133-63=70 \text { scalars }
\end{gathered}
$$

$$
\begin{gathered}
\mathcal{N}=4 \\
G=S L(2) \times S O(6,6) \\
H=S O(2) \times S O(6) \times S O(6) \\
69-31=38 \text { scalars }
\end{gathered}
$$

$$
V(\mathcal{M})=0
$$

> Abelian gauge fields $A_{\mu}^{\mathcal{F}}$ in the fundamental of G

deformed $=$ non-abelian $=$ massive

- Gauging : a non-abelian subgroup $G_{0} \subset G$ is promoted to a gauge symmetry yielding a gauged supergravity

$$
\nabla_{\mu} \longrightarrow \nabla_{\mu}-g A_{\mu}^{\mathcal{F}} \Theta_{\mathcal{F}} \mathcal{A}^{\mathcal{A}} t_{\mathcal{A}} \quad \text { where } \quad\left\{\begin{array}{l}
\mathcal{F} \equiv \text { fund } \\
\mathcal{A} \equiv \text { adj }
\end{array} \quad \text { reps of } G\right.
$$

Consistent gauge group \square Quadratic constraints on Θ

* Non-trivial scalar potential for the scalar fields $\mathcal{M}=G / H$

$$
V(\Theta, \mathcal{M}) \neq 0 \quad \text { duality invariant = stringy }!!
$$

» The embedding tensor $\Theta_{\mathcal{F}^{\mathcal{A}}}$ encodes any possible deformation of the massless theory irrespective of its higher-dimensional origin

A one minute summary

A chain of truncations in 4d

$$
G=E_{7}
$$

e.t comp $=912$
vectors $=56$
scalars $=133$

$$
\mathcal{N}=8
$$

$$
\mathbb{Z}_{2}
$$

$$
\begin{aligned}
& G=S L(2) \times S O(6,6) \\
& \text { e.t comp }=464 \\
& \text { vectors }=24 \\
& \quad \text { scalars }=69
\end{aligned}
$$

$G=S L(2) \times G_{2}$
e.t $\operatorname{comp}=72$
vectors $=4$
scalars $=17$

$$
\mathcal{N}=2
$$

\mathbb{Z}_{2}

$$
G=S L(2) \times S L(2) \times S L(2)
$$

e.t $\operatorname{comp}=40$
vectors $=0$
scalars = 9

$$
\mathcal{N}=1
$$

Half-maximal supergravities in 4 d

[Schon, Weidner '06]

$$
\begin{aligned}
& G=S L(2) \times S O(6,6) \\
& \quad \text { e.t comp }=464 \\
& \quad \text { vectors }=24 \\
& \quad \text { scalars }=69
\end{aligned}
$$

$$
\mathcal{N}=4
$$

Questions:

- Can the whole vacuum structure be charted in $\mathcal{N}=4$ theories?
- Are there connections in the landscape of vacua?

Half-maximal : symmetry and fields

» Global symmetry (duality) group $G=S L(2) \times S O(6,6)$
${ }^{\text {Field content }}=$ supergravity multiplet + six vector multiplets
> Vectors $A_{\mu}^{\alpha M}$ in the fundamental of G

${ }^{\text {' }}$ The physical scalars parameterise $\mathcal{M}=M_{\alpha \beta} \times M_{M N}$

- 1 axion +1 dilaton in $\mathrm{SL}(2)$
- 30 axions +6 dilatons in $\mathrm{SO}(6,6)$

Half-maximal : gaugings and scalar potential

'Gaugings are classified by two embedding tensor pieces

$$
\begin{aligned}
& \xi_{\alpha M} \in(\mathbf{2}, \mathbf{1 2}) \quad \text { and } \quad f_{\alpha M N P} \in(\mathbf{2}, \mathbf{2 2 0}) \\
& \text { * reps of } \operatorname{SL}(2) \times \operatorname{SO}(6,6)
\end{aligned}
$$

* Supersymmetry + gauge invariance determine the scalar potential

$$
\begin{aligned}
V & =\frac{1}{64} f_{\alpha M N P} f_{\beta Q R S} M^{\alpha \beta}\left[\frac{1}{3} M^{M Q} M^{N R} M^{P S}+\left(\frac{2}{3} \eta^{M Q}-M^{M Q}\right) \eta^{N R} \eta^{P S}\right]- \\
& -\frac{1}{144} f_{\alpha M N P} f_{\beta Q R S} \epsilon^{\alpha \beta} M^{M N P Q R S}+\frac{3}{64} \xi_{\alpha}^{M} \xi_{\beta}^{N} M^{\alpha \beta} M_{M N} \\
& \eta \equiv S O(6,6) \text {-metric }
\end{aligned}
$$

To keep in mind: V is quadratic in the emb. tens. parameters
» 464 e.t. components +38 physical scalars $=$ TOO MUCH !!

