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�Vielleicht ist es aber auch unerlaubt�, warf Walters Mutter ein, �immer gleich
an die großen Gestalten wie Mozart oder Einstein zu denken. Der Einzelne hat meist
nicht die Möglichkeit, an einer entscheidenen Stelle mitzuwirken. Er nimmt mehr im
stillen, im kleinen Kreise teil, und da muß man sich doch eben überlegen, ob es nicht
schöner ist, das D-Dur-Trio von Schubert zu spielen, als Apparate zu bauen oder
mathematische Formeln zu schreiben.�
Ich bestätigte, daß mir gerade an dieser Stelle viele Skrupel gekommen wären, und
ich berichtete auch über mein Gespräch mit Sommerfeld und darüber, daß mein
zukünftiger Lehrer das Schillerwort zitiert hatte: �Wenn die Könige bauen, haben
die Kärner zu tun.�
Rolf meinte dazu: �Darin geht es natürlich uns allen gleich. Als Musiker muß man
zunächst unendlich viel Arbeit allein für die technische Beherrschung des Instru-
ments aufwenden, und selbst dann kann man nur immer wieder Stücke spielen, die
schon von hundert anderen Musikern noch besser interpretiert worden sind. Und
du wirst, wenn du Physik studierst, zunächst in langer mühevoller Arbeit Apparate
bauen müssen, die schon von anderen besser gebaut, oder wirst mathematischen
Überlegungen nachgehen, die schon von anderen in aller Schärfe vorgedacht worden
sind. Wenn dies alles geleistet ist, bleibt bei uns, sofern man eben zu den Kärnern
gehört, immerhin der ständige Umgang mit herrlicher Musik und gelegentlich die
Freude daran, daß eine Interpretation besonders gut geraten ist. Bei euch wird es
dann und wann gelingen, einen Zusammenhang noch etwas besser zu verstehen, als
es vorher möglich war, oder einen Sachverhalt noch etwas genauer zu vermessen,
als die Vorgänger es gekonnt haben. Darauf, daß man an noch wichtigerem mit-
wirkt, daß man an entscheidener Stelle weiterkommen könnte, darf man nicht alzu
bestimmt rechnen. Selbst dann nicht, wenn man an einem Gebiet mitarbeitet, in
dem es noch viel Neuland zu erkunden gibt.�[58]
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Introducción

Aunque la formulación de la teoŕıa de las (super)cuerdas aun se desconoce, lo que śı se sabe
promete mucho [4, 53, 83, 95].

Una cuerda es la idealización de un cordón, donde se ignora su gordura: la cuerda es un espacio
unidimensional cuando lo miramos a un tiempo fijo. Para los espacios unidimensionales sólo
existen dos topoloǵıas diferentes: el ćırculo y el intervalo. Aśı que antes de empezar tenemos
que distinguir entre las cuerdas cerradas, el ćırculo, y las cuerdas abiertas, el intervalo. La idea
básica es la de introducir las interacciones: dos cuerdas cerradas pueden juntarse aśı formando
una cuerda cerrada y a la inversa. En caso de la cuerda abierta, las interacciones se hacen jun-
tando los extremos de las cuerdas abiertas. Esto también quiere decir que una cuerda abierta se
puede cerrar: una teoŕıa de cuerdas abiertas necesita las cuerdas cerradas para su consistencia.

Empezando en el primer caṕıtulo con la acción de Nambu-Goto, que describe clásicamente cómo
una cuerda se mueve en el espacio de Minkowski, se linealiza ésta, lo cual resulta en la acción de
Polyakov. Utilizando las invariancias de la acción de Polyakov, ésta es equivalente a una teoŕıa
dos dimensional de D bosones libres, donde D es la dimensión en la que la cuerda se mueve. Esta
teoŕıa, cuando se cuantiza sólo es consistente, es decir que no haya estados de norma negativa
en el espectro f́ısico, si D = 26.

Al igual que para una cuerda de un vioĺın, las vibraciones de la cuerda se clasifican en modos
(tonos). La cuerda cerrada tiene dos tipos de modos: las vibraciones que se mueven a la derecha
y las que se mueven a la izquierda.1 La cuerda abierta sólo tiene, gracias a las condiciones de
contorno, un tipo de modos. Analizando estos modos en términos del grupo de Poincaré en
D = 26, las cuerdas siempre tienen un escalar de masa imaginario, un taquión, en el espectro
(de hecho, el taquión es el vaćıo del espacio de Fock.). Las part́ıculas sin masa son un gravitón,
Gµν , un escalar, Φ, llamado el dilatón y un campo antisimétrico, Bµν , llamado el Kalb-Ramond
para la cuerda cerrada2 y un campo vectorial para la cuerda abierta. Un hecho decepcionante
de las cuerdas, aparte de vivir en 26 dimensiones y ser, posiblemente, inestables gracias al ta-
quión, es la ausencia de fermiones en el espacio-tiempo. La supercuerda soluciona este problema
introduciéndolos en la sábana por medio de supersimetŕıa. Supersimetŕıa es una simetŕıa que
intercambia bosones y fermiones. Sabiendo esto, las cargas que generan las transformaciones de
supersimetŕıa tienen que ser spinores, lo cual implica que dos transformaciones de supersimetŕıa
tienen que generar, entre otras cosas, traslaciones.

En la supercuerda, pues, aparte de los D bosones de la cuerda bosónica, se introducen también
D spinores de Majorana-Weyl en la sábana, que se transforman como un vector bajo el grupo
de Poincaré en D dimensiones. Las condiciones de contorno para los spinores admiten dos po-
sibilidades: o bien se transforman con un signo menos o no; dependiendo del signo se les llama

1La teoŕıa pone la pega que el número de oscilaciones que van a la derecha tiene que ser el mismo que el de
las que van a la izquierda.

2Estos tres estados aparecen en la mayoŕıa de las teoŕıas de cuerdas, y se llama el sector común de la cuerda.
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spinores Neveu-Schwarz (NS) o spinores Ramond (R). La diferencia se nota cuando cuantiza-
mos la cuerda fermiónica: los spinores NS se comportan como bosones en el espacio-tiempo,
mientras que los spinores R son auténticos spinores en el espacio-tiempo. Además, la dimensión
del espacio-tiempo para la supercuerda es 10.

Aplicando estas ideas a las cuerdas, vemos que todav́ıa aparece el taquión en el espectro. Existe
una projección sobre el espectro que es consistente y hace que el taquión desaparezca: la pro-
yección de Gliozzi, Scherk y Olive (GSO). La proyección consiste, más o menos, en tirar todos
los estados que se generan a partir del taquión por medio de la aplicación de cualquier conjunto
de operadores de creación que no sea fermiónico. La proyección de GSO quiere decir que, ya
que los estados de la cuerda bosónica se crean a partir del taquión utilizando sólo operadores
bosónicos, todos los modos correspondientes a la cuerda bosónica son eliminados por la proyec-
ción de GSO.

Analizando el espectro de la supercuerda abierta, los modos sin masa son un vector y un spinor
de tipo Majorana-Weyl. Un vector sin masa on shell tiene 8 grados de libertad y un spinor de
tipo Majorana-Weyl también, lo cual es justamente un multiplete on shell de N = 1 supersi-
metŕıa.

En el caso de la supercuerda cerrada hay mas que decir: existe la libertad de elegir la quiralidad
de los spinores R de los modos que van a la derecha, Rd, y los que van a la izquierda, Ri. Distin-
guimos pues, la supercuerda tipo IIA, donde los modos Rd tienen la quiralidad opuesta de los
modos Ri, y la supercuerda tipo IIB, donde los modos Ri y Rd tienen la misma quiralidad. El
espectro de los estados sin masa en los dos casos se parecen: el sector común de la cuerda, dos
estados de tipo Rarita-Schwinger, también llamados gravitinos, y dos spinores, los dilatinos. La
diferencia se nota en los estados RR: en la tipo IIA hay un vector, una tres forma, un tensor
antisimétrico en sus tres ı́ndices, y una constante. En la tipo IIB hay un escalar, una dos forma
y una cuatro forma, cuya field strength es auto-dual. En cada caso, el conjunto de estados llena
los supermultipletes de N = 2 D = 10, indicando que las teoŕıas de tipo II son invariantes bajo
N = 2 supersimetŕıa en el espacio-tiempo.

