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Unfrozen hyperscalars and supersymmetry
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We discuss the effect that non-constant hyperscalars have in supersymmetric solutions, discuss
the equations governing such solutions and show some intriguing solutions.
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Hypermultiplets are quite peculiar in that they couple to other supermultiplets only gravitation-
ally; it is however a mistake to think that this dissociation is not accompagnied by somatization.

Since the coupling of the hypermultiplets to the other multiplets is only gravitationally, there
is no obstruction whatsoever to considering supersymmetric solutions with frozen, i.e. constant
hyperscalars, which accounts in part why they have been largely ignored in the literature. In
fact, only recently [1, 2, 3] has the effect of defrosting the hyperscalars on the known supergravity
solutions been investigated leading to some uncommon, yet with hindsight predictable, results:
turning on the hyperscalars curves the space orthogonal to the Killing direction implied by pre-
served supersymmetry, we shall refer to this orthogonal space as the basespace, in such a way
that one preserves 1, 2 or 4 supercharges. The technical reason for this lies in the fact that the
hyperscalars induce a composite su(2)-connection in the covariant derivative acting on the Killing
spinors. Since it is su(2), the trace of the vector-bilinear is still a Killing vector, which can be either
a timelike or a null vector.1 The non-singlet bilinears are however charged under this composite
su(2), and therefore lead to deformations of the structures that appear in the unfrozen case.

As a concrete case, let us discuss the timelike case in N = 1 d = 5 supergravity coupled to
nv vector- and nh hypermultiplets: in the case nh = 0, the supersymmetric solutions in said
class are determined by a 4-dimensional hyperKähler metric, some closed, selfdual 2-forms ΘI

(I = 0, . . . , nv) and functions HI satisfying [5]

∇2
(4) HI − 1

4 CIJK ΘJ ·ΘK = 0 , (1)

where the d’Alembertian is taken w.r.t. the 4-dimensional hyperKähler metric, and the CIJK are
the intersection numbers defining the Chern-Simons couplings between the vector fields. Further-
more, the solutions always preserve half or all the supersymmetries.

The above equations are equivalent to the equations of motion for the gauge fields and the fact
that the Θs have to be closed is equivalent to the Bianchi identities for the gauge fieldstrengths.
That this is the only information needed to specify the solution completely is largely due to
supersymmetry.

If we then defrost the hyperscalars, the first thing one finds is that the 4-dimensional manifold
is no longer hyperKähler! In fact one finds that the su(2)-part of the holonomy that vanished on
the hyperKähler space, now has to be such as to cancel the, pull-back of the, su(2) connection
induced by the hyperscalars. The equations of motion concerning the gravity- and the vector
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1 Observe that in N = (1, 0) d = 6 sugra, due to the chiral nature of the spinors, only the null case occurs [4].
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multiplets then lead to the same structure as in the frozen case, but using the near-hyperKähler
metric in stead of the hyperKähler one.

The second thing that pops up is a constraint on the hyperscalars that determines the hyper-
scalars to be a quaternionic map [6], i.e.

3∑
r=1

Jrµν ∂νqX JrX
Y = ∂µq

Y , (2)

where Jr, resp. Jr, are the almost-quaternionic structures on the hypervariety and the 4-dimensional
basespace. If the hyperscalars satisfy the above equation and the metric on the basespace is as
above, then one can see that the solutions are generically 1/8-BPS and that the equations of
motion for the hyperscalars are identically satisfied.

One should however observe that the problem is far from trivial: in order to determine the
cancellation of the holonomies, we need to know the hyperscalars, but they in their turn are
determined by Eq. (2) for which one already needs to know the metric on the basespace.

Some solutions to the above problem can be generated by using the existing relations between
the various supergravities, which grosso modo are
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In this sketch, E0 (E+) is the form related to the Timelike (Null) Killing vector, Q stands for
the, metric on the, basespace, and solid lines indicate dimensional reduction over a spacelike
direction in the space from which the line departs. More explicitly, consider the null case in d = 6:
there we know that the general solution is of wave-type with a 4-dimensional metric on the wave-
front, which is a 1-parameter family of near-hyperKähler metrics; the relevant parameter is the
coordinate u in which the wave propagates. If we then want to consider dimensional reduction, we
can either reduce over a circle in the basespace leading to a solution in the null case in d = 5, or
we can reduce over a spacelike direction in the null cone, which then means that we must consider
u-independent solutions and in fact means solving the same equations as discussed above. Starting
from d = 4 makes more sense since in some cases the equations that need to be solved are easier.

One of the most enigmatic class of solutions found in [7] in the hyperless case with vector
multiplets on the coset Sl(2,R)/U(1), and generalised to the general case in [8], are the cosmic
strings; these solutions lie in the null class and are characterised by vanishing vector fieldstrengths
and the (anti-)holomorphic scalars in the vector multiplets are (anti-)holomorphic, e.g. Zi =
Zi(z); the spacetime metric is then given by

ds2 = dt2 − dx2 − e−K dz dz̄ , (3)

where K is the pull-back of the Kähler potential specifying the special geometry of the vector
multiplets. A further, and for our purposes important, characteristic is that this class of solutions
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consistes of 1/2-BPS solutions and that the corresponding Killing spinor is constant. As the
Killing spinor is constant, we are assured that (standard) dimensional reduction won’t break
supersymmetry any further, and since dimensional reduction is a fundamental ingredient in the
supergravity implementation of the c-map, we are also assured that the c-mapped solution will be
1/2-BPS; the technical verification of this fact is spelled out in Ref. [1].

Seeing that this solution was created using the c-map one can ask oneself how generic it is:
Indeed, since the c-map results in a restricted class of hypervarieties called dual quaternionic
manifolds, the existence of cosmic strings for more general hypervarieties is à priori not guaranteed.

As was stated above, a generic solution with unfrozen hyperscalars is a 1/8-BPS solution and
the, to the knowledge of the author, only solution known to solve the system was found by Jong,
Kaya and Sezgin. In Ref. [2] they gave an explicit example with non-trivial and not-obviously-
holomorphic hyperscalars taking values in the symmetric hypervariety H4 = SO(4, 1)/SO(4).

By taking the metric on the coset to be

ds2H4 =
dqX dqX

1 − q2
(X = 1, . . . , 4) , (4)

and taking the metric on the basespace with coordinates xm (m = 1, . . . , 4), to be conformally
flat, one finds a 1/8 BPS, static, asymptotically flat, spherically symmetric, solution with unfrozen
hyperscalars, but with trivial vector- and scalarfields, in the SO(1, 4)/SO(4) coset:

ds2 = dt2 −
(

1− 1
x6

)2/3

dxmdxm ,

qX = δXm
xm

x4
,

(5)

A few comments on this solution are in order: first, concerning the statement that this solu-
tion be spherically symmetric, it is true that naively this is broken by the hyperscalars. But a
spacetime SO(4) rotation can, due to the fact that the hyperscalars take values in the coset space
SO(4, 1)/SO(4), always be compensated for by using a symmetry of the action.

Secondly, the region x2 = 1 corresponds to a true curvature singularity which obviously is
naked. Since there are no conserved charges in this system, the no hair conjecture suggests that
black-hole type (i.e. spherically symmetric) solutions of this and similar systems will always
be singular, but a more detailed study is needed to reach a final conclusion since they may be
excluded by a mechanism like the one discussed in Ref. [9]. Furthermore, a higher-dimensional
stringy interpretation of this, and similar solutions, is also needed as to interpret this singularity
correctly.

As a further example let us now consider how solutions of minimal N = 1, d = 5 sugra2 are
deformed by the coupling to these hyperscalars. For the sake of simplicity we consider the simplest
(Θ = 0), static solution which is determined by a single function K, which is harmonic w.r.t. the
metric on the basespace. The supersymmetric solution can be written as

ds2 = K−2 dt2 − K

(
1 +

λ

x6

)2/3

dxmdxm ,

A = −
√

3 K−1 dt ,

qm =
xm

x4
.

(6)

2 This is equivalent to taking nv = 0 and C111 = 1.
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If we consider the hyperscalars to be frozen and choose the harmonic function such that we end
up with an asymptotically flat, spherically symmetric solution with positive mass, i.e.

K = 1 +
|Q|
x2

, (7)

we find the 5-dimensional Reissner-Nordström black hole [10], which has an event horizon at x = 0
that covers all singularities.

When the hyperscalars are unfrozen and we have the above base manifold, K, again determined
by imposing asymptotic flatness and spherical symmetry, is given by

K = 1 + |Q| 2F1

(
1
3 ,

2
3 ; 4

3 ; x−6
)

x2
, (8)

where 2F1 is a Gauß hypergeometric function. It is easy to see that limx2→∞K = 1 and that
2F1

(
1
3 ,

2
3 ; 4

3 ; x−6
)
/x2 is a real, strictly positive and monotonically decreasing function on the

interval x2 ∈ (1,∞). The real question then is: what happens at x2 = 1? Eq. [11, 15.1.20] gives
a straightforward answer

2F1

(
1
3 ,

2
3 ; 4

3 ; 1
)

=
Γ
(

1
3

)
Γ
(

4
3

)
Γ
(

2
3

) ∼ 1.76664 , (9)

which implies that there is a naked singularity at x2 = 1.
The fact that we find a naked singularity in these asymptotically flat spacetimes is bother-

some and one must ask oneself how generic this ocurrence of a naked singularity is. Should this
behaviour be generic, then we are obliged to find out how string theory gets rid of them, the
usual suspects being quantum and non-perturbative corrections. But then, it might not be a
problem for string theory: the hypervariety SO(4, 1)/SO(4) is not directly obtainable by a string
theory compactification,3 and it seems highly unlikely that the embedding of SO(4, 1)/SO(4) into
more general hypervarieties will respect the simple structure of the solution. Work along these
directions is in progress.
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[1] M. Hübscher, P. Meessen and T. Ort́ın, “Supersymmetric solutions of N = 2 d = 4 SUGRA: the whole
ungauged shebang”, Nucl. Phys. B759(2006), 228 [hep-th/0606281].

[2] D.C. Jong, A. Kaya and E. Sezgin, “6D dyonic string with active hyperscalars”, JHEP 0611 (2006)
047 [hep-th/0608034].
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