The $\mathrm{SO}(3)$ truncation

> Keeping only fields and embedding tensor components invariant under the action of a subgroup $S O(3) \subset S O(6,6)$

\[

\]

> R-symmetry group :

$$
\begin{gathered}
S U(4) \quad D O(3) \\
4 \longrightarrow 1+3
\end{gathered}
$$

The $\mathrm{SO}(3)$ truncation : fields and gaugings

[Derendinger, Kounnas, Petropoulos, Zwirner '04]
> Symmetry and fields:

- global symmetry $G=S L(2)_{S} \times S L(2)_{T} \times S L(2)_{U}$
- $A_{\mu}^{\alpha M}=0 \quad$ and $\quad \xi_{\alpha M}=0$
- scalar coset $=3$ complex scalars $=$ STU - models !!

* The gaugings $G_{0} \subset G$ and the scalar potential $V(S, T, U)$ are specified by the embedding tensor

$$
f_{\alpha M N P}=40 \text { components }
$$

Gaugings from fluxes

>String embedding as flux compactification

$$
f_{\alpha M N P}=\text { generalised fluxes }
$$

Example: $\mathrm{SO}(3)$ truncation \longleftrightarrow type II orientifolds of $\mathbb{T}^{6} / \mathbb{Z}_{2} \times \mathbb{Z}_{2}$

* Type IIB fluxes and embedding tensor
$f_{+m n p}=\tilde{F}^{\prime}{ }_{m n p} \quad, \quad f_{+m n}{ }^{p}=Q^{\prime}{ }_{m n}{ }^{p} \quad, \quad f_{+}^{m n}{ }_{p}=Q^{m n}{ }_{p} \quad, \quad f_{+}{ }^{m n p}=\tilde{F}^{m n p} \quad$, $f_{-m n p}=\tilde{H}^{\prime}{ }_{m n p} \quad, \quad f_{-m n}{ }^{p}=P^{\prime}{ }_{m n}{ }^{p} \quad, \quad f_{-}^{m n}{ }_{p}=P^{m n}{ }_{p} \quad, \quad f_{-}^{m n p}=\tilde{H}^{m n p} \quad$,
[Dibitetto, Linares, Roest '10]
* index splitting $M=\left(m,{ }^{m}\right)$
> Perfect matching with flux-induced superpotential (up to Q.C)

$$
W_{f l u x}=\left(P_{F}-P_{H} S\right)+3 T\left(P_{Q}-P_{P} S\right)+3 T^{2}\left(P_{Q^{\prime}}-P_{P^{\prime}} S\right)+T^{3}\left(P_{F^{\prime}}-P_{H^{\prime}} S\right)
$$

Gaugings and sources

'Consistency of the gauge group $=$ quadratic constraints on $f_{\alpha M N P}$
gaugings
$A_{\mu}=A_{\mu}^{\alpha M} T_{\alpha M}$

$\left[T_{\alpha M}, T_{\beta N}\right]=f_{\alpha M N}{ }^{P} T_{\beta P}$$\quad \Rightarrow$| Quadratic Constraints |
| :---: |
| $\epsilon^{\alpha \beta} f_{\alpha M N R} f_{\beta P Q}{ }^{R}=0$ |
| $f_{\alpha R[M N} f_{\beta P Q]}{ }^{R}=0$ |

>String theory :
quadratic constraints $=$ Absence of sources breaking $\mathcal{N}=4$

Example : Type IIB orientifolds with O3/O7-planes

- (H, F) fluxes: Unconstrained D3-brane flux-induced tadpole
- (H, F, Q) fluxes : Vanishing of D7-brane flux-induced tadpole
-(H, F , Q , P) fluxes : Vanishing of D7, NS7 and I7 flux-induced tadpoles
-??

We would like to . . .

1) build all the consistent $\mathrm{SO}(3)$-invariant gaugings specified by $f_{\alpha M N P}$ by solving the quadratic constraints

$$
\epsilon f f=0 \quad \text { and } \quad f f=0
$$

2) compute all the $\mathrm{SO}(3)$-invariant extrema of the f-induced scalar potential $V(f, \Phi)$ by solving the extremisation conditions

$$
\left.\frac{\partial V}{\partial \Phi}\right|_{\Phi_{0}}=0 \quad \text { with } \quad \Phi \equiv(S, T, U)
$$

3) check stability of these extrema with respect to fluctuations of all the 38 scalars of half-maximal supergravity
4) identify the gauge group G_{0} underlying all the different solutions

Strategy and tools

\quad Idea : use the global symmetry group (non-compact part) to bring any field solution back to the origin !!

Φ-space

f-space
" At the origin everything is simply quadratic in the $f_{\alpha M N P}$ parameters so then,

$$
V(\Phi)=\sum_{\text {terms }} f f \Phi^{\text {high degree }}
$$

computing the
vacua structure
multivariate polynomial system

$$
I=\left\langle\left.\partial_{\Phi} V\right|_{\Phi_{0}}, \in f f, f f\right\rangle
$$

\square Algebraic Geometry techniques !!

Basics of Algebraic Geometry

» Algebraic Geometry studies multivariate polynomial system and their link to geometry

$$
\begin{gathered}
I=\left\langle P_{1}, P_{2}\right\rangle \\
P_{1}(x, y, z)=x z \\
P_{2}(x, y, z)=y z \\
\text { algebraic system }
\end{gathered}
$$

${ }^{2}$ GTZ prime decomposition (analogous to integers dec. $30=2 \times 3 \times 5$)

$$
I=J_{1} \cap J_{2} \quad \text { where }\left\{\begin{array}{l}
J_{1}=\langle z\rangle \longrightarrow x y \text {-plane } \\
J_{2}=\langle x, y\rangle \longrightarrow z \text {-axis }
\end{array} \quad \square \quad J_{1} \cap J_{2} \longleftrightarrow V\left(J_{1}\right) \cup V\left(J_{2}\right)\right.
$$

- Applying the above procedure to our problem involving fluxes

$$
\begin{aligned}
& I=\left\langle\left.\partial_{\Phi} V\right|_{\Phi_{0}}, \epsilon f f, f f\right\rangle \quad \square \\
& I=J_{1} \cap J_{2} \cap \ldots \cap J_{n}
\end{aligned} \quad \begin{gathered}
\text { Splitting of the landscape } \\
\text { into } n \text { disconnected pieces }!!
\end{gathered}
$$

An example : type IIA with metric fluxes

* Testing the method with type IIA orientifold models including gauge fluxes and a metric flux

$$
\left(F_{p=0,2,4,6} \quad, \quad H_{3}\right)+\omega \quad \subset \quad f_{\alpha M N P}
$$

- Subset of embedding tensor components closed under $G_{n, c}$
${ }^{\circ}$ Fields can still be set at the origin without lost of generality
\checkmark Stability with respect to fluctuations around the origin can be computed
- Vacua structure of these type IIA orientifolds
\square
$16 \mathrm{AdS}_{4}$ critical points

GKP after three T-dualities

- An AdS_{4} landscape

$$
16=4+4+4+4
$$

" Unique gauging

$$
G_{0}=\mathrm{ISO}(3) \ltimes \mathrm{U}(1)^{6}
$$

$1_{(\pm, \pm)}$	$2_{(\pm, \pm)}$	$3_{(\pm, \pm)}$	$4_{(\pm, \pm)}$
$\mathcal{N}=1$ SUSY SUSY	SUSY	SUSY	SUSY
stable	unstable	stable	stable
$m^{2}=-2 / 3$	$m^{2}=-4 / 5$	$m^{2}>0$	$m^{2}>0$
$V=-1$	$V=-32 / 27$	$V=-8 / 15$	

$(*) m^{2} \equiv$ lightest mode (B.F. bound $\left.=-3 / 4\right)$
» All the solutions are connected and correspond to $\omega \equiv S U(2) \times S U(2)$
[Caviezel, Koerber, Körs, Lüst, Tsimpis/Wrase, Zagermann '08, '08]

NO SOURCES AT ALL !!

Lifting to maximal supergravity?

$$
G=E_{7}
$$

$$
\text { e.t } \operatorname{comp}=912
$$

$$
\text { vectors }=56
$$

$$
\text { scalars }=133
$$

$$
\mathcal{N}=8
$$

Question :
2 Is the absence of sources enough for the geometric IIA solutions to lift to a maximal supergravity theory?

Half-maximal inside maximal

" Look at the maximal theory with the half-maximal "glasses"

$$
\begin{aligned}
& E_{7} \quad \supset \quad S L(2) \times S O(6,6) \\
& \text { vectors : } 56 \longrightarrow(2,12)+(1,32) \\
& \text { scalars: } 133 \longrightarrow(3,1)+(1,66)+\left(2,32^{\prime}\right) \\
& \text { e.t } \\
& 912 \longrightarrow(2,12)+(2,220)+\left(1,352^{\prime}\right)+(3,32) \\
& \begin{array}{l}
\text { rep } \equiv \begin{array}{rlr}
\operatorname{bos}(B) & \rightarrow & \text { even } \\
\text { rep } & \equiv \underbrace{\operatorname{fermi}(F)}_{S O(6,6)} & \rightarrow \text { odd }
\end{array}
\end{array} \\
& \text { e.t: } \\
& X_{56}{ }_{56}{ }^{56} \quad \xi_{\alpha M} \quad f_{\alpha M N P}
\end{aligned}
$$

> Gauge algebra in the maximal theory

$$
\left.\begin{array}{l}
{\left[A_{B}, A_{B}\right]=X_{B B}{ }^{B} A_{B}+X_{B B}{ }^{F} A_{F}} \\
{\left[A_{B}, A_{F}\right]=X_{B F}{ }^{B} A_{B}+X_{B F}{ }^{F} A_{F}} \\
{\left[A_{F}, A_{F}\right]=X_{F F}{ }^{B} A_{B}+X_{F F}{ }^{F} A_{F}}
\end{array}\right\} \quad \text { Jacobi identities }=Q C_{\mathcal{N}=8}
$$

Components with an odd number of fermionic indices projected out !!

Extra conditions for the lifting

>For a half-maximal to be embeddable in a maximal theory

$$
Q C_{\mathcal{N}=8}=Q C_{\mathcal{N}=4}+\text { extra conditions for the lifting }
$$

- The extra conditions are

$$
\underbrace{f_{\alpha M N P} f_{\beta}{ }^{M N P}=0}_{(3,1)} \quad \text { and } \quad \underbrace{\left.\epsilon^{\alpha \beta} f_{\alpha[M N P} f_{\beta Q R S]}\right|_{\mathrm{SD}}=0}_{\left(1,462^{\prime}\right)}
$$

Example: type IIB dual sources?

* reps of $\mathrm{SL}(2) \times \mathrm{SO}(6,6)$

An example : lifting of geometric type IIA

» All the 16 geom. IIA solutions lift to maximal supergravity
» Fake SUSY becomes SUSY

$\underbrace{S U(8)}_{$| $\mathcal{N}=8$ |
| :---: |
| SUSY |\(} \rightarrow \underbrace{S U(4)}_{\substack{\mathcal{N}=4

SUSY}} \times \underbrace{S U(4)}_{\substack{\mathcal{N}=4

FAKE}}\)

$1_{(\pm, \pm)}$	$2_{(\pm, \pm)}$	$3_{(\pm, \pm)}$	$4_{(\pm, \pm)}$
$\mathcal{N}=1$ SUSY	SUSY	SUSY	SUSY
stable	unstable	stable	unstable
$m^{2}=-2 / 3$	$m^{2}=-4 / 5$	$m^{2}>0$	$m^{2}=-4 / 3$
$V=-1$		$V=-8 / 15$	
	$V=-32 / 27$		$V=-32 / 27$

$(*) m^{2} \equiv$ lightest mode (B.F. bound $\left.=-3 / 4\right)$
» Masses of the 70 physical scalars $\quad \square$ SUSY and stable minimum !! [Le Diffon, Samtleben, Trigiante '11]
> Underlying gaugings in maximal supergravity (28 vectors) ??
(...in progress)

Conclusions

, Some progress towards disentangling the landscape of extended supergravities can still be done without performing statistics of vacua
, The approach relies on the combined use of global symmetries and of algebraic geometry techniques

2 As a warming-up, the complete vacua structure of simple type IIA orientifold theories can be worked out revealing some odd features :
i) connections between vacua
ii) $\mathcal{N}=8$ lifting of the entire vacua structure
iii) stability without supersymmetry
> For the future :

- Beyond the geometric limit : non-geometric backgrounds, dual branes . . .
- de Sitter in extended supergravity (maybe $\mathcal{N}=2$) and links to Cosmology
- Higher dimensional origin of gaugings: DFT, Generalised Geometry ...

Thanks !!

Higher-dimensional origin of gaugings

guiding principle $=$ duality covariance

Example: T-duality $=\mathrm{SO}(\mathrm{d}, \mathrm{d})$
» DFT / Doubled Geometry $\Rightarrow\left\{\partial_{m}, \partial^{m}\right\}$ (fundamental = 1-form)
[Hull, Zwiebach '09]
[Hohm, Hull, Zwibach '10]
[Hohm, Kwak, Zwibach '11]
[Geissbühler '11]
[Aldazabal, Baron, Marques, Nunez '11]
${ }^{\wedge}$ Generalised Geometry $\square\left\{G_{m n}, B_{m n}, \beta^{m n}\right\}$
[Gualtieri '04] (adjoint $=2$-form)
[Grana, Minasian, Petrini, Tomasiello '04 '05]
[Grana, Minasian, Petrini, Waldram '08]
[Coimbra, Strickland-Constable, Waldram '11]
${ }^{2}$ Non-Geometry $\Rightarrow\left\{H_{m n p}, \omega_{n p}^{m}, Q_{p}^{m n}, R^{m n p}\right\}$ (3-form)