Debido al hecho de que la supersimetŕıa incluye las traslaciones y que las cuerdas siempre con-
tienen el sector común, que contiene el gravitón, las teoŕıas de cuerdas a enerǵıas muy bajas,
o equivalente a largas distancias, se describe por medio de teoŕıas de supergravedad en diez
dimensiones.

Del estudio de las supergravedades, que se originó más o menos al mismo tiempo que el estudio
de las cuerdas, se sabe que hay una supergravedad máxima. Esta teoŕıa vive en once dimensio-
nes, es único y no se le puede añadir una constante cosmológica. Hoy en d̀ıa, esta teoŕıa esta
considerado una teoŕıa efectiva, de una teoŕıa que se llama la teoŕıa M.

A partir de N = 2 supersimetŕıa existe la posibilidad de introducir cargas centrales en el álge-
bra. Gracias a esas cargas centrales, que dada una representación del álgebra no son más que
números, se puede dar un valor mı́nimo a la enerǵıa de esa representación. Ésta es la llamada
cota de Bogomoln’yi y simbólicamente es M ≥ |Z|, donde M es la enerǵıa y Z es el valor de la
carga central. La gracia de las cotas de Bogomoln’yi reside en el hecho de que cuando se satura,
M = |Z|, las representaciones son mucho mas pequeñas que lo normal, lo cual quiere decir que,
en una teoŕıa no-anómala, siempre se seguirá cumpliendo M = |Z|.

Cuando se considera una cuerda cerrada que se mueve en un espacio que es el producto de
un ćırculo y un espacio con topoloǵıa trivial, la cuerda se puede enrollar sobre la dimensión
compacta. El número de veces que la cuerda se enrolla sobre el ćırculo es un entero, llamado
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el número de winding, y crea estados con masa proporcional al radio del ćırculo sobre el cual
la cuerda se enrolla. La mecánica cuántica también impone que el momento en la dirección
del ćırculo está cuantizado en términos del inverso del radio del ćırculo. El resultado del todo
esto en la fórmula de masas es que aparecen más términos que en el caso no compacto (ésta se
recupera tomando el radio del ćırculo infinito), y además es invariante bajo el intercambio de
los números winding y los números cuánticos asociados al momento en la dirección del ćırculo,
cuando al mismo tiempo se intercambia el radio del ćırculo por su inverso. Esta simetŕıa de la
fórmula de masas se extiende a la teoŕıa de las cuerdas cerradas y se le llama ‘dualidad T ’.
Aplicando dualidad T dos veces en la misma dirección, casi por definición, se recupera la teoŕıa
de partida, lo cual quiere decir que la dualidad T es el grupo Z2.

Aplicar la misma idea a la cuerda abierta no parece tener mucho sentido, ya que la cuerda
abierta no se puede enrollar sobre un ćırculo. Aún aśı, si aplicamos dualidad T a las cuerdas
abiertas, las condiciones de contorno cambian de Neumann a Dirichlet, que quiere decir nada
más que los extremos de la cuerda abierta en la dirección donde hemos aplicado dualidad T
están fijados. Aplicando la dualidad T en D − p − 1 direcciones, se ve que los extremos de la
cuerda abierta sólo se pueden mover sobre una subsuperficie del espacio-tiempo de dimensión
p+ 1. A estas superficies se las llama Dp-branas.

El gran logro de Polchinski en el año 1995 [93] consist́ıa en demostrar que, cuando se mezclan las
cuerdas de tipo II con cuerdas abiertas, la teoŕıa es consistente si al mismo tiempo se introducen
las Dp-branas (p par en caso de la tipo IIA e impar para la tipo IIB). En las teoŕıas de tipo II,
los campos RR, vistos como formas, se acoplan de forma natural a las Dp-branas. Polchinski
también demostró que las Dp-branas son los objetos que, al igual que la cuerda cerrada genera
el campo Kalb-Ramond, generan los campos RR. La consecuencia de introducir Dp-branas, o
rećıprocamente cuerdas abiertas, es que la supersimetŕıa se rompe a la mitad,3 y consecuente-
mente es un estado BPS en las teoŕıas de tipo II.

Compactificando la supergravedades de tipo II sobre un ćırculo, es decir aplicando la reducción
dimensional, se ve [15] que las acciones en D = 9 están relacionadas por medio de la redefini-
ción de algunos campos. Las relaciones generalizan las reglas de dualidad T encontradas por
Buscher [30] en el sector común de la cuerda, y son la representación de la dualidad T entra las
supercuerdas de tipo II al nivel de sus acciones efectivas.

Compactificando una supergravedad en diez dimensiones a cuatro dimensiones, la acción redu-
cida es invariante bajo un grupo que contiene la dualidad T. Si, por ejemplo, compactificamos
la acción efectiva del sector común de la cuerda sobre un toro de dimensión 6, la acción en
cuatro dimensiones contiene el gravitón, el Kalb-Ramond, el dilatón, 12 vectores sin masa y
una barbaridad de escalares, que automáticamente se agrupan de tal forma que la acción es
invariante bajo O(6, 6). Además, en cuatro dimensiones el Kalb-Ramond es dual, en el sentido
de la dualidad de Hodge entre formas, a un escalar, llamado el axión. El dilatón y el axión se
agrupan de tal forma que la acción, despues de dualizar, sea invariante bajo el grupo Sl(2,R).
Este grupo incluye la inversión del dilatón, φ→ −φ, y por eso suele llamarse dualidad S, aunque
su origen es diferente a la de la dualidad S en la tipo IIB.

Los agujeros negros son muy atractivos: aunque clásicamente no suele ser más que una aspirado-
ra de gran tamaño, en cuanto se les aplica métodos cuant́ıcos aparece la radiación de Hawking.
Esa radiación es térmica y uno puede considerar el agujero negro como un sistema termodinámi-
co. En ese sistema, la temperatura del sistema es proporcional a la fuerza de atracción sobre el

3La tipo II tiene N = 2 supersimetŕıa en el espacio-tiempo y la cuerda abierta sólo N = 1, aśı que es intuible
que al introducir Dp-branas, se rompa la mitad de la supersimetŕıa.
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horizonte y la entroṕıa es propocional al área del horizonte.

Considerando las soluciones de tipo agujero negro en las teoŕıas de supergravedad en cuatro
dimensiones con, por lo menos N = 2 supersimetŕıa, se puede derivar la cota de Bogomoln’yi
en términos del pelo (el pelo son constantes que caracterizan asintóticamente el agujero negro.
Ejemplos del pelo son la masa, el momento angular y la carga eléctrica.). La sorpresa es que
para un agujero negro sin momento angular, el agujero se vuelve supersimétrico justamente
cuando la temperatura de Hawking es cero y la singularidad todav́ıa está protegida por un ho-
rizonte. Esto quiere decir que la supersimetŕıa actúa como el censor cósmico: la supersimetŕıa
no permite la creación de singularidades desnudas. Para agujeros negros con momento angular,
la supersimetŕıa no actúa como el censor: antes de hacerse supersimétrico, el agujero negro se
convierte en una singularidad desnuda. La razón para esto es que el momento angular no aparece
en la cota de Bogomoln’yi pero śı aparece en las ecuaciones que determinan si hay un horizonte
o no. La cuestión fundamental que se investiga en el caṕıtulo (2), es si, de alguna forma, las
dualidades mejoran las cosas.

La clase de soluciones de tipo agujero negro, con o sin momento angular, se caracteriza por el
hecho de admitir dos vectores de Killing. Eso quiere decir que se puede reducir dimensional-
mente a dos dimensiones, las ecuaciones de movimiento y aplicar la dualidad T para generar
nuevas soluciones. Si entonces miramos a una teoŕıa N = 4, tambien tenemos la dualidad S a
nuestra disposición.

En el caṕıtulo (2) pues, consideramos la clase más general de agujeros negros, llamado TNbh,
definido en términos del pelo, embebido en una teoŕıa que es invariante bajo dualidad S, y con-
tiene dos campos vectoriales de tipo U(1). A nuestra disposicion tenemos entonces la dualidad
S y un grupo O(2, 4) para generar nuevas soluciones y para estudiar el comportamiento del pelo
bajo esas dualidades.

El estudio de las dualidades indica que sólo un subgrupo, llamado el ADS, transforma el TNbh
en el TNbh y que el pelo se descompone, de forma natural, en multipletes bajo el ADS. La
forma de los multipletes es tal que el momento angular no se mezcla con el pelo que entra en
la cota de Bogomoln’yi. La cota de Bogomoln’yi es expresada en términos de los multipletes y
es automáticamente invariante bajo el ADS. En las conlusiones del caṕıtulo (2), se discute la
importancia de la superradiance, parecido a la emisión espontánea, en la cuestión de estabilidad
de agujeros negros.

Hasta el año 1995, el hecho de que en la supercuerda de tipo IIA hubiese un modo de la cuerda
que se manifesta como una constante, era una cosa de muy poca importancia. En este año
Polchinski [93] se da cuenta, que existe una teoŕıa de supergravedad masiva, que contiene una
constante arbitraria y que se reduce a la supergravedad IIA de todo la vida cuando esta cons-
tante es cero. Teniendo en quenta que una constante no es más que una funcción que satiface
una identidad de Bianchi, uno puede considerar la constante como la field strength de lo que
sea y dualizarla [19]. Esta operación introduce una diez forma, que no es nada más que la field
strength del campo asociado a la D8-brana, que deber̀ıa estar en la tipo IIA por dualidad T
desde el principio. Es decir, la supergravedad IIA masiva, llamado la teoŕıa de Romans [98], es
la verdadera acción efectiva de las supercuerdas de tipo IIA.

¿Cuál es entonces la influencia del D8 en la acción efectiva? El D8 se manifiesta como un
parámetro de masa, resultando en una constante cosmológica en la supergravedad, y cambia
los acoplos entre algunos campos. En el caso de la RR uno forma, el acoplo es tal que ésta es
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comida por el campo Kalb-Ramond, que se hace masivo. Dualizando todos los field strengths,
véase la sección (3.1.1), que solo se puede hacer on shell, se puede ver que las mismas cosas le
ocurre a la RR siete forma [69].

La supercuerdas de tipo IIA y de tipo IIB son T duales, lo cual se manifiesta en las respectivas
supergravedades, no masivas, que al reducirlas dimensionalmente a D = 9, son idénticas [15].
Si compactificamos la teoŕıa de Romans dimensionalmente, no se obtiene la supergravedad en
D = 9 de antes, claro está. ¿Quiere decir eso que la dualidad T no esta representada en las
acciones efectivas, mientras que śı es aśı en las teoŕıas de supercuerdas?

Como fue demostrado por Scherk y Schwarz [101], cuando una teoŕıa es invariante bajo una
simetŕıa global, se puede utilizar una dependencia espećıfica en las coordenadas, sobre las cua-
les reducimos, de tal forma que la acción en dimensiones más bajas, no depende de ellas. La
supergravedad IIB es invariante bajo el grupo global Sl(2,R), y utilizando sólo un subgrupo
U(1) para aplicar la reducción de Scherk-Schwarz se ve que la dualidad T funciona entre las
supergravedades de tipo II [19].

La reducción de Scherk-Schwarz es más que un simple truco para conseguir masas en la reduc-
ción dimensional: en la sección (3.2.1) se estudia, en un modelo muy fácil, la relación entre la
reducción de Scherk-Schwarz y la dualidad de Hodge aplicada a escalares. La conclusión de esta
sección es que la reducción de Scherk-Schwarz es la manera correcta de reducir dimensionalmen-
te, si tenemos en cuenta los posibles duales de los escalares. Además se introduce un algoritmo
para hacer la reducción de Scherk-Schwarz sin la necesidad de construir las transformaciones
expĺıcitamente [86].

La supergravedad IIB es invariante bajo el grupo Sl(2,R), que es un grupo de tres dimensiones,
mientras que sólo uno de esos sirve para establecer la dualidad T entre la tipo IIA y la tipo IIB.
Utilizando todo el grupo para aplicar la reducción de Scherk-Schwarz, véase [78, 86] o la sección
(3.2), resulta en una teoŕıa con tres parametros de masas, donde todav́ıa hay covariancia bajo
del grupo Sl(2,R): encontramos un multiplete de N = 2, D = 9 supergravedades masivas.

Para poder obtener la teoŕıa de Romans a partir de D = 11, o de la teoŕıa M, uno necesi-
taŕıa por lo menos una constante cosmológica, lo cual es imposible: como fue demostrado en
[11, 36, 37] no se puede extender la supergravedad en D = 11 con una constante cosmológica.
En [25] las condiciones por las cuales no se puede añadir un constante cosmologico a D = 11
supergravedad son evitados, introduciendo expĺıcitamente un vector de Killing en la teoŕıa. Re-
duciendo esa teoŕıa en la dirección del Killing se recupera la teoŕıa de Romans. En la sección
(3.3) seguiremos a [25] para construir una teoŕıa en D = 11, que al reducir sobre un toro de
dimensión dos resulta ser la teoŕıa encontrada en la sección (3.2).

Las intersecciones son soluciones a las ecuaciones de movimiento de una supergravedad, que tie-
nen la interpretación de un conjunto de varios objetos de las supercuerdas. De gran interés son
las intersecciones que rompen tres cuartos de la supersimetŕıa, ya que eso quiere decir que los
objetos no se atraen el uno al otro, es decir que la solución es estable. En la literatura (véase por
ejemplo [21, 23, 68, 116, 111, 117, 79]) siempre se han estudiado estas intersecciones utilizando
ecuaciones de movimiento genéricos, que no capturan la esencia de la teoŕıa de Romans: algu-
nos campos se vuelven masivos cuando hay un D8 en la intersección. La sección (3.4) empieza
enumerando las soluciones clásicas asociadas a las cuerdas y las Dp-branas. Después se habla
de las intersecciones estudiadas en la literatura y termina discutiendo las dos intersecciones que
hasta [69] no se conoćıa: la intersección del D8 con la cuerda y la intersección del D8 con el D6.

En la sección (3.6) identificamos los campos que dan lugar a las masas en D = 9. Utilizando
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las observaciones de la sección (3.2), se ve que el objeto que resulta en la masa de la teoŕıa de
Romans es la D7-brana. Pero dualizando los dos escalares en la supergravedad IIB, que también
incluye el dilatón, solo es posible on shell. El resultado de la dualizacion son tres ocho formas,
una para cada masa que se introduce por medio de la reducción de Scherk-Schwarz, lo cual
quiere decir que hay tres objetos, relacionados por dualidad S, de tipo 7-brana en la tipo IIB.
El caṕıtulo termina verificando expĺıcitamente las dualidades entre esos objetos y los demás
objetos que existen en la teoŕıa de las supercuerdas y M.

En el apéndice (B.1) se resumen todas las reglas de dualidad T para las supergravedades de tipo
II. Las dualidades entre las soluciones, que representan un objeto fundamental de las cuerdas,
está resumido en la figura (B.1).
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Chapter 1

String Theory: A Short Introduction

Although we have already introduced some of the results on string theory in the introduction,
here we will visualize them by means of formulae.

First we will introduce the basic notion of a (bosonic) string, and set up a possible action
governing its propagation in normal Minkowski space. After canonical quantization, which
introduces quanta of vibration in the string, the spectrum, as seen by a space-time observer
is introduced and it will be shown that the theory contains a tachyon, rendering the theory,
possibly, instable. Compactifying this theory then over a circle of radius R, one can see that
in the case of the closed string, the physical spectrum is invariant under a mapping of type Z2,
which is called T-duality.

Since the bosonic string does not lead to space-time fermions, we explore the formulation
of the fermionic string, and see that it does lead to space-time fermions, but still contains a
tachyon. After a consistent truncation of the theory, known as the GSO projection, the tachyon
is thrown out of the spectrum, and the resulting theory leads automatically to space-time
supersymmetry.

In section (1.3), we will deal with the propagation of a test-string in a given background,
and will show that this propagation does not lead to anomalies iff the background satisfies
some criteria, which contain the Einstein equations. Applying these ideas to the superstring,
it is implied that the consistency criteria can be derived from the various ten dimensional
supergravities.

1.1. Bosonic Strings

Everybody knows what a string is, if not just look at your shoes. Idealizing the concept
of a string to something with only a length, we have something one can mathematically work
with, which is called, very original, a string. Embedding this string into spacetime we see that
during its evolution in spacetime it sweeps out a 2 dimensional surface in spacetime. Denoting
this surface, called the strings worldsheet, by Σ, we see that a string in the mathematical sense
is nothing but a mapping from the worldsheet to the spacetime. If we denote the coordinates
on the worldsheet by (τ, σ) we see that the coordinates describing the position of the string in
spacetime Xµ are: Xµ(τ, σ) : Σ→M, where M is some manifold representing spacetime.

What kind of action will govern the dynamics of our strings? Well, let us look at the particle
for the moment. In General Relativity, a particle, coupled to gravity, is defined to move along
geodesics, which is nothing but the shortest path as specified by the Riemannian geometry.
Now, the string-analogue of the particle’s path, rather the length of the trajectory a particle
sweeps out in spacetime, is the worldsheet. Seeing this, Nambu and Goto proposed to govern
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the string dymanics by minimizing the area the string sweeps out when moving.
The Nambu Goto action reads

SNG = −T
∫

Σ
d2ξ

√
det (∂aXµ∂bXµ) (1.1)

Note that this is just the minimal action we can write down: We could couple the string to
some 2-form, but for simplicity we choose not to.

One can linearize the Nambu-Goto action, as was first done by Polyakov, by introducing a
metric, hab, on the worldsheet:

SPolyakov (X) = −T
2

∫
d2ξ
√
−h hab∂aX

µ ∂bX
ν ηµν , (1.2)

By eliminating the worldsheet metric from the action, one can see that the Polyakov and the
Nambu-Goto actions are, classically, equivalent.

Having a small look at the symmetries of this action, one sees that this action is invariant
under worldsheet diffeomorphisms, i.e. under 2-dimensional coordinate transformations, under
spacetime Lorentz transformations and under rescalings of the 2-dimensional metric, i.e. hab →
Ω(ξ)hab, called Weyl invariance. As is well-known, we can use the 2d diffeomorphisms in order
to bring the metric to the form1

hab = e−ϕηab , (1.3)

where ηab is the 2D Minkowski metric. Due to the Weyl invariance, the ϕ dependence drops
out of the Polyakov action, which then reads

SP (X) = − 1
2α′

∫
d2ξ ηab ∂aX

µ∂bX
ν ηµν . (1.4)

Note the beauty of the story: We started with a nonlinear theory, which we then linearized.
Then we saw that the linearized action had the appropriate symmetries for taking a suitable
gauge in which the theory is nothing but a 2-dimensional theory of D free bosons.

The explicit variation of the Polyakov action Eq. (1.4), leads to

δSP (X) =
∫
d2ξ δXµ [−∂a∂

aXµ] +
∫

∂Σ
δXµ ∗ dXµ . (1.5)

From this one can see that the equation of motion is nothing but

∂a∂
aXµ = 0 . (1.6)

Introducing the the coordinates x± = τ ± σ, we see that the above equation read ∂+∂−X
µ = 0

so that the most general solution, without imposing boundary conditions, is Xµ = Xµ(x+) +
X̄µ(x−).

Since we have fixed the gauge freedom in Eq. (1.4), we necessarily will encounter a constraint:
This is obvious if we calculate the equations of motion from the pre-gauge-fixed action, since we
also need to calculate the variation under hab. The restriction thus found is, in the conformal
gauge,

0 = Tab ≡ −∂aX
µ∂bXµ + 1

2ηab∂cX
µ∂cXµ . (1.7)

In the lightcone coordinates the constraint (1.7) becomes

0 = T++ = −∂+X
µ∂+Xµ , (1.8)

0 = T−− = −∂−Xµ∂−Xµ . (1.9)
1This is called the conformal gauge.
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These constraints will become important ingredients in our search for consistent, anomaly free
string theories.

Here we ought to discuss the difference between open and closed strings: A String frozen in
time is just a one-dimensional object, and as such admits to two different topologies: A segment
and a circle. According to this we have to divide our attention to the two different classes called
closed (open) when the topology is that of a circle (resp. segment). As we will see later on, the
observable spectrum of the string also depends on the topology of spacetime, so that for the
moment we will focus our attention to usual Minkowski space.

Anyway, looking at Eq. (1.5) and considering τ ∈ (−∞,∞), we see that in the case of
the closed string the boundary term vanishes identically, i.e. an infinitely long cylinder has no
boundary. For the open string however, we see that, if we want to maintain Poincaré invariance,
we have to impose

∗dXµ|∂Σ = 0 → ∂σX
µ|σ=0,π = 0 , (1.10)

which is called a Neumann boundary condition.2

1.1.1. Closed Strings in Minkowski Space

A circle is nothing but a segment where we identify the endpoints. Applying this idea to
the case at hand, and taking the parameter space for the spacelike worldsheet coordinate to be
σ ∈ [0, 2π], we see that we have to impose

Xµ (τ, σ + 2π) = Xµ (τ, σ) . (1.11)

Note that due to these boundary conditions, the surface terms in Eq. (1.5) drops out completely.
Using this boundary condition we can write down the solutions to (1.6)

Xµ(x−) = 1
2X

µ
0 + 1

4πT p
µx− + i√

4πT

∑
n6=0

1
nα

µ
ne−inx− (1.12)

Xµ(x+) = 1
2X

µ
0 + 1

4πT p
µx+ + i√

4πT

∑
n6=0

1
n ᾱ

µ
ne−inx+ (1.13)

where the aµ’s and āµ’s are arbitrary constants and from now on we fix T = (4π)−1.
Canonical quantization is then introduced by promoting the aµ’s and ãµ’s to operators and

imposing the Equal Time Commutation Relations3[
P̂µ(τ, σ), X̂ν(τ, σ′)

]
= −2πiδ(σ − σ′)ηµ

ν , (1.14)[
P̂µ(τ, σ), P̂ν(τ, σ′)

]
= 0 , (1.15)[

X̂µ(τ, σ), X̂ν(τ, σ′)
]

= 0 , (1.16)

we find that

[aµ
m, a

ν
n] = nηµνδm+n,0 , (1.17)

[āµ
m, ā

ν
n] = nηµνδm+n,0 , (1.18)

[aµ
m, ā

ν
n] = 0 , (1.19)

[Xµ
0 , P

ν ] = iηµν , (1.20)

2We could also have imposed the so-called Dirichlet boundary condition Xµ |σ=0,π= Cµ
0,π. This condition

breaks global Poincaré invariance, however, so that we will ignore. In a few pages it will reappear mysteriously!
3Remember that we are quantizing a 2d theory of free bosons.
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where we have defined aµ
0 = āµ

0 = Pµ.
Since we have promoted the fields to operators, one is deemed to encounter normal ordering

ambiguities: Actually, the only possibility to encounter such ambiguities is in the constraints,
since they involve products of operators in the same place.4 Decomposing the constraint T−− =∑
Lne

−2inx− one can see that

Ln = −1
2

∑
: αµ

m−nαn|µ − aδn,0 , (1.21)

where we have included an, unknown, normal ordering constant.
If one then calculates the algebra generated by the Ln’s, one finds the ‘Virasoro algebra’,

i.e.
[Lm, Ln] = (m− n)Lm+n +

c

12
m(m2 − 1)δm+n , (1.22)

where c is known as the conformal anomaly, and in this case equals the dimension of the target
space, i.e. c = D.

Up to now, we have introduced two arbitrary constants in our algebra, c and a, which can
however be fixed by imposing the Fock space, based on a vacuum satisfying

αµ
m | 0〉 = 0 for all n > 0 , (1.23)

to have no negative norm states: This fixes D = 26 and a = 1 (See e.g. [53]). Physical states,
denoted | phys〉, are then required to satisfy the weak constraints

Ln | phys〉 = 0 for n > 0 (1.24)
(L0 − 1) | phys〉 = 0 . (1.25)

If one then analyzes the last constraint one can write, at least symbolically,

1 = L0 = −1
2

∑
: αµ

−nαn|µ : = −1
2P

µPµ + N− , (1.26)

where we have defined

N− = −1
2

∑
n6=0 : α−nαn : = −

∑
n>0 α−nαn , (1.27)

which acts on a state | m〉 = α−m | 0〉, as N− | m〉 = m | m〉, so that it defines a counting
operator for the level of string oscillations. Using then the identity P 2 = m2 we can write

m2 = 2 (N− − 1) . (1.28)

Another constraint, known as level matching, is found by also considering the + branch: One
finds, once again, m2 = 2(N+ − 1), which then implies that

N+ = N− (1.29)

As we have seen, and as was to be expected, a closed string can vibrate according to
modes. How are we, being spacetime observers, to interpret these modes? Special relativity
and Quantum field theory teaches us that all particles, as described by fields, are classified
according to their mass and their transformation under the Lorentz group, i.e. the spin. This
then means that in order to compare the modes to something we know, we should classify them
according to the Poincaré group.

4Seeing the great similarity between the two independent branches we will treat only one of them.
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The first state that satisfies the level matching constraint is the state | 0 k〉, which is annihi-
lated by the annihilation operators in the + and the − branch, and satisfies Pµ | 0 k〉 = kµ | 0 k〉,
so that it bears a certain momentum. This then means that it has level zero resulting in

m2 | 0 k〉 = −2 | 0 k〉 , (1.30)

which is nothing but a tachyon, thus endangering the consistency of the theory.
The next level is massless and is generated by

aµ
−1ā

ν
−1 | 0〉 . (1.31)

Since this has no apparent symmetry and the Poincaré group does not transform symmetric
matrices into scalars nor in antisymmetric matrices, we should split this into a scalar, aµ

−1ā−1ν |
0〉, a symmetric part and an anti-symmetric part. The symmetric part can be shown to be a
spin 2 field and the anti-symmetric part can be shown to be a spin 1 field5. Higher levels can
be analyzed in the same manner, but since in this thesis we are mainly interested in the low
energy approximation, or equivalently the large distance behaviour, the interesting modes are
massless.

1.1.2. Open Strings in Minkowski Space

The solution for the open string, we use that parameterization σ ∈ [0, π], reads

Xµ = Xµ
0 +

1
πT

Pµτ + i√
πT

∑
n6=0

1
nα

µ
n e−inτ cos (nσ) , (1.32)

and by defining Pµ =
√
πTαµ

0 one can write

∂±X
µ =

1
2
√
πT

∑
n

αµ
n (1.33)

The canonical quantization for the open string is actually the same as for the −, or the +
branch in the closed string case [53]: The only difference being that we have no level matching.
Having said this, we can set up the Fock space as in the foregoing section, and see immediately
that the vacuum is once again a tachyon. The real difference lies however in the first level: It
is massless and reads

aµ
−1 | 0〉 . (1.34)

This then means that the massless sector of the open string is a vector in D = 26, and therefore
must be a gauge field.

1.1.3. Compactification and T-duality

As we said we are not forced to look at the Polyakov string moving on the usual Minkowski
space: We could take it to be compactified, i.e. MD = MD−1 ⊕ S1, or even stranger things.
It is the aim of this section, to have a look at some of the phenomena one encounters when
looking at string propagation on other manifolds.

5Had we been working in 4 dimensions, we would have said that since the aµ’s transform as a vector under
SO(1, 3), the above decomposition is nothing but the Clebsch-Gordon series ( 1

2
, 1

2
) ⊗ ( 1

2
, 1

2
) = (1, 1) ⊕ (1, 0) ⊕

(0, 1) ⊕ (0, 0), which speaks for itself. Note that in higher dimensions the same reasoning works, although the
identification is harder.
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Circle Compactifications of Closed Strings and T-Duality

Let us take a D dimensional target space, which is divided in a D−1 dimensional Minkowski
part and a circle of radius R. Since the analysis of the D − 1 dimensional part is the same as
in Sec. (1.1.1), we will focus on the circle.

Since we have a map of circle onto a circle, classified topologically by π1

(
S1
)

= Z, we have
the possibility of taking that the string winds several times around the circle, i.e.

X(τ, σ + 2π) = X(τ, σ) + 2πRn , (1.35)

where n ∈ Z is the winding number of the map.
The solution to Eq. (1.6) given the above boundary condition reads

X− = 1
2X0 +

(
m
R + nR

2

)
x− + i

∑
n6=0 n

−1αne
−inx− , (1.36)

X+ = 1
2X0 +

(
m
2 −

nR
2

)
x+ + i

∑
m6=0 n

−1ᾱne
−inx+ , (1.37)

The mass of the states can then be written as

m2
− =

1
2

(
n

R
+
mR

2

)2

+N− − 1 ,

m2
+ =

1
2

(
n

R
− mR

2

)2

+N+ − 1 . (1.38)

Level matching, m− = m+, implies that there is a relationship between momentum and winding
numbers on the one hand, and the oscillator excess on the other

N+ −N− = nm . (1.39)

From this formula we see that it is invariant under R→ 2/R, m↔ n and āµ → −āµ. In fact the
whole theory is invariant under this mapping. This mapping is equivalent to X(x+)→ X(x+)
and X(x−)→ −X(x−), making clear that it is a purely stringy symmetry. It is baptized to the
name T-duality.

As can be seen from the above mass formula, at the point R =
√

2 there are a few new
massless modes (See e.g. [83]), which in its turn can be shown to generate a SU(2)⊗SU(2) gauge
group. This then shows that in general compactifications, where one calls the parameterspace
of the distinct compactifications the moduli space, there are points in the moduli space where
one has an enhanced symmetry. On the other hand one can say that one has a broken symmetry
in the rest of the moduli space.

Circle Compactifications of Open Strings, T-Duality and D-Branes

Let us now ask ourselves the question what happens when we compactify the open string on
a circle. The naive answer is that nothing special will happen, because an open string wound
around a circle can always be unwound. This is however too naive: Looking at the boundary
condition for the open string, and using the result for the closed string one sees that iff we apply
T-duality on the boundary that

∂σX
µ = ∂+X

µ − ∂−Xµ = 0
T-duality

←−−−−−−−−−→ ∂+X
µ + ∂−X

µ = ∂τX
µ = 0 , (1.40)

This then means that the Neumann boundary condition for the open string is transformed
into a Dirichlet boundary condition, i.e. the open string is restricted to move on some d − 1
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Figure 1.1: An artists impression of an open string ending on a D-brane. On the D-brane we have Neumann

conditions, whereas transverse to it we have Dirichlet conditions.

dimensional hypersurface. Likewise, performing T-duality in n different directions one reaches to
the conclusion that the open string is restricted to move on some d−n dimensional hypersurface.

Does this then mean that there is no T-duality in open string theory, although it must have
closed strings in its spectrum? It might, but one may also extend open string theory by saying
that there exist some extended objects called D-p-branes,6 being defined as the surfaces on
which an open string can end, such that T-duality is also a symmetry of the, extended, open
string theory. Due to the fact that an open string with Dirichlet boundary condition leads to a
leakage of momentum out of the string, one is forced to conclude that this momentum must be
absorbed by the D-brane, implying that these D-branes are dynamical.

It was shown by Polchinsky [93], that when one considers type II strings together with
open strings with mixed boundary conditions, and thus admitting D-branes, one can arrive at
a consistent theory. Furthermore, in this setting the D-branes then carry charges with respect
to the RR fields occurring, and in fact can be identified as the sources of the RR-fields.

Note that although the original type II string had N = 2 targetspace supersymmetry, once
one allows for the D-branes, or equivalently an open string, supersymmetry is broken to N = 1:
This is a result from the identification of left- and right-modes of the closed string leading to
the open string.

1.2. Fermionic Strings

A clear drawback of the bosonic string is, apart from living in D = 26 and possibly being
inconsistent due to the tachyon, is that it does not lead to spacetime fermions. In this section
we will see how to introduce fermions by means of supersymmetry.

Supersymmetry, as is well-known, relates bosons to fermions, and vise versa. Since we
are looking at a string, there are two places where we can introduce supersymmetry: On the
worldsheet and/or on the targetspace. The first possibility will lead to the Neveu-Schwarz-
Ramond string and the other will lead to the so-called Green-Schwarz superstring. Since no one
has been able to quantize the GS superstring however, we will focus on the NSR string.

6p in this setting is d− n− 1. It is customary only to mention the spacelike directions.
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The two-dimensional locally supersymmetric action generalizing the one used above for the
bosonic string reads (once the auxiliary fields have been eliminated)

S = − 1
8π

∫
d2ξ
√
h
[
hab∂aX

µ∂bX
νηµν + 2iψ̄µγa∂aψ

νηµν

−i χ̄aγ
bγaψµ(∂bXµ − i

4 χ̄bψµ)
]
. (1.41)

This action includes a scalar supermultiplet (Xµ, ψµ, Fµ), where Fµ are auxiliary fields, and
the two-dimensional gravity supermultiplet (ea, χa, A), where again A is an auxiliary field.

The gravitino χa is a world-sheet vector-spinor. Using all the gauge symmetries of the action
(reparametrizations, local supersymmetry and Weyl transformations) it is formally possible to
reach the superconformal gauge where hab = δab and χa = 0. Off the critical dimension, however,
there are obstructions similar, although technically more involved, to those present already in
the bosonic string.

In this gauge, and using again lightcone coordinates on the worldsheet, the action reads

S =
1
2π

∫
d2ξ

{
∂+X

µ∂−Xµ + i
(
ψµ

+∂−ψ
µ|+ + ψµ

−∂+ψµ|−

)}
, (1.42)

which leads to the following equations of motion

0 = ∂+∂−X
µ ,

0 = ∂+ψ− = ∂−ψ+ , (1.43)

and boundary term resulting from the spinors is

0 = (ψ+δψ+ − ψ−δψ−|σ=2π
σ=0 , (1.44)

for a closed string, and
0 = (ψ+δψ+ − ψ−δψ−|σ=0,π , (1.45)

for an open string. The energy-momentum tensor reads

T (−) ≡ T−− = −1
2
∂−X

µ∂−Xµ −
i

2
ψµ
−∂−ψ−µ , (1.46)

and depends on x− only, due to its conservation, ∂+T−− = 0.
The supercurrent (associated to supersymmetry) reads

TF
− = −1

2
ψµ
−∂−Xµ , (1.47)

and satisfies ∂+T
F
− = 0.

For open strings, in order to satisfy Eq. (1.45), we fix arbitrarily at one end

ψ+(0, τ) = ψ−(0, τ) , (1.48)

and the equations of motion then allows for two possibilities at the other end

ψ+(π, τ) = ±ψ−(π, τ) . (1.49)

The two sectors are called Ramond (for the + sign) and Neveu-Schwarz (for the − sign). The
solution for the bosons Xµ is the same as in the case for the bosonic string and the fermions
are

ψµ
− = 1√

2

∑
r=Z,Z+ 1

2
bµr e−inx− , (1.50)

ψµ
+ = 1√

2

∑
r=Z,Z+

1
2
b̄µr e−inx+ , (1.51)
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where r = Z,Z + 1
2 means that in case of the R sector r is an integer and that in case of the

NS sector r is an integer plus 1
2 .

In the closed string case, Eq. (1.44) means that fermionic fields need only be periodic up to
a sign.

ψµ(e2πiz) = ±ψµ(z) . (1.52)

Periodic fields are, once again, said to obey the R(amond) boundary conditions; Antiperiodic
ones are said to obey N(eveu)S(chwarz) ones. The solution for the spinors7 reads

ψµ
− =

∑
r=Z,Z+

1
2

bµr e
irx− , (1.53)

ψµ
+ =

∑
r=Z,Z+

1
2

b̄µr e
irx+ , (1.54)

where one should note that the + and − branch are completely independent. This leads, in
the closed string sector, to four possible combinations (for left as well as right movers), namely:
(R,R), (NS,NS), (NS,R), (R,NS).

Fourier decomposing the generators of the Virasoro algebra as before, one finds

Lm = −1
2

[∑
n : αµ

−nα
µ
m+n : +

∑
r∈Z,Z+

1
2
(r + m

2 ) : bµ−rb
µ
m+r :

]
, (1.55)

and the modes of the supercurrent can be similarly shown to be equal to

Gr = −
∑

n

αµ
−nb

µ
r+n . (1.56)

The reality conditions then imply as usual

L†n = L−n , G†
r = G−r . (1.57)

The unitary operator Uδ ≡ eiδ(L0−L̄0) implements spatial translations in σ, i.e.

U †
δX

µ(τ, σ)Uδ = Xµ(τ, σ + δ) . (1.58)

This transformation should be immaterial for closed strings, which means that in that case we
have the further constraint

L0 = L̄0 , (1.59)

which is nothing but the level matching constraint.
Canonical quantization can then be shown to lead to the canonical commutators

[xµ, pν ] = iηµν ,

[αµ
m, α

ν
n] = −mδm+nη

µν ,

[bµr , b
ν
s ] = ηµνδr+s , (1.60)

(all other commutators vanishing) and similar relations for the commutator of the ᾱ’s, if con-
sidering the closed string.

This means that we can divide all modes in two sets, positive and negative, and identify one
of them (for example, the positive subset) as annihilation operators for harmonic oscillators. On

7The solution for the bosonic fields, stays as in the purely bosonic case.
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the cylinder, the modding for the NS fermions is half-integer and integer for the R fermions. We
can now set up a convenient Fock vacuum (in a sector with a given center of mass momentum,
pµ.) by 

αµ
m | 0, pµ〉 = 0 (m > 0) ,
bµr | 0, pµ〉 = 0 (r > 0) ,
Pµ | 0, pµ〉 = pµ | 0, pµ〉 .

(1.61)

There are a few things to be noted here: The first one is that α0
−m | 0〉 (m > 0) are negative-

norm, ghostly, states, i.e. 〈0 | α0
mα

0
−m | 0〉 = −m〈0 | 0〉 < 0. The second thing to note is that,

in the case of the R sector, the zero mode operators span a Clifford algebra, {bµ0 , bν0} = ηµν , so
that they can be represented in terms of Dirac γ-matrices.

Recalling again that the Virasoro algebra reads

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n , (1.62)

where the central charge is equal to the dimension of the external spacetime, c = d, it is plain
that we cannot impose the vanishing of the Ln’s as a strong constraint. Instead we can impose
them as a weak constraint. Therefore we impose

NS :


Lm | Phys〉 = 0 m > 0
(L0 − a) | Phys〉 = 0
Gr | Phys〉 = 0 r ≥ 1/2(
L0 − L̄0

)
| Phys〉 = 0

R :
{
Lm | Phys〉 = 0 m ≥ 0
Gr | Phys〉 = 0 r ≥ 0

(1.63)

Imposing the absence of negative norm states, then once again states that a = 1, but that
D = 10, i.e. the superstring lives in a ten dimensional space-time.

Open String Spectrum and GSO Projection

It is now necessary to discriminate between the different sectors.
NS sector: The ground state, i.e. the oscillator vacuum, satisfies M2 | 0, pi〉 = −2 | 0, pi〉.

The first excited state bi−1/2 | 0, pi〉 is a (d− 2) vector and is massless.
R sector: Let | a〉 be a state such that bµ0 | a〉 = 1√

2
(γ)µa

b | b〉, meaning that it defines an
SO(1, 9) spinor with a priori 25 = 32 complex components, which after imposing the Majorana-
Weyl condition are reduced to 16 real components (8 on shell). This number is exactly the
number that can be created with the oscillators bi0. The root of this fact is the famous triality
symmetry of SO(8) between the vector and the two spinor representations, the three of having
dimension 8.

There are then two possible chiralities: | a〉 or | ā〉, and M2 = 0, because oscillators do not
contribute.

We are free to attribute arbitrarily a given fermion number to the vacuum.

(−)F | 0〉NS = − | 0〉NS (1.64)

This gives (−)F = −1 for states created out of the NS vacuum by an even number of fermion
operators. Gliozzi, Sherk and Olive (GSO) [52] proposed to truncate the theory, by eliminating
all states with (−)F = −1. It is highly nontrivial to show that this leads to a consistent theory,
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but actually it does, moreover, it leads to spacetime supersymmetry.8 We demand then that
all states obey (−)F

NS = 1, thus eliminating the tachyon. This is called the GSO projection.
On the Ramond sector, we define a generalized chirality operator, such that it counts ordinary
fermion numbers and on the R vacuum,

(−)F | a〉 = | a〉 , (−)F | ā〉 = − | ā〉 , (1.65)

There is now some freedom: To be specific, on the R sector we can demand either (−)F
R = 1 or

(−)F
R = −1.
There is a rationale for all this: Since the tachyon is a bosonic state and is highly undesirable,

we want to get rid of it. This is done by projection out all the states, created out of the tachyon
state by applying a bosonic set of creation operators on it. Note that this also means that the
ever present tower of states belonging to the bosonic string is also projected out. To put it
differently: If we accept as physical the vector boson state, GSO amounts to projecting away
all states related to it through an odd number of fermionic ψ-oscillators.

Closed Superstring Spectrum

The difference with the above case is that one has to consider as independent sectors the
left and right movers.

(NS,NS) sector: The composite ground state is the tensor product of the NS vacuum for
the right movers and the NS vacuum for the left-movers, and as such it drops out after the GSO
projection. The first states surviving the GSO projection, that is (−1)F = (1, 1), are

b̄i−1/2 | 0〉L ⊗ b
j
−1/2 | 0〉R . (1.66)

Decomposing this in irreducible representations of the little group SO(8) yields 1 ⊕ 28 ⊕ 35
showing that it is equivalent to a scalar φ, the singlet, an antisymmetric 2-form field Bµν , the
28, and a symmetric 2-tensor field gµν , the 35.

(R,R) sector, type IIA: The massless states are of the form (−1)F = (−1, 1)

| ā〉L⊗ | b〉R , (1.67)

and decompose as 8v ⊕ 56v, corresponding to a vector field, a one-form A1, and a 3-form field,
A3.

This is however but part of the story: The state created is a bispinor, which, by making
use of the ten dimensional Clifford algebra, can be expanded in term of some form fields [95],
to wit: a function F(0), a two form F(2) and a four form F(4). One can also introduce a six and
an eight form, which are however Hodge dual, due to the Clifford algebra, to the two and the
four form fields. Analysis of the superstring constraints, then reveals the fact that the form
fields need satisfy the Bianchi identity dF(2n) = 0. In other words, the fundamental fields are
a one form field and a three form field, and F(0) has to be constant. Now since this constant
transforms is not a field, it does not occur in the above mentioned Clebsch-Gordan series, and
has been overlooked until Polchinski noted [93], that there is a supergravity of type IIA, where
there is an arbitrary constant. This massive type IIA goes under the name of Romans’ theory
[98].

(R,R) sector, type IIB: The massless states, with (−1)F = (1, 1) are

| a〉L⊗ | b〉R , (1.68)
8Note that in this case, the massless fields consist in 8 boson- and 8 spinor degrees of freedom, which is enough

to fill an N = 1 on shell supermultiplet.

11



and they decompose as 1 ⊕ 28 ⊕ 35s corresponding to a pseudo scalar, χ, a 2-form field, A2,
and a selfdual 4-form field, A4.

(R,NS) sector, Type IIA: The first GSO surviving states, with (−1)F = (−1, 1), are

| ā〉L ⊗ bi−1/2 | 0〉R , (1.69)

and they decompose as 8s ⊕ 56s.
(R,NS) sector, Type IIB: The first GSO surviving states, with (−1)F = (1, 1) are

| a〉L ⊗ bi−1/2 | 0〉R , (1.70)

and they decompose as 8c ⊕ 56c.
(NS,R) sector, Type IIA: The first GSO surviving states, with (−1)F = (1,−1) are

b̄i−1/2 | 0〉L⊗ | ā〉R , (1.71)

and decompose as 8s ⊕ 56s.
(NS,R) sector, Type IIB: The first GSO surviving states, with (−1)F = (1, 1), are

b̄i−1/2 | 0〉L⊗ | a〉R , (1.72)

and decompose as 8c ⊕ 56c. The 56c corresponds to two gravitinos.
Although it lies outside the scope of this meager introduction to string theory, it can be

shown that due to the GSO projection, the closed superstring leads to N = 2 space-time
supersymmetry [53].

1.3. Strings on Curved Manifolds

Up to now we have had a look at (super)strings moving on manifolds where we had something
like Lorentz invariance, where we saw that the targetspace spectrum always included a massless
spin 2 field. This of course looks like a graviton, but does it lead to gravitation? And how does
it lead to gravitation?

One would be inclined to think that the string, or rather a set of strings would determine a
possible targetspace curvature dynamically. Although this might be true, it is still out of reach.
One can however be less ambitious, and couple the string to some background fields, however
this may arise, and look for the conditions of consistent string evolution. Consistency is then
obviously defined by the non-breaking at the quantum level of the classical symmetries. This
will lead to the β-equations, which in its turn will lead to the effective actions.

Let us have a look at the bosonic closed string: The massless modes are a symmetric, an
anti-symmetric fields and a scalar. Coupling this to some test string, in the only possible way,
leads to the so-called non-linear sigma model:

Sσ =
T

2

∫
d2ξ ηabG(X)µν∂aX

µ∂bX
ν + εabB(X)µν∂aX

µ∂bX
ν +

1
T

√
−hΦ(X)R(2) , (1.73)

Note that in this case the G, B and Φ are given on the forehand, and should therefore be
regarded as couplings: They are the long-range fields generated by the strings, and the only
interaction between the test string and the rest of the strings is mediated by these fields.

An interesting thing to note is that shifting the dilaton as

Φ = 〈Φ〉 + Φ̂ , (1.74)
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every ‘diagram’ in the perturbative expansion of e−Sσ bears a factor e(2r−2)〈Φ〉, where r is the
genus of the Riemann surface. Comparing this to a normal perturbative expansion, one is forced
to identify gs = e〈Φ〉, where gs denotes the string coupling constant. This physically means that
the vacuum expectation value of the dilaton gives the coupling constant, which is then promoted
to a dynamical field.

If we then impose conformal invariance of the string up to first loop, we end up with the
β-functions of the couplings

0 = Rµν − 2∇µ∂νΦ + 1
4HµκρHν

κρ ,

0 = 42Φ − 4 (∂Φ)2 − R − 1
2·3!H

2 ,

0 = ∇µ

(
e−2ΦHµνρ

)
, (1.75)

where H ≡ dB and all the curvatures are calculated using Gµν as the metric. As it so happens,
the above equations can be derived from

Sσ =
∫
d10x
√
−Ge−2Φ

[
R − 4 (∂Φ)2 + 1

2·3!H
2
]
. (1.76)

This action is not the ‘standard’ form of Einstein’s action, and is therefore said to be written
in the ‘Sigma’ frame. By redefining the metric as

Gµν ≡ e−Φ/2gµν , (1.77)

action (1.76) is transformed to the, so called, ‘Einstein frame’, i.e.

SE =
∫
d10x
√
−g
{
R + 1

2 (∂Φ)2 + 1
2·3!e

−ΦH2
}
. (1.78)

What does this tell us about the effective actions for the various superstrings? As we saw
in section (1.2), every string contains the bosonic string, for which the above arguments hold,
and leads to targetspace supersymmetry. These two things together imply that the low-energy
effective actions for the superstring should be some 10-dimensional supergravity!!

Since the aim of this thesis is type II supergravity, we will discuss only the two type II
supergravities.

Type IIA Supergravity

Apart from the SCS, the type IIA sugra consists of a one-form field, C(1), and a 3-form field,
C(3). This field content represents the D0- and D2-brane occurring as the massless RR sector
in type IIA strings. By Hodge duality, one can introduce the form-fields representing the D4-
and D6-branes. Note that the D8-brane is not included: It will be dealt with in chapter (3).

The, bosonic part of the, action reads

SIIA =
∫
d10x

√
| g |

[
e−2φ

{
R − 4 (∂φ)2 + 1

2·3!H
2
}
− 1

2G
2
(2) −

1
2·4!G

2
(4)

]
− 1

144

∫
d10x ε ∂C(3)∂C(3)B , (1.79)

where G(2) = dC(1) and G(4) = dC(3) −H ∧ C(1).
This action is, apart from coordinate invariance and the invariance of the SCS, invariant

under

δ C(1) = dΛ(0) ,

δ C(3) = dΛ(2) − H Λ(0) . (1.80)
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The supersymmetry variations, in the sigma frame, are given by

δψµ = ∇µε− 1
8 6Hµγ11ε+ i

16e
φ 6G(2)γ11γµε+ i

8·4!e
φ 6G(4)γµε ,

δλ = 6∂φ+ 1
2·3!γ11 6H − 3i

8 e
φ 6G(2)γ11ε+ i

4·4!e
φ 6G(4)ε . (1.81)

Type IIB Supergravity

It is well-known [102] that it is not possible to write a covariant action whose minimization
gives the equations of motion 10-dimensional type IIB supergravity. The problematic equation
of motion is the self-duality of the 5-form field strength. However, we can use it to find an
alternative equation of motion just by replacing the 5-form field strength by its Hodge dual
in the Bianchi identity. This alternative equation of motion has the conventional form of the
equation of motion of a 4-form potential and it is possible to find an action from which to derive
this and the other equations of motion but not self-duality. This NSD action, supplemented by
the self-duality constraint gives all the equations of motion of the type IIB theory.

The (bosonic sector of the) string-frame NSD action is9

SNSD =
∫
d10x

√
||
{
e−2ϕ

[
R()− 4 (∂ϕ)2 + 1

2·5!H
∈
]

+1
2

(
G(1)

)2 + 1
2·3!
(
G(3)

)2 + 1
4·3!
(
G(5)

)2
− 1

192
1√
||
ε ∂C(4)∂C(2)B

}
,

(1.82)

where {µν ,Bµν , ϕ} are the NS-NS fields: The type IIB string metric, the type IIB NS-NS 2-form
and the type IIB dilaton respectively.

Hµµρ = 3∂[µBνρ] , (H = 3∂B) , (1.83)

is the NS-NS 2-form field strength. {C(0), C(2)
µν , C

(4)
µνρσ} are the RR potentials. Their field

strengths and gauge transformations are
G(1) = ∂C(0) ,

G(3) = 3
(
∂C(2) − ∂BC(0)

)
,

G(5) = 5
(
∂C(4) − 6∂BC(2)

)
.

(1.84)

and 
δC(0) = 0 ,

δC(2) = 2∂Λ(1) ,

δC(4) = 4∂Λ(3) + 6B∂Λ(1) ,

(1.85)

9Our conventions are essentially those of Ref. [25] but we change the symbols denoting NS-NS fields in the
type IIB theory to distinguish them from those of the We use the index-free notation of Ref. [25]: When indices
are not explicitly shown, they are assumed to be completely antisymmetrized with weight one. The definition of
field strengths and gauge transformations are inspired by those of Refs. [54, 22].
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respectively.
The equations of motion derived from the above action have to be supplemented by the

self-duality condition

G(5) = + ?G(5) . (1.86)

In the original version of the 10-dimensional, chiral N = 2 supergravity [102] the theory
has a classical SU(1, 1) global symmetry. The two scalars parametrize the coset SU(1, 1)/U(1),
U(1) being the maximal compact subgroup of SU(1, 1), and transform under a combination of
a global SU(1, 1) transformation and a local U(1) transformation which depends on the global
SU(1, 1) transformation. They are combinations of the dilaton and the RR scalar. The group
SU(1, 1) is isomorphic to SL(2,R), the conjectured classical S duality symmetry group for the
type IIB string theory [63]. A simple field redefinition [15] is enough to rewrite the action in
terms of two real scalars parametrizing the coset SL(2,R)/SO(2) which can now be identified
with the dilaton ϕ and the RR scalar C(0).

In order to make the S duality symmetry manifest, we first have to rescale the metric as to
go to the Einstein frame:

E µν = e−ϕ/2µν . (1.87)

We now have to make some further field redefinitions. For instance, while the NS-NS and RR
2-forms we are using form an SL(2,R) doublet, their field strengths do not. Furthermore, our
self-dual RR 4-form potential C(4) is not SL(2,R)-invariant. Thus, for the purpose of exhibiting
the SL(2,R) symmetry it is convenient to perform the following field redefinitions10:

~B =
(
C(2)

B

)
,

D = C(4) − 3BC(2) ,

(1.88)

These new fields undergo the following gauge transformations:
δ ~B = 2~Σ ,

δD = 4∂∆ + 2~Σ T η ~H ,
(1.89)

and have field strengths 

~H = 3∂ ~B ,

F = G(5) = + ?F

= 5
(
∂D − ~B T η ~H

)
,

(1.90)

where η is the 2× 2 matrix

η = iσ2 =
(

0 1
−1 0

)
= −η−1 = −ηT , (1.91)

Given the isomorphism SL(2,R) ∼ Sp(2,R), it can be identified with an invariant metric:
10Our conventions are such that all fields are either invariant or transform covariantly as opposed to contravari-

antly.

15



ΛηΛT = η , ⇒ ηΛηT = (Λ−1)T , Λ ