
Newman-Penrose approach to N = 2 D = 4 sugra

This is a set of complementary notes to (hep-th/0603099), and deals with
some Newman-Penrose approach to the classification of supersymmetric so-
lutions toN = 2 d = 4 supergravity coupled to vector multiplets. Since these
are just some notes, caringly referred to as Piece of Toilet Paper, there really
is no sense in complaining/whining/bitching about the references.

The N = 2 action coupled to nV vector multiplets and nH = 0 hyper-
multiplets, truncated to the bosonic part, is given by [1]1

S =
∫

4

[
1
2R + Gi̄∂aZ

i∂aZ
̄

+ ImNΛΣF
Λ ∧ ∗FΣ − ReNΛΣF

Λ ∧ FΣ
]
, (1)

from which the equations of motion can be seen to be

Rab = −2Gīı∂(aZ
i∂b)Z

ı̄ − 4Im(N )ΛΣ

[
FΛ

acF
Σ
b

c − 1
4gabF

Λ
cdF

Σcd
]
, (2)

0 = d
[
Im(N )ΛΣ ∗ FΣ − Re(N )ΛΣ FΣ

]
, (3)

0 = Da∂
aZi − iG īı

[
∂ı̄NΛΣF

Λ−
ab FΣ−|ab − ∂ı̄NΛΣF

Λ+
ab FΣ+|ab

]
. (4)

and in the same setting we have the supersymmetry equations

δΨℵa = Daεℵ + T−abεℵiγ
b εi , (5)

δλiℵ = i /∇Zi εℵ + 2/Gi−
εi εℵi , (6)

where we have defined Dεℵ = ∇εℵ + i/2Qεℵ, where of course we also have
2i Q = dZi∂iK − dZ

ı̄
∂ı̄K, with K the Kähler potential. This also means

that Gīı = ∂i∂ı̄K.

1 Special Kähler geometry

The formal starting point for the definition of a Special Kähler manifold,
lies in the definition of a Kähler-Hodge manifold. A KH-manifold is a
complex line bundle over a Kähler manifold M, such that the first, and
only, Chern class of the line bundle equals the Kähler form. This then
implies that the exponential of the Kähler potential can be used as a met-
ric on the Line bundle. Furthermore, the connection on the line bundle is

1 Im(N ) is negative and this fixes the signs.
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Q = (2i)−1(dzi∂iK − dz̄ ı̄∂īK). Let us denote the line bundle by L1 → M,
where the superscript is there to indicate that the covariant derivative is
D = ∇+ iQ

In order to make things worse, consider then a flat 2(n+1) vector bundle
E → M with structure group Sp(n + 1; R), and take a section V of the
product bundle E ⊗ L1 →M and its complex conjugate V, which formally
is a section of the bundle E⊗L−1 →M, but who cares? Anyway, a special
Kähler manifold, then is a bundle E ⊗ L1 → M, for which there exists a
section V such that

V =
(

LΛ

MΣ

)
→


〈V | V〉 ≡ LΛMΛ − LΛMΛ = −i

Dı̄V = 0 ,

〈DiV | V〉 = 0 .

(7)

If we then define

Ui ≡ DiV =
(

fΛ
i

hΣ i

)
, U ı̄ = Ui , (8)

then it follows from the basic definitions that

Dı̄ Ui = Gīı V , 〈Ui | U ı̄〉 = iGīı ,

〈Ui | V〉 = 0 , 〈Ui | V〉 = 0 .
(9)

Let us have a look at 〈DiUj | V〉 = −〈 Uj | Ui〉, where we have made use
of the third constraint. As one can see the r.h.s. is antisymmetric in i and
j, whereas the l.h.s. is symmetric (This you can see by either a brute force
calculation or by looking at App. (B.3) and thinking a bit). This then
means that 〈DiUj | V〉 = 〈Uj | Ui〉 = 0. The importance of this last equation
is that if we group together EΛ = (V,Ui), then we can see that 〈EΣ | EΛ〉 is
a non-degenerate matrix, which allows us to construct an identity operator
for the symplectic indices, such that for a given section of A 3 Γ (E,M) we
have

A = i〈A | V〉 V − i〈A | V〉 V + i〈A | Ui〉G īı U ı̄ − i〈A | U ı̄〉G īıUi . (10)

We saw that DiUj is symmetric in i and j, but what more can be said about
it? As one can easily see, the innerproduct with V and U ı̄ vanishes due to
the basic properties. Let us then define the weight (2,−2) object

Cijk ≡ 〈Di Uj | Uk〉 → Di Uj = iCijkGkl̄U l̄ , (11)
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the last equation being a consequence of Eq. (10). Since the U´s are orthog-
onal, however, one can see that C is completely symmetric in its 3 indices,
and 2 small calculations show that

Dı̄ Cjkl = 0 , D[i Cj]kl = 0 . (12)

Observe that these equations imply the existence of a function S, such that

Cijk = DiDjDk S , (13)

and reportedly one finds [2] S ∼ LΛIm(N )ΛΣLΣ.
The last equation that can be derived without introducing the mon-

odromy matrix, and seemingly the one that is the reason why special geom-
etry is used in N = 2 D = 4 sugra, is the Riemann tensor for the Levi-Cività
connection on M. This can be calculated because we know the relation be-
tween D and ∇ and we have [∇a,∇b]Xc = RabcdX

d. Anyway, the result
is

Ri̄kl̄ = Gi̄ Gkl̄ + Gil̄ Gk̄ − Cikm C ̄l̄m̄ Gmm̄ . (14)

Let us then introduce the concept of a monodromy matrix N , which can
be defined through the relations

MΛ = NΛΣ LΣ , hΛi = NΛΣ fΣ
i , (15)

The relations of 〈Ui | V〉 = 0 then implies that N is symmetric, which then
automatically trivializes 〈Ui | Uj〉 = 0.

From the other basic properties in (9) we find

− 1
2 = LΛ Im(N )ΛΣL̄Σ , (16)

0 = LΛ Im(N )ΛΣ fΣ
i , (17)

−1
2Gīı = fΛ

i Im(N )ΛΣ f̄Σ
ı̄ . (18)

Further identities that can be derived are

(∂iNΛΣ) LΣ = −2iIm(N )ΛΣ fΣ
i , (19)

∂iNΛΣ fΣ
j = −2CijkGkk̄Im(N )ΛΣ f̄Σ

k̄ , (20)

Cijk = fΛ
i f

Σ
j ∂kNΛΣ , (21)

LΣ∂ı̄NΛΣ = 0 , (22)
∂ı̄NΛΣ fΣ

i = 2iGīıIm(N )ΛΣ LΣ , (23)

An important identity that one can derive, is given by

UΛΣ ≡ fΛ
i G īıf̄Σ

ı̄ = −1
2 Im(N )−1|ΛΣ − LΛLΣ , (24)
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so that UΛΣ = UΣΛ. The graviphoton projector is defined by

TΛ = 2iLΣ Im (N )ΣΛ , (25)

Let us construct the (n + 1) × (n + 1)-matrices M = (MΛ, h̄Λ ı̄) and
L = (LΛ, f̄Λ

ı̄ ). With it we can write the defining relations for the monodromy
matrix as MΛΣ = NΛΩL

Ω
Σ, a system which we can easily solve by putting

N = ML−1, where L−1 is the inverse of L. Formally one finds

L−1 = −2
(

LΛIm(N )ΛΣ

G ı̄i fΛ
i Im(N )ΛΣ

)
, ≡ −

(
iT Σ

2f ı̄
Σ

)
, (26)

which is a recursive argument, but will be useful in order to derive more
interesting results.

The first identity that can be derived is

G īı∂ı̄NΛΣ = −2
(
f̄ i
ΛTΣ + TΛf̄

i
Σ

)
, (27)

and the, for the moment, last is

∂ı̄NΛΣ = 4 C ı̄̄k̄ f
̄
Λ f k̄

Σ . (28)

1.1 Prepotential: Existence and more formulae

Let us start by introducing the explicitly holomorphic section Ω = e−K/2V,
which allows us to rewrite the system (7) as

Ω =
(
XΛ

FΣ

)
→


〈Ω | Ω〉 ≡ XΛFΛ − XΛFΛ = −i e−K

∂ı̄Ω = 0 ,

〈∂iΩ | Ω〉 = 0 .
(29)

If we now assume that FΛ depends on Zi through the X ’s, then from the
last equation we can derive that

∂iXΛ
[
2FΛ − ∂Λ

(
XΣFΣ

)]
= 0 . (30)

If ∂iXΛ is invertible as a n× (n+ 1) matrix, then we must conclude that

FΛ = ∂ΛF(X ) , (31)

where F is a homogeneous function of degree 2: The prepotential.
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Making use of the prepotential and the definitions (15), we can then
calculate

NΛΣ = FΛΣ + 2i Im(F)ΛΛ′XΛ′ Im(F)ΣΣ′XΣ′

XΩIm(F)ΩΩ′XΩ′ , (32)

which even though not beautiful, at least is manifestly symmetric. Having
the explicit form of N , we can derive an explicit representation for C by
applying Eq. (22): one finds

Cijk = eK ∂iXΛ ∂jXΣ ∂kXΩ FΛΣΩ , (33)

so that the prepotential really determines all structures in special geometry.
A last remark has to be made about the existence of a prepotential:

clearly, given a holomorphic section Ω a prepotential need not exist. It was
shown in [3], however, that one can always apply an Sp(n+ 1,R) transfor-
mation such that a prepotential exists. Clearly the N = 2 sugra action is
not invariant under the full Sp(n + 1,R), but the equations of motion and
the supersymmetry equations are. This means that for the purpose of this
article we can always, even if this is not done, impose the existence of a
prepotential.

2 NP translation of the susy variations

Seeing the fact that we are dealing with chiral spinors with γ5εℵ = εℵ and
γ5ε

ℵ = −εℵ, we will make the identification

ε1 =
(
αA

0

)
, ε2 =

(
βA

0

)
, ε1 =

(
0
ᾱĀ

)
, ε1 =

(
0
β̄Ā

)
. (34)

If we then also define

T−ab ≡ φ̄ĀB̄εAB = TΛ φ̄Λ
ĀB̄εAB , (35)

Gi−
ab ≡ ψ̄i

ĀB̄εAB = −G īıf̄Λ
ı̄ Im (N )ΛΣ φ̄

Σ
ĀB̄εAB , (36)

we can translate the susy variations (5) to

∇aᾱB̄ = − i
2QaᾱB̄ +

√
2φ̄ĀB̄ βA , (37)

∇aβ̄B̄ = − i
2Qaβ̄B̄ −

√
2φ̄ĀB̄ αA , (38)

√
2i ∇aZ

i αA = 4 ψ̄i
ĀB̄ β̄B̄ , (39)

√
2i ∇aZ

i βA = −4 ψ̄i
ĀB̄ ᾱB̄ . (40)

Similar equations can be obtained from the above by complex conjugation.
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By making use of the relation (24), we can can obtain

φ̄Λ
ĀB̄ = 2 fΛ

i ψ̄i
ĀB̄ + iL̄Λ φ̄ĀB̄ , (41)

which allows us to calculate FΛ.
The Bianchi identity and the equation of motion for the gauge fields can

be expressed in the NP language as

∇AB̄φ
Λ A

B = ∇BĀφ̄
Λ Ā

B̄ , (42)

∇AB̄

(
NΣΛφ

Λ A
B

)
= ∇BĀ

(
NΣΛφ̄

Λ Ā
B̄

)
, (43)

3 Non-degenerate case

In this section we will contemplate the possibility that

αAβ
A = V 6= 0 ; αAβB − αBβA = V εAB . (44)

This allows us to define the unnormalized tetrad

La = αAᾱĀ

Na = βAβ̄B̄

 → LaN
a = V V ,

Ma = αAβ̄Ā

M̄a = βAᾱB̄

 → MaM̄
a = −V V .

(45)

It is also worth-while to introduce the combinations

T = 1√
2

(L + N) , L = 1√
2

(T + X) , T 2 = V V̄ ,

X = 1√
2

(L − N) , N = 1√
2

(T − X) , X2 = −V V̄ ,

Y = 1√
2

(
M + M̄

)
, M = 1√

2
(Y + iZ) , Y 2 = −V V̄ ,

Z = 1√
2i

(
M − M̄

)
, M̄ = 1√

2
(X − iZ) , Z2 = −V V̄ .

(46)

The non-degeneracy of the tetrad also implies that

gab =
(
V V̄

)−1 [
LaNb + NaLb − MaM̄b − M̄aMb

]
=

(
V V̄

)−1 [TaTb − XaXb − YaYb − ZaZb] . (47)

Armed with these definitions we can calculate2

∇aTb = −V φ̄ĀB̄εAB − V̄ φ̄ĀB̄ εĀB̄ , (48)

2 The occurrence of φ̄ĀB̄ might seem a bit odd, but is done on purpose in order not to
create confusion with TΛφΛ

AB .
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∇aXb = 2φ̄ĀB̄ α(AβB) + 2 φ̄ĀB̄ ᾱ(Āβ̄B̄) , (49)

∇aMb =
√

2 φ̄ĀB̄ β̄Āβ̄B̄ −
√

2φ̄ĀB̄ αAαB . (50)

The first of these equations has the typical expansion of a real 2-form, and
as such we find that ∇(aTb) = 0: T a∂a is a Killing vector. On the other
hand, the last two are clearly invariant under the substitution a ↔ b, so
that dX = dM = 0. So, after a complex conjugation and a glance at (46),
then says that dX = dY = dZ = 0, which enables us to introduce the
coordinate representation

Tadξ
a = V V̄ (dt+ ωmdx

m) , T a∂a = ∂t ,
Xadξ

a = dx1 , Xa∂a = −V V̄ [∂1 − ω1∂t] ,
Yadξ

a = dx2 , Y a∂a = −V V̄ [∂2 − ω2∂t] ,
Zadξ

a = dx3 , Za∂a = −V V̄ [∂3 − ω3∂t] .
(51)

This obviously means that the metric has the archetypical conforma-stationary
form:

ds2 = V V̄ (dt + ω)2 −
(
V V̄

)−1
d~x2 . (52)

Using Eqs. (37,38), we can calculate the differential of V only to find

DaV̄ = 2 φ̄ĀB̄ TA
B̄ . (53)

This relation can be inverted, which gives the result that

φ̄ĀB̄ = −
(
V V̄

)−1
TA

B̄ DaV̄ , (54)

which is not only a fundamental part for the determination of FΛ, but also
for giving a restriction on ω. Indeed, calculating dT through its coordinate
representation and by Eqs. (48,54) we find that (We choose the convention
for εmnp such that ε123 = 1)

V V̄ (∂mωn − ∂nωm) = iεmnp

[
d log

(
V/V̄

)
− 2iQ

]
p
. (55)

In order to completely fix FΛ, we need to know ψ̄i and this can be obtained
by multiplying Eq. (39) with βB and subtracting from this Eq. (40) times
αB. The result of this minor calculational challenge is

ψ̄i
ĀB̄ = i

2V̄
∇aZ

i TA
B̄ . (56)

One might wonder why the expressions (54) and (56) lack the necessary
symmetricness in Ā and B̄; Imposing this symmetricness implies that Zi, Z̄ ı̄,
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V and V̄ are t-independent, which, seeing that it is the direction associated
to a Killing vector, should not be too big a surprise.

We are now in a position to calculate FΛ: using Eq. (41) together with
Eqs. (54,56) we can see that

FΛ = Im(SΛ) ∧ (dt+ ω) − 1
2V V̄

εmnpdx
mnRe(SΛ)p , (57)

where for convenience we have defined

SΛ = L̄ΛDV̄ − V fΛ
i dZ

i = L̄ΛDV̄ − VDLΛ , (58)

where in the last step we made use of DLΛ = dLΛ + iQLΛ, the fact that LΛ

only depends on x through the scalars Zi and Z̄ ı̄ and that it is covariantly
holomorphic. This last observation, then allows us to see that

Im(SΛ) = − dIm(V LΛ) , (59)

which allows us to distill the temporal component of the gauge fields.
Calculating then the Bianchi identity dFΛ = 0, and using Eqs. (55), one

finds that

~∂
[
(V V̄ )−1Re( ~SΛ)

]
= 2

√
2i

V V̄
~∂Im(V LΛ) ·

{
~∂ log

(
V̄ /V

)
+ 2i ~Q

}
. (60)

We can do a wee bit better by massaging expression (57) to obtain

FΛ = d
[
−Im(V LΛ) (dt + ω)

]
+ 1

2dx
mn εmnp∂pRe(L̄Λ/V ) . (61)

This equation for FΛ means that we can forget about Eq. (60), since now
there is a far compacter and nicer expression we can derive, namely

~∂2 Re(L̄Λ/V ) = 0 , (62)

or in other words: the (n+ 1) functions Re(L̄Λ/V ) are harmonic on R3!!
Let us then consider the EOM for the gauge fields: as one can see, one

can rewrite Eq. (3) to be

dHΛ ≡ d
[
NΛΣ FΣ− + NΛΣ FΣ+

]
= 0 . (63)

This form of the equation is particularly useful if we couple it to Eq. (41)
and use the definition of the monodromy matrix (15), to find

H−
Λ ab =

(
2hΛi ψ̄

i
ĀB̄ + iM̄Λ φ̄ĀB̄

)
εAB . (64)

8



Now observe that this is just the same equation as defining FΛ once we make
the appropriate substitutions. This then at once allows us to conclude that
the equations of motion for the gauge field are equivalent to the statement

~∂2 Re(M̄Λ/V ) = 0 . (65)

Now this is quite surprising, and I am not quite sure what to make of it,
but let me point out that

Re(LΛ/V̄ )Im(VMΛ) − Re(MΛ/V̄ )Im(V LΛ) = −1
2 . (66)

Also armed with this knowledge and a small look at [4], we can then rewrite
Eq. (55) as

∂[mωn] = 2εmnp

[
Re

(
M̄Λ/V

)
∂pRe

(
L̄Λ/V

)
− Re

(
L̄Λ/V

)
∂pRe

(
M̄Λ/V

)]
,

(67)
so that the integrability condition is automatically satisfied. A more com-
pact version of the above formula is then found by introducing the real,
harmonic symplectic section R by

∂[mωn] = 2εmnp〈 R | ∂pR〉 ↔ R =
(

Re
(
L̄Λ/V

)
Re

(
M̄Λ/V

) )
. (68)

With the knowledge at hand we can rewrite the equations of motion for
the scalars, Eq. (4), to

0 = ~∂2Zi + Γjk
i~∂Zj~∂Zk + 2~D log V̄ ~∂Zi + i V̄V G

īıC ı̄̄k̄
~∂Z̄ ̄~∂Z̄ k̄ . (69)

Now this is a bugger to check, so why not calculate DcDaZ
i directly

from the gaugino variation? In that case we will need

DGi− = i
2G

īıf̄Λ
ı̄ dNΛΣ ∧ FΣ+ . (70)

which one can derive using the Bianchi identities, the equations of motion
for the gauge fields and the properties of Special geometry. Translating this
identity to the NP conventions, one arrives at

DAB̄ψ̄
i
Ā

B̄ = − i
2G

i̄f̄Λ
̄ ∂BĀNΛΣ φΣ

A
B . (71)

With this knowledge we can calculate Dc∂aZ
iαA and Dc∂aZ

iβA from Eqs.
(39,40). Subtracting these equations from each other, multiplying with gca

and using Eq. (71), we find

Dc∂
cZi = 8i ψ̄i

ĀB̄φ̄
ĀB̄ + 2f̄ iΛ∂j̄NΛΣφ

Σ
C

A V −1∂aZ̄
̄TCĀ

= 8i ψ̄i
ĀB̄φ̄

ĀB̄ − 2iGi̄∂̄NΛΣφ
Λ
ACφ

ΣAC

= 2iGi̄
[
∂̄NΛΣ φ̄Λ

ĀB̄φ̄
ΛĀB̄ − ∂̄NΛΣ φΛ

ACφ
ΣAC

]
, (72)
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which is nothing but the equation of motion of the scalars, Eq. (4), in
NP language. This then means that if we have an Ansatz satisfying the
supersymmetry equations that satisfy the Bianchi identity and the equations
of motion for the gauge fields, then the equation of motion of the scalars
is identically satisfied. This is, seeing the quite horrible form of Eq. (69),
quite a relief.

Another useful identity can be derived in the same manner as above,
namely

D
(
TΛF

Λ−)
= 2iGīı dZ

i∧Gi− ↔ DB
B̄φ̄C̄B̄ = 2iGīı ∇CC̄Z

i ψı̄
B

C , (73)

in the derivation of which we, once again, assumed that the Bianchi identity
and the equations of motion are satisfied. This is of great use if we want to
calculate the integrability condition for the gravitino. As an example, it is
easy to see that one can determine the Ricci scalar by

1
4R εC̄ = ∇BC̄∇BB̄εB̄ + ∇B

B̄∇B
C̄εB̄ , (74)

where ε is either ᾱ or β̄. A small calculation using Eq. (73) and the defining
relations Eqs. (37–40), then shows that

R = −2∂cZ
i∂cZ̄ ı̄ Gīı , (75)

which is nothing but the contracted version of Eq. (2). Once again, this
means that the trace-part of the equation of motion is identically satisfied
if we have Ansatz that solves the supersymmetry variations, the Bianchi
identity and the equations of motion for the gauge fields. Of course, we still
need to find out whether this also holds for the full system of equations of
motion.

It is also not hard to see that the integrability condition for the gravitini
actually leads to the desired result: writing

Rab ≡ RABĀB̄ = ΦABĀB̄ + 1
4R εABεĀB̄ , (76)

where the last step is the break down of Rab into irreducibles. It is then
straightforward to see that

1
2RABĀ

B̄εB̄ = ∇AĀ∇B
B̄εB̄ − ∇B

B̄∇AĀεB̄ , (77)

which follows immediately from 2γb [∇a,∇b] ε = Rabγ
bε. Calculating the

l.h.s. through the supersymmetry equations, making use of Eqs. (56,73) and
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the identity 2TAĀT
AB̄ = V V̄ δĀ

B̄, one can see that a solution of the super-
symmetry equations that also solves the Bianchi identity and the equations
of motion for the gauge fields, must satisfy

0 = Rab + 2∂(aZ
i∂b)Z̄

̄ Gi̄ − 8Im(N )ΛΣ φ̄Λ
ĀB̄ φΣ

AB , (78)

which is of course nothing but the Einstein equation (Eq. (2)).

3.1 Summary of the degenerate case and Max. Susy Sols.

From the above discussion it is clear that given an Ansatz for a solution that
solves the supersymmetry equations, the equations of motion for the metric
and the scalars are identically satisfied iff the Ansatz solves the Bianchi
identity and the equations of motion for the gauge fields. Since in the
degenerate case we have solved for the most general Ansatz solving the
supersymmetry equations, the only real constraints from the equations of
motions are Eqs. (62,65), which combined state that

R = Re
(
V/V̄

)
, (79)

where R is a symplectic vector of real, harmonic functions on R3. W.r.t.
the metric in Eq. (52), the gauge fields then take on the form dictated by
Eq. (61) and the “dragging factor” is determined by Eq. (68). In order to
then completely fix the solution, we must find an expression for V V̄ .

In fact, V V̄ is determined by the normalization of the section V, see Eqs.
(7), to be

1/V V̄ = i〈 V/V̄ | V/V 〉 , (80)

which means that we must invert Eq. (79). As was aptly observed in [4],
Eq. (79) is nothing but the equation determining the stabilization of the
moduli [5], but where the charges are substituted by harmonic functions.

Generically the solutions in this class preserve half of the available super-
symmetries. This can be seen by rewriting Eq. (56) to 2V̄ Gi−

ab = i(dZi∧T )−ab

and plugging this expression into the gaugino variation (6). The result of
this operation is

i /∇Zi
(
εℵ + V̄ −1 /T εiε

ℵi
)

= 0 , (81)

which is consistent due to ε∗ℵ = εℵ and Eq. (46).
In order to have a chance of having 4+ solutions, however, then means

that the scalars are constant and that all Special Geometry attributes are
constants over spacetime. This implies that all 4+ solutions of D = 4 N = 2
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Sugra coupled to vector multiplets are embeddings of minimal D = 4 N = 2
Sugra, and especially the 3 vacua: Minkowski, Robinson-Bertotti and KG4
[6]. The question then arises whether there are solutions that preserve 5,
6 or 7 supersymmetries.3 Arguments of generalized holonomy [7], however,
show that such solutions do not exist.

4 Degenerate case

In this case we have that

αAβ
A = 0 → β ∼ V̄ α , (82)

where V̄ is an arbitrary, complex function.4

Substituting the degeneracy condition in Eqs. (39,40) and subtracting
we find that

0 = 4
(
V V̄ + 1

)
ψ̄i

ĀB̄ ᾱB̄ , (83)

which together with the symmetricness of ψ̄i
ĀB̄

implies

ψ̄i
ĀB̄ = ψ̄iᾱĀᾱB̄ → αA∇AĀZ

i = 0 . (84)

From the gravitino variations we can derive that

∇aV ᾱB̄ = −
√

2
(
V V̄ + 1

)
φ̄ĀB̄ αA , (85)

from which one can derive φ̄ĀB̄ = φ̄ ᾱĀᾱB̄, by contraction with ᾱB̄. The
vector la = αAᾱĀ satisfies dl = 0, so that l = du, and then it follows that

∇aV = −
√

2
(
V V̄ + 1

)
φ̄ la , (86)

meaning that V and φ̄ are functions of u only. This means that we can define
a spinor OA = Y (u)αA such that we can get rid of the gauge field in the
expression for its covariant derivative. Since it is the gauge field contribution
that generates the twisting of l, the new La = OAŌĀ will be null, exact and
twist-free, whence covariantly constant.

3 In lack of a better place to put this: Observe that the near-horizon limit of
Schwarzschild-Taub-NUT is not supersymmetric, nor is it a solution. Neither is its asymp-
totic limit a solution. Yep, Taub-NUT is one hell of a strange solution.

4 We take the case V̄ 6= 0, since the case that V̄ = 0 will lead to the system (87–91)
with φ̄ĀB̄ = 0.
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All of this allows for the introduction of the normalized tetrad, OAI
A =

1, which then satisfies

∇aŌB̄ = − i
2QaŌB̄ , (87)

∇aĪB̄ = i
2QaĪB̄ + P̄a ŌB̄ , (88)

0 = OA∇AĀ Zi , (89)
φ̄ĀB̄ = φ̄(u) ŌĀŌB̄ , (90)
ψ̄i

ĀB̄ = ψ̄i ŌĀŌB̄ , (91)

where we have introduced coordinates5 u and v defined by Ladξ
a = du and

La∂a = ∂v. Also observe that ψ̄i is not restricted to depend only on u.
Eq. (89) is of special interest, since it not only states that ∂vZ

i = 0,
but also that δZi = 0, stating clearly that Zi can at most depend on two
coordinates: u is the obvious one, and we will call the other one z. It is
then clear that in the degenerate case we can always set up a coordinate
representation for the tetrad such that6

L = du , D = ∂v ,
N = dv +Hdu+Adz̄ + Ādz , ∆ = ∂u −H∂v ,
M = −ω̄−1 dz , δ = ω (∂z̄ −A∂v) ,
M̄ = −ω−1 dz̄ , δ̄ = ω̄

(
∂z − Ā∂v

)
,

(92)

where one should observe that we discarded possible du terms in M , M̄ and
∆ since they lead to redefinitions of A, Ā and H once we consider the metric.
Furthermore, since ∂v is a Killing vector, all the functions that appear are
necessarily v-independent.

It is then easy to give a coordinate expression for the field strengths:

F = (FΛ,HΛ)T =
(
2Ui ψ̄

i + iV̄ φ̄
)
L ∧ M̄ + C.C. . (93)

We also have that

Im(N )ΛΣ T
(ΛΣ)
ab = 4

(
ψ̄iGīıψ

ı̄ + 1
4φφ̄

)
LaLb , (94)

which will come in handy whilst discussing the equations of motion.
By making use of Eq. (41) and the various results in this section, we

can rewrite the Bianchi identities and the equations of motion for the gauge
fields as

5 Even though the coordinate u used in these expressions is not the coordinate u used
before, we’ll use it anyway and hope that this practice will not lead to confusion.

6 This coordinate representation can be set up independently of whether Z depends on
z or not, since it is the maximal form compatible with a covariantly constant null vector.
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Let us rewrite Eq. (93) by introducing the explicit explicit expressions
for the tetrad in Eq. (92). This then leads to

F = −ω−1
(
2Ui ψ̄

i + iV̄ φ̄
)
du ∧ dz̄ + C.C. . (95)

The combination of the Bianchi and the equation of motion are restated as
dF = 0, so that a tiny calculation yields

∂z

[
ω−1

(
2Ui ψ̄

i + iV φ̄
)]

= ∂z̄

[
ω̄−1

(
2Ūı̄ ψ

ı̄ − iV φ
)]

. (96)

Let us define7 Ψ̄i = ψ̄i/ω, then using Eqs (11) and the fact that ∂z

(
e−K/2V̄

)
=

∂zΩ = 0, we can expand the above equation to be

0 = 2
[
DzΨ

i + i∂z̄Z̄
̄ G īı C̄ı̄̄k̄ Ψk̄

]
Ui + c.c.

+ ie−K/2∂z

(
eK/2/ω

)
V̄ φ̄(u) + c.c. (97)

Using the orthogonality of the symplectic sections, see Eq. (9), we see that

DzΨ
i = −i∂z̄Z̄

̄ G īı C̄ı̄̄k̄ Ψk̄ , (98)

and that ∂z(eK/2/ω)φ̄ = 0. So in particular, if φ̄ 6= 0 then we must have
ω = eK/2B(u, z̄).

Following Tod, we then distinguish between two cases: the Easy/degenerate-
degenerate case when the Z only depend on u, and the Hard/non-degenerate-
degenerate case, when at least one Z has a dependence on z. Before ana-
lyzing these two cases, let us first have a look at the (gaug/dilat/vector)ino
variations:

4.1 Analysis of the Killing spinor equation

Before plunging into the marvelous world of solutions, let us analyse the
Killing spinor equation with what we already know.

Let us start with Eq. (6): this turns out to be

0 = iΓ+∆Ziεℵ − iΓ δ̄Ziεℵ − 2ψ̄i Γ+Γ̄ εiε
ℵi . (99)

where we have introduced a base for the Γ-matrices such that {Γ+,Γ−} = 2
and {Γ, Γ̄} = −2. In fact Γ = Γω but it is just less confusing to use Γ. Also,
since

√
2Γ = Γ2 + iΓ3 and

√
2Γ̄ = Γ2 − iΓ3 we have that BΓB−1 = −Γ̄∗,

BΓ̄B−1 = −Γ∗ and also BΓ±B−1 = −Γ±∗. All of this must seem rather
7 Observe that Ψ̄i is a weight (−1, 1) object.
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strange to the Majorana-oriented mind, but it is all perfectly normal for a
Weyl representation.

The first thing to see is that of course Γ̄ε· = B (Γε·)∗. If we couple this to
Γε· = −Γ02Γ+ε·, then we see that one either has to impose Γ+ε· = 0, which
then also implies Γε· = Γ̄ε· = 0, or that the Z’s are constants and ψ̄i = 0. As
is obvious, the possibilities in the latter case are the ones of minimal N = 2
d = 4 and were discussed by Tod, and do contain the Kowalski-Gliman wave.

Anyway, we like history and will therefore copy Tod in considering 2
cases: Cases in which the scalar only depend on u, to which we’ll refer as
Easy cases, and the general case which we’ll call hard cases.

4.2 Easy cases!

This means that no Zi has a dependence on z, whence Zi and Z̄j are func-
tions of u only. The equation of motion for the metric in the zz̄ direction
then indicates that, using the terminology of Appendix (B.2), ∂z∂z̄U = 0,
which then implies that we can get rid of U by coordinate transformations
that do not change the set-up, whence we take U = 0. Plugging this result
into the equation of motion for the metric in the uz direction we find that
∂z(∂zA− ∂z̄Ā) = 0 and coupling this to its complex conjugate, we find that

∂zA− ∂z̄Ā = 2iS(u) . (100)

By making the coordinate transformation z → z eiS(u), we can transform
S(u) away, after which a simple v → v + . . . redefinition, is enough to get
rid of A altogether.

As far as the other equations of motions are concerned, it is easy to see
that the equations of motion for the scalars are trivially satisfied as guu = 0.
Furthermore, since all the Special Geometry objects only depend on u, we
can rewrite Eq. (96) to

Ui ∂zψ̄
i = Ūı̄ ∂z̄ψ

ı̄ , (101)

Contracting this equation with Uj , then states

iGjı̄ ∂z̄ψ
ı̄ = 0 → ψı̄ = ψı̄(u, z) , (102)

and likewise for ψ̄i.
Returning then to the remaining equation of motion, we see that the

wave profile H is determined by

H =
[
GīıŻ

iŻ
ı̄

+ 2 φ̄φ
]
zz + 8Υı̄GīıῩi , (103)
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where the Υ´s are such that ∂zΥı̄ = ψı̄.
So concluding, the Easy cases comprise of pp-waves for which the wave

profile need not be quadratic in the transverse coordinates.
Since in this case we have that U = A = Ā = 0 and that Qω = Qω̄ = 0,

the analysis of the gravitino equation is straightforward: First of all, as is
usual for a pp-wave the Killing spinors cannot depend on v as one can see
from δΨℵ− = 0. Also, δΨℵ ω = 0 states that εℵ = εℵ(z̄, u) and hence also
εℵ = εℵ(z, u). The variation in the ω̄-direction then reads

∂z̄εℵ + φ̄(u)Γ+εiεℵi = ∂z̄εℵ = 0 , (104)

so that the Killing spinors depend on u only.
The remaining gravitino equation, after using the various results found

up to now, reads
0 = ∂uεℵ − φ̄(u) Γεiεℵi , (105)

which in principle can be solved.

4.3 Hard cases

A first result can be obtained by applying Eq. (133) to Zi: making use of
the known connection coefficients we can derive8

0 =
(
δ − 1

2δK
)
δ̄Zi → ∂z̄

(
e−K/2ω̄∂zZ

i
)

= 0 , (106)

which clearly states that ω = exp (K/2 + C(u, z̄)). From the point of view
of the metric, however, one can get rid of C by a coordinate transformation,
so that we will take C = 0. W.r.t. the normalization of the metric in
Appendix (B.2), one sees that U = −K/2, and the Einstein equation in the
zz̄ direction is easily checked by looking at Eq. (142).9

The equation of motion for the metric in the uz-direction and its complex
conjugate then states that

1
2e
K (
∂zA− ∂z̄Ā

)
= iQu . (107)

Let us analyze the gravitino equation at this point since it might give
some extra input. As one can see from the cases, the common factor is that

8This is of course also derived in Eq. (98).
9 Let us point out a typo in Tod’s article [8]: The metric has the part M̄⊗M +M⊗M̄ ,

which together with [8, (A.9–10)] indicate that the metric factor should be e−2φωω̄ and
not Eq. [8, (A.17)], which is just the inverse.
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one has to impose Γεℵ = Γ̄εℵ = 0. Doing this in δΨℵ ω and using the fact
that 2ΓΓ̄ = [Γ, Γ̄]− 2, we see that

0 = Dωεℵ = θωεℵ + 1
2θωU εℵ + i

2Qωεℵ = θωεℵ , (108)

where we made use of the fact that U = −K/2 and that 2iQω = θωK. So
once again we find εℵ = εℵ(z̄, u) and εℵ = εℵ(z, u).

The covariant derivative in the ω̄ direction in its full glory reads

Dω̄εℵ = θω̄εℵ + 1
2 (θ+U + iQ+) Γ+Γεℵ − 1

2θω̄U
(
ΓΓ̄ + 1

)
εℵ − 1

4θω̄K εℵ ,
(109)

so that the covariant derivative in the ω̄-direction is just the ordinary partial
derivative. The variation in the ω̄-direction then simply becomes

0 = θω̄εℵ + φ̄Γ+εiεℵi = θω̄εℵ , (110)

so that, once again, the Killing spinor depends only on u.
One thing should be observed though: the fact that the Killing spinor

depends only on u is due to the fact that we chose to get rid of C(u, z̄) in
the solution of Eq. (106). Seeing however that to introduce it is equivalent
to a Kähler transformation and that ε· has a definite weight under Kähler
transformations, it can be reinstated with great ease.

The gravitino variation in the u-direction then reads

0 = ∂uεℵ − 1
2

(
e−Uθ+Ā− θωH

)
Γ+Γεℵ − φ̄(u)Γ̄ εiεℵi , (111)

which leads to Eq. (105).
There is only one equation of motion remaining, namely the Einstein

equation in the uu direction. This is however not too enlightening nor too
beautiful so we’ll abstain from giving it here. Let us however point out that,
since we can choose ∂zA+ ∂z̄Ā the way we like, basically since we have the
freedom to v → v + h(u, z, z̄), we can take it such that

∂zA = −∂uZ
i ∂ie

−K , (112)

leading to a small simplification of the Einstein equation in the UU direction.

A Conventions et cetera

Since we shall be using Penrose’s methods in part of this PoTP, it is probably
a reasonably good idea to spell a few things out: Penrose’s method is heavily
based on the isomorphism so(1, 3) ∼ su(2)⊕su(2). This isomorphism means
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that one can label a representation of the Lorentz group by two half-integers
(j, k). It is of course also true that so(4) ∼ su(2)⊕ su(2), and the difference
lies in the action of conjugacy: in the Lorentzian case we have that complex
conjugation acts on a representation as the map ∗ : (j, k) → (k, j). In this
notation a vector, which is an irrep, is then seen to be (1/2, 1/2) and a
Weyl spinor is, depending on the chirality, either (1/2, 0) or (0, 1/2). Using
su(2)-representation theory one can then also see that (1/2, 0)⊗ (0, 1/2) =
(1/2, 1/2), or rather, one can see a vector as the product of two Weyl spinors
of different chirality. The last thing we then need is the isomorphism su(2) ∼
usp(1), which means that a Weyl spinor can be seen as an usp(1)-vector.
usp(1) by definition leaves invariant the 2-dimensional symplectic form and it
is this symplectic form that we are going use throughout. Let us take a base
for the (1/2, 0) rep. by the vectors αA and βA, normalized to αAε

ABβB ≡
αAβ

A = 1, where εAB = −εBA and ε12 = 1. There was a rapid step,
so we will spell it out: αA = εABαB and αA = αBεBA, so that we take
εABεCB = εBCε

BA = δC
A. Observe that this means that ε12 = 1, which is

not (??) a typical PRC way of writing things but matches with [9], which
we are following in order to make life a tad less complicated.

Using said isomorphisms, we can write an so(1, 3) spinor in the Weyl
representation as ΨT = (ψA, χĀ), where A, Ā = 1, 2 and ψ sits in the (1/2, 0)
rep. and χ in the (0, 1/2). Switching between representations is done by
complex conjugation, which, since the Weyl spinor can be a complex vector,
acts as (ψA)∗ = ψĀ, where one puts a ¯ to indicate that it now transforms
in the (0, 1/2)-irrep. In the same notation a vector, when decomposed w.r.t.
the symplectic base is written as VAĀ, which is evidently real when V ĀA =
VAĀ. A Majorana spinor is a spinor which is invariant under the ∗-operation
and hence can be parameterized in this Weyl base as ΨT

Maj = (ψA, ψĀ). An
important question is about the representation of the 2-tensors: Let us have
a look at the so(1, 3) representation theory. A product of 2 vectors gives
(1/2, 1/2) ⊗ (1/2, 1/2) = (1, 1) ⊕ (1, 0) ⊕ (0, 1) ⊕ (0, 0). The last one is the
trace part, and (1, 0) ⊕ (0, 1) is the 2-form contribution and the (1, 1) is
a traceless symmetric 2-tensor. The 2-tensor we want an expression for is
the Minkowski metric ηab, and since this is invariant it occurs in the (0, 0)
part of the above expression. The occurrence of the 0 is significant since
due to the su(2) rules the 1 is associated to the symmetric part in the
Clebsch-Gordon series 1/2 ⊗ 1/2 = 1 ⊕ 0, whereas the zero is associated
to the antisymmetric part. This then means that ηAĀBB̄ = η[AB][ĀB̄], but
since we are in 2-dimensions, everything that is anti-symmetric in 2 usp(1)-
indices is proportional to ε, whence we must have ηab = εABεĀB̄, where a
constant of proportionality can be seen to be 1. As was remarked before,
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the 2-form contribution is (1, 0) ⊕ (0, 1) and therefore we have that Bab =
φABεĀB̄+χĀB̄εAB, with φ and χ symmetric 2-tensors of su(2). Furthermore,
if B is to be a real 2-form, then we have that χĀB̄ = (φAB)∗ ≡ φĀ,B̄.

From the above examples it should be clear that in the decomposition to
2-spinor only the symplectic forms and symmetric tensors can appear. And
also that every n-tensor has its translation into the 2-component spinor
language.

The convention for the metric is the mostly minus one, and the Clifford
algebra is generated by the γ-matrices, satisfying {γa, γb} = 2ηabI4. We
also define γab ≡ 1

2 [γa, γb], and in order to make contact with Penrose and
Rindler [10], we take the explicit representation

[γp]α
β =

√
2

(
0 εPAεP̄

B̄

−εP̄ ĀεP
B

)
. (113)

Since we are dealing with stuff in the Weyl representation we shall also need

γ5 ≡ −iγ0123 =
(
−εAB 0

0 εĀ
B̄

)
. (114)

A.1 Short dictionary

In this section we shall put together the needed translations and conventions.
Indices and meaning:

Type Associated structure
a, b, . . . Tangent space
m,n, . . . Flat R3-indices
α, β, . . . 4-d spinor indices
A,B, . . .; Ā, B̄, . . . usp(1)/NP indices
i, j, . . .; ı̄, ̄, . . . holomorphic and anti-holomorphic. There are n of them.
Λ,Σ, . . . sp(n+ 1) indices
ℵ,i, . . . N = 2 spinor indices

Due to the fact that we are in a Weyl representation, there is a matrix
B such that BΓaB

−1 = −Γ∗a. In the Majorana representation we would
take B = 1 but not so here: In fact given the conventions in [1], it is just
B = CΓ0, which is in fact a usual relation for a unitary representation of
the Clifford algebra. In the explicit NP representation you can see that

B =
(

0 12

12 0

)
. (115)
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All of this means that we need to define εℵ = Bε∗ℵ, which is indeed one of
those things that we are going to use in certain parts of this PoTP.

To NP and back again:

ε12 = 1 , (116)
εCAεCB = δB

A , (117)

ξA = εAB ξB , (118)
ξA = ξB εBA , (119)

η = diag (+,−,−,−) , (120)
ηab = εABεĀB̄ , (121)

ε0123 = 1 , (122)
εabcd = i (εABεCDεĀC̄εB̄D̄ − εACεBDεĀB̄εC̄D̄) , (123)

[γc]α
β =

√
2

(
0 εCAεC̄

B̄

−εC̄ĀεC
B

)
, (124)

[γ5]α
β = −i [γ0123]α

β

=
(
−εAB 0

0 εĀ
B̄

)
, (125)

F± = 1
2 (F ± i ∗ F ) ; ∗Fab = 1

2εabcdF
cd , (126)

F−
ab = φ̄ĀB̄εAB , ; F+ = F− , (127)

T
(ΛΣ)
ab = F (Λ

ac F
Σ)
b

c − 1
4gabF

(Λ
cd F

Σ)cd (128)

= −2φ̄(Λ

ĀB̄
φ

Σ)
AB . (129)

A.1.1 Newman-Penrose formalism

These are the rules for the commutators of the directional derivatives acting
on scalars [9]:

[∆, D] = (γ + γ̄) D + (ε+ ε̄) ∆ − (τ̄ + π) δ − (τ + π̄) δ̄ , (130)
[ δ,D] = (ᾱ+ β − π̄) D + κ ∆ − (ρ̄+ ε− ε̄) δ − σ δ̄ , (131)
[ δ,∆] = −ν̄ D + (τ − ᾱ− β) ∆ + (µ− γ + γ̄) δ + λ̄ δ̄ , (132)[
δ̄, δ

]
= (µ̄− µ) D + (ρ̄− ρ) ∆ + (α− β̄) δ + (β − ᾱ) δ̄ .(133)
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B Some useful geometrical data

This Appendix is intended to give the necessary connections, curvatures et
cetera for the metrics that will turn up in this PoTP.

B.1 Conforma-stationary spacetimes

In this small section we’ll present the curvatures of a metric of the type

ds2 = e2U (dt + A)2 − e−2Ud~x2 , (134)

where U and ω depend only on x. A Vierbein can be defined by

e0 = eU (dt + A) , θ0 = e−U∂t ,

ei = e−U dxi , θi = eU (∂i − Ai∂t) ,
(135)

which allows us to calculate the Levi-Cività connection to be

ωi0 = eU∂iU e0 − 1
2e

3UΩij e
j , (136)

ωij = −1
2e

3UΩij e
0 − 2eU ∂[iU ej] , (137)

where we have defined Ωijdx
ij = 2dA.

You can find the rest of the expressions in [11].

B.2 Wave-like metrics

Let us take η+− = −ηωω̄ = 1 and take the Vierbein to be

e+ = du , θ+ = ∂u − H∂v ,
e− = dv +Hdu+Adz̄ + Ādz , θ− = ∂v ,
eω = eUdz , θω = e−U (∂z − Ā∂v) ,
eω̄ = eUdz̄ , θω̄ = e−U (∂z̄ −A∂v) ,

(138)

The spin connection then is

ω+ω̄ =
(
e−Uθ+A− θω̄H

)
e+ −

(
θ+U − 1

2e
−U (θωA− θω̄Ā)

)
eω ,

ω+ω =
(
e−Uθ+Ā− θωH

)
e+ −

(
θ+U + 1

2e
−U (θωA− θω̄Ā)

)
eω̄ ,

ωωω̄ = 1
2e
−U

(
θωA− θω̄Ā

)
e+ − θωU eω + θω̄U eω̄ . (139)
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It is then straightforward to calculate the Ricci curvature:

R++ = −2e−2U∂z∂z̄H + 2e−U∂u(eU∂uU) + 1
2e
−4U

(
∂zA− ∂z̄Ā

)2

+e−2U∂u

(
∂zA+ ∂z̄Ā

)
, (140)

R+ω = e−U∂z

[
∂uU + 1

2e
−2U (∂zA− ∂z̄Ā)

]
, (141)

Rωω̄ = 2e−2U∂z∂z̄U . (142)

Observe that ∂zA+ ∂z̄Ā can always be taken to be zero, by a small change
of coordinates v → v + . . .

B.3 Kähler spaces, connections and curvatures

Let it suffice to say that on a Kähler space, which is a complex manifold,
there exist complex coordinates zi and z̄ ı̄ = zi and a function K such that
the line element is ds2 = 2Gīı dz

idz̄ ı̄, with Gīı = ∂i∂ı̄K. The function K is
called the Kähler potential.10

A straightforward calculation of the Levi-Cività connection then shows
that

Γjk
i = G īı∂jGı̄k , Γ̄k̄

ı̄ = G ı̄i∂̄Gk̄i . (143)

This then also allows us to calculate the Riemann curvature, which is not
that enlightening, so we will only state that only Rīıj̄ is non-vanishing. The
Ricci curvature is quite simple and reads

Rīı = ∂i∂ı̄

(
1
2 log detG

)
. (144)

C KG4 and the Weyl base

This section is sitting here because it is nice to have it. As is perhaps not that
well-known, N = 2 D = 4 sugra admits to a maximally supersymmetric pp-
wave, called KG4, that of course can be derived from the Robinson-Bertotti
solution by a Penrose limit. But of course Kowalski-Glikman found the
solution before anybody thought of doing the PL, so there you go..

Anyway, in the Weyl notation that is used in these notes, we can embed
KG4 by taking all moduli to be constant, U = A = Ā = ψ̄i = 0, and take
φ̄(u) = λ̄. Then in order for this to be a solution we must have H = 2λλ̄ zz̄

10 Derivatives like ∂i∂jK can in general not be zero, since if they were, it would imply
that the Christoffel symbols and their derivatives would vanish identically. This would
mean that the Riemann tensor would vanish identically, so that one would be talking
about Cn.
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as one can easily see from Eq. (103). The susy variations in this case then
take on the form

0 = ∂vεℵ , (145)
0 = ∂zεℵ , (146)
0 = ∂z̄εℵ + λ̄Γ+εiεℵi (147)
0 = ∂uεℵ + z̄H0Γ+Γεℵ + zH0Γ+Γ̄εℵ − λ̄ Γ̄εiεℵi , (148)

where we have introduced the abbreviation H0 = λλ̄ So, from Eq. (145,146)
we see that εℵ only depends on z̄ and u, so that due to the identification
εℵ = Bε∗ℵ, ε

ℵ depends only on z and u. Eq. (147) can then be solved by a
u-dependent Weyl spinor χℵ such that

εℵ = χℵ − z̄λ̄Γ+χiεℵi → εℵ = χℵ + zλΓ+χiε
ℵi . (149)

If we then plug the above expression into Eq. (148) we see that the z-
dependent terms vanish identically, whereas the z̄-independent term, which
therefore have to cancel by themselves, are

∂uεℵ = λ̄ Γ̄ εiεℵi −→ ∂uε
ℵ = −λ Γ εiε

ℵi , (150)

which is integrable as one can see by going to the Majorana representation.
After plugging the last expression of Eq. (150) into the remaining terms
one sees that Eq. (148) is satisfied identically without having to impose any
restriction on the spinor χℵ.
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