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The plan of this PoTP is the following: In the Section (1) we will
review the technical details of the contruction of 16+ Hpp-waves and the
various constraints that come popping up and will discuss some solutions,
especially the so-called time-dependent Hpp-waves: They are distinguished
from the more familiar Cahen-Wallach Hpp-waves by the fact that they are
not symmetric spaces, rather they are naturally reductive naturally reduc-
tuve spaces. In Section (2) we will make use of the general prescription
for attributing a superalgebra to a supersymmetric solution, see e.g [16], in
order to derive the generic form of the superalgebra. We will then discuss
the exact form of the superalgebra for the examples exhibited in Sec. (1).

1 164 Regular Hpp-waves

In [1] it was proven that if a Hpp-was has more than 16 preserved super-
symmetries, then it necessarily must be regular homogeneous plane wave [2].
This means that, in stationary coordinates, such a solution can be written
as

ds* = 2du(dv + Hyy'y'du + Sy'Fiydy’) — difgy, , (1)
G(4) = %@Uk du N\ dyijk , (2)

where H, F' and © are constant. These metrics are geodesically complete and
the underlying spacetime is symmetric, .e. is a Cahen-Wallach spacetime,
iff [F, H] = 0. If this is the case, then we can always eliminate the F' from
the metric by a change of coordinates. Making use of the characterization
of Lorentzian homogeneous spaces in [3], one can see that in general these
regular homogeneous plane waves are naturally reductive.!

! In short, this boils down to the fact that we can add a totally anti-symmetric torsion,
S say, to the Levi-Civita connection such that the metric, the Riemann tensor and the
torsion are parallel. For the regular Hpp-waves this torsion is S = —du A F.



The equations of motion for the field-strength are trivially satisfied and
the only non-trivial equation following from the Einstein equations, is

Hyn” — §F? — $0#09% = 0, (3)

which is however automatically satisfied when the solution is 16+ [1].
The M-theory supersymmetry variations can be rewritten to be

0 = Vge + 4% [3$(4)Fa - Fa$(4)] €, (4)

where in our conventions for the slash, we have ¢ @ = %Gabcdfam. Making
then use of the fact that for the wave we have @'(4) = I't@, the above
variation can be rewritten as

0 = Vae + 4 [307@T, + T,0T] e, (5)

Making use of the above equations, one sees that € doesn’t depend on v, as
is usual, and the rest of the equations are reduced to

0 = @e - F+Qi€ : Qz = %FZ]FJ - % [3@F1+F1@] 3 (6)

0 = Oue+30HTTe—1Fe — 2O [ITT™ +1]€, (7)
Eq. (6) can of course always be integrated to give
e =¢(u)+ (1 + F"'yiﬂi) € (u) . (8)

where I'f¢* = 0. so we only need to have a look at Eq. (7). By bluntly
plugging the above solution into Eq. (7), however leads to a piece which
doesn’t depend on the transverse coordinates and one that does. This then
means that we must have

Oue™ = 1Pet + ZHHT + 1]t (9)

which after substitution into the y-dependent part of Eq. (7) leads to the
constraint

YT+ (1241 (Hiy = LF2)T9 4 98°T, + 60T, + T@” + 9i [F, @] i + 30 [F,0] | = 0.

(10)
This equation is solved by putting € (u) = Px (u), or rather P projects onto
the trivial subspace. This imposition of the projection operator has to be
done consistently with the u-evolution, and this implies the constraint

[P, ®-3iF] =0. (11)



It is conventient to rewrite the above equations in terms of C1(0,9),
generated by 4" which are symmetric and purely imaginary, through the
rule I = I't4*, for which we then find the representation

r+:\f2i<8 é),ﬁ:—ﬂi(? 8>,ri: (_07 ’31')(')
12

The projection operator for the extra supersymmetries will always be written
in terms of the v matrices, and the change between the 2 notations is almost
trivial.

At the end of the day, the solution for the Killing spinor is

€ = exp (% [@—ZF])ES_ + (1 + F*yin‘) exp (% [@—32'}@)667 (13)

where we of course have that Pe;, = ¢; .

1.1 Some examples of 164+ non-Symmetric Hpp-waves

The most famous of these 16+ Hpp-waves is the maximally supersymmetric
solution found by Kowalski-Glikman [4], and a great bunch of them are to
be found in the works of Gauntlett and Hull [5], Pope et al. [?77], where
they realize 24,22,20 and 18 preserved supercharges, and in the work of
Michelson [6] who finds a solution that preserves 26 supersymmetries. All
of these solution are Cahen-Wallach spaces, i.e. they are symmetric spaces.

It is also possible to find 164+ Hpp-wave solutions that are not Cahen-
Wallach: The first example of these solutions was constructed in [1] by
applying a Penrose limit on the M-theory Gdédel solution found in [7]. Ex-
plicitly, this solution can be represented as

H = diag (0,252 (1—p2),[522r,05), (14)
F = —206pT?, (15)

$ — —28 [Fl% _ I3 _ /71_192 267 _ /71_]92 Fzsg} . (16)

This familiy of solutions interpolates between 2 Cahen-Wallach spaces: One
at p = 0, which is nothing more than the uplift of the KG5 solution [9],
which preserves 20 supersymmetries, and another one at p = 1, which pre-
serves 24 supersymmetries. For generic values of p, the solution preserves
20 supersymmetries and the projector is given by

P — i(l — 1= 2y - p71234) (1 — 70789) (17)

As a sidenote let us mention that the Killing spinor does not depend on the
coordinates 3°...4" and that we can therefore obtain solutions of type IIB



that have the same kind of behaviour.2

The authors of Ref. [11], thought that these kind of solutions were
probably inexistent in IIB, a thing that clearly doesn’t stand up. The only
published NR type IIB solution is to be found in Ref. [15].

Using a notation similar to the one above but adapted to the IIB case, we
can find 2 time-dependent 164 waves. By reducing over z° and T-dualising
6 one ends up with

A = diag (0,5(1—p?),[3]%[0]") ,
F = prlz ;
B = —\/1-pTtr2,

G = V/1-pTHT7,

$(5) — _1—1+ [F1256:|:F3478 _ pF3456:FpF1278] . (18)

over

Another one can be obtained by dimensionally reducing over z° and T-

dualizing over z”, which results in

F = prl2 ’
H o= T2 pr¥
Gy = V1-pTTT,

@(5) — _mrJr [F2568irl347] ) (19)

The reasoning of [1] can however also be applied to another Godel-like
solution in M-theory, namely the n = 4 case in [8], resulting in [16]

H = diag(0,26°(1~p).[5]°0)
Fo= —2ppr?,
® = —23 [Flzg £ 21— p2 T2 4 pI39 4 proe9 pF789} (20)

As in the foregoing example, there are 2 points where the above family
becomes a Cahen-Wallach space: At p = 0 we have 24 supersymmetry
solution and at p = 1 we have a 22 supersymmetry solution. For generic
values of p, one can see that the projection operator is

P o= (1 +VI=P™ +pin?) (38 +7%° +4717 +9557) | (21)

from which it is paramount that the solution preserves 22 supersymmetries.
The isometry algebra also jumps in this family. Generically the rota-
tional part of the isometry algebra is u(2) @ u(1), but at the Cahen-Wallach

2 Apart from the 22-dimensional Heisenberg algebra, the isometry algebra also has
rotational isometries: a w(1) @ u(2) when p # 0,1 and at p = 0 this is enhanced to
u(3) @ u(1), whereas it is enhanced to u(1) @ su(2)® at p = 1.



points it gets enhanced. At p = 0 one has a u(2)? whereas at p = 1 one has
a u(4). A point worth observing however, is that the point where the ro-
tational isometries increase most is not the point where the supersymmetry
gets enhanced.

The only supersymmetry preserving dualization of the above solution,
for generic p, to a type IIB solution we have been able to find, although
rather suggestive, is by dimensionally reducing over y° and T-dualizing over
y!. The resulting type IIB solution reads

2 2 2
ds® = 2du (dv + %:U%S)du) — dxg)

Hg) = —26 pduh [dxlz + dz*t + da®® + dac78] ;
G = 48y/1 — pPdu A\ [dz'?™® 4 o] | (22)

which after a small coordinate relabeling is just the 28 susy solution Eq.
(4.23) of [11].3

A special case is p = 1. In that case one can introduce an F' on all the
2-planes, thus getting rid of H; furthermore in these coordinates the Killing
spinor only depends on u. This means that we can safely T-dualize it to
a type IIB solution, the result of which is Michelson’s 28 supersymmetry
solution [6]. Also observe that this 28 IIB solution can be described as
a WZW model on a Heisenberg group [10]. This is a bit overkill, since
the basic fact is that although the Killing spinor doesn’t depend on the
transverse coordinates, you still have to take coordinates such that they are
from different 2-planes. As such the result written above is completely okay,
and even the limit p = 1 is okay. On the other extreme the point p = 0
corresponds to the maximally supersymmetric KGB solution. An interesting
question then is: What is the Penrent of this solution?? Il.e. what is the
configuration that gives rise, after a PL, to this interpolating wave?

2 The Generic Superalgebra

The bosonic part of the of the superalgebra was already discussed in [2], and
we’ll follow their line of reasoning in this section. Two Killing vectors are
obvious in the metric (1), namely V = 0, and U = 0,,. The killing vectors
would be the translations and the null-rotations in the flat-space limit are
of the form ¢ = C%(u)0; + z;B*(u)d,. Imposing that they are Killing then
leads to the set of equations The condition for Killingness then read

= B+ C'" - IF09, (23)
= B' + 2H;07 + LFC. (24)

3 For completeness, let us state that f = —28p and g = 48+/1 + p2.



Taking the first to define B, we can derive
Ct — 2H;C7 + FL00 = 0. (25)

We can choose a base for the solutions to the above equations by defining
the boundary conditions

( ] o ‘. .j -
j j C(i) u=0 ! ’ C(i) u=0
Xi = Cooi + oBpde — j . y
— £ nyi —
Pileo = 27 Booley =
| | ‘o =0 Cu =
7] . -]
Ba|,_, = —n » By =
\ u=0
(26)

With the above boundary conditions we can then calculate the algebra,
whose explicit form is

(X, X;] = -F;vo o, [UX)] = 2H/X; - F/X;,
B (27)
(X, X;] = nyV . [XL U] = =X

from which the fact that these spaces are reductive is paramount. There
can, and will, also be rotational symmetries, but since the only ones that
will interest us arrise from the fermions, we will not discuss them here, let
it suffice to say that they must be an automorphism of the above algebra,
which implies that they must commute with F' and H.

In order to derive the ‘supertranslation’ part of the algebra, let us write
the Killing spinors as Let us write the generic solution as

e = euNire(Jg) 4 (1 + FeriQi) €UN:€(_0), (28)
_ ¥ uNT T uNT i
e = e’ + et (1-TTa') (29)
where T'#¢f; = 0 (and therfore also%lﬂjE = 0 ) and we introduced the
abbreviations
Nf = ${¢ + iF}, (30)
N: = 2{é + 3if} , (31)
Q = [0 F] + 45 [30i@ + &1y . (32)

With this very enlightening knowledge we can then determine &TI'%eyf4
(remember that this is the equivalent of the {Q, Q})

++ : &€ o,, (33)

DO

FJ



-GN I + 20° X0, | e Mgy (34)
- SF*'E,; Oy — € DTe wN= {Q-Fi + FiQ-}e“N:e_ 7 9;

—pipde THe uN= [Hij _ éFE] 2U(7;U )] Noe; 9, , (35)

where U; = Z—f [3@T¢ + %@] =Q; — % [%,F] (I should probably mention
that the transposition in the last equation is the one from the 9d Clifford
algebra). anyway, since the above thing has to be expressable in terms of
killing vectors and they can be at most linear in the x’s, we must have that,
using the fact that the projection operator commutes with N_,

0= P|Hy; - §F2 + 2LU,| P (36)

which is a rather surprising identity (which holds for the 2 examples we
have. See the file qqconstr.map).

Anyway, we can always evaluate the above rules at the point u = 0 and
the general result is, here we have that I*QF = 0 and (1 — P) 9t =0,

{9797} = —V2iv (37)
{07,0"} = P X, + wP X', (38)
{Q", 0%} = V2P U + V2P [wiy; +vjwi| Py, (39)

where we use the CI(0,9)-version of §;, e.g.
wi = 50 f) — 41 Bfvi + wf) , (40)

and ! means transposition of the 16 x 16-matrices. Using the expression for
the Killing vectors one can derive

£ee = C'oe + FOTMe = —CITHes — JOTTe (41

which after making use of the boundary conditions (26)

U, Q*] = -G (#-3if)Q, (42)
0,97 = +1(0+if) o, (43)
(X1, Q"] = 5PnQ . (44)
[Xi7 Qﬂ = V2iP [Wf U’Y]} Q. (45)

At this point we have fixed the complete Lie superalegbra corresponding to
16+ Hpp-waves, and the only remaining thing that is to be done, is to have
a look at some examples!



2.1 The examples

Since we now have the general formulae at our disposal, we can derive the
superalgebras for our examples in Sec. (1.1) with great ease. The explicit
details are not very enlightening, so that we shall only talk about what
possible rotational groups can appear as supervectors. As was mentioned
in Sec. (1.1) the generic rotational symmetry of the solution (14) is just
u(2) ® u(1l), and this is enhanced to u(3) & u(1) at the point p = 0 and to
u(2) @ so(4) when p = 1. A small calculation then shows that in this case,
for all values of p, only a u(1) appears. For p # 1 this is the rotation on
the 34-plane, whereas when p = 1 it is the u(1) in the u(2) that acts on the
directions 1234. In light of the isomorphism, we are quite lucky in this case:
We deform the p = 0 solution in the 12-plane and this breaks the rotational
invariance of the solution. Supersymmetry is however not affected by this
since the only the rotation in the 34 plane is sitting there.

At the point p = 1 the same calculations show that there is a u(1) ® u(1)
appearing, basically rotations on the 12- and 34-plane. This is however not
possible since the full automorphism-group is u(2) @ so(4), with the u(2)
on 1234, and the aforementioned u(1) @ u(1) is not an ideal of this algebra,
as it ought be. Even worse, we can undo F' in the metric and calculate
the superalgebra only to find that in that case the super translation only
contains the u(1) in the u(2).

What is confusing in the above paragraph is nothing more than natural,
and at the end rather stunning! The solutions we are dealing with allow,
algebraically speaking, a host of different descriptions, or said more mathe-
matically, a host of reductive splits. Different reductive splits, however, need
not admit the same automorphism groups nor need it admit the maximal
automorphism algebra. It is clear that if we look at the automorphism alge-
bra at p = 1 then since we have an F' on 12 but not on 34, that in the algebra
the automorphism is not u(2) but rather u(1) @ u(1). Once we rotate, by a
coordinate transformation, F' into H, we find the maxilimal automorphism
algebra u(2), and susy tells us that we only pick up the u(1). The stunning
fact is that the supercharges understand the subtleties involved!

In the case of Sol. (20), things are a bit more involved. At p = 0, the
rotational isometries of the bosonic solution forms a u(2) @ u(2), and once
we start turning on p, this is broken to a u(1) @ u(2) and then enhanced
to u(4) when p becomes 1. As far as the rotational contribution to the
superalgebra is concerned, we start of with a u(1) @ so(4) at p = 0, which
then is broken, together with the supersymmetry, to u(1) ® u(2). The point
p = 1 is delicate: my calculations indicate that it should be a u(1) from a
u(3) and not one from a wu(4). However when we dualize this case to IIB,
then we find Michelson’s wave and in his superalgebra one only finds the
u(1) in the u(4). Of course, the explication is the same as before.

So we have seen that there is a subtlety involved in talking about super-



algebras associated to 16+ Hpp-waves: a straightforward calculation might
lead to non-sensical answers when comparing the information to the isometry
algebra (assuming that one didn’t make a mistake, and found the maximal
isometry algebra). The conclusion then is that in order to be on the safe
side you either have to point this which reductive split you are using or
always talk about the reductive split admitting the maximal automorphism
algebra.

3 Heisenberg algebras and Bogolyubov transfor-
mations: From anti-Mach to Cahen-Wallach.

Let us consider the 4-dimensional anti-Mach metric, and investigate the
Heisenberg part of the isometry algebra.* In fact consider the data

H = diag (0,26% (1—p®)) ; Fio = —208p. (46)

An explicit representation of the Heisenberg generators can then be seen to

be U =0,, V =0, and

& = 01 — Bpr2l,, (47)
& = cos(2Bu)dr + psin(28u) 0 + [B(2— p®)sin(2Bu)zs — Bpcos (2Bu)x1] 9y ,
& = 28(1-p%) ubs — pdy — B[2-p*| 210y,

& = sin(2Bu)dy — pcos(2Bu) by — [ﬁ (2 —p2) cos (26u) zo + [psin (20u) 331] Oy .

In the above base, the algebra reads

€& = v o, U] = o [wE] = - ¢
U] = -288 , |[UE| = 28¢.
(48)

This form of the algebra can be mapped to the generic form (27) with data
(46), by the invertible map®

2 =2 —1 -1

vt = (1-%)¢& - 8& ¥V = 5|8 + &, (19)
2 -1 2 =2

2= (1-5) & -88 . YV = 5|& + ],

and more ‘importantly to the case p = 0 by redefining Z I = M&l,
ﬂ?z = El, Z%? = ¢ and 7 = EQ. Clearly this map breaks down

* As we saw in Sec. (2) these are automatically isometries of the field strength so that
we can safely ignore it. Furthermore, we also saw that the general Heisenberg algebra for
our examples splits into a anti-Mach part and a Cahen-Wallach part, so that the discussion
in this appendix can readily be applied to other cases.

5 Of course this needs to be adapted to the new base 2X; = 2Y; — Fij?J and X; = ?i,
but you should get the idea.



when p = 1. Even though we cannot map the Heisenberg algebra at p = 1
to the one at p = 0, there is nothing wrong with the p = 1 limit. In fact
everything is regular and the only thing that changes is that the algebra at
p = 1 allows for a bigger automorphism group, as one can see by observing
that at the point p = 1 we are dealing with a Cahen-Wallach space, which
after a coordinate transformation has H = diag([3*/2]*,0%) and F = 0,
singaling that the automorohism group now is so(4) & so(5).

An important implication of the fact that the isometry algebra for p # 1
is isomorphic to the one at p = 0, is to be found in the Abelian part of
the Matrix models. It will be readily acknowledged that the positions are
related to Y’s, the momenta are related to the Y’s and the Hamiltonian is
proportional to U. The above mapping between the Heisenberg algebras
then becomes a canonical transformation on the phase space, enabling us to
map the system at p # 1 to the system at p = 0. As a result of this, such
things as the vacuum energy of the bosonic sector must be p independent. As
far as the fermions are concerned, a similar statement can be made: Seeing
the isomorphism, it must always be possible, and in fact in the examples
one can show this explicitly, to redefine the fermions in such a way that
its coupling to the background, becomes the one at p = 0. Since we are
dealing with a one dimensional theory, this redefinition cannot influence or
break the necessary boundary conditions, so that also the fermionic vacuum
energy should be unchanged. In fact an explicit calculation shows just that
[14].

In fact, the coupling of the fermions to the background always is

vl @ +if] v, (50)

and by means of a so(16) rotation this can always be brought to to a form
where ® and J are expanded in mututally commuting gamma matrices.
The redefinition of the spinors however should not change the fact that the
model enjoys extra supersymmetry or not. Hence even after changing the
base, it should be possible to find a new set of data that describes a Cahen-
Wallach space. Please note that the above expansion is possible due to the
fact that we are dealing with so(16). Also, since we are expanding on the
Cartan subalgebra of so(16) and this is unique upto homomorphisms, the
two bases that are being used in the literature can be mapped into each
other.

4 Conclusions

We have discussed in some detail the structure of 16+ M-theory Hpp-waves,
albeit quite algebraically. As far as the author is concerned, the really
interesting parts are Eq. (11) and Sec. (3). Perhaps one day, someone will
care enough to have a look at the classification problem of 16+ Hpp-waves

10



and gain an understanding of the above equations and put them to good
use or trivialize them.
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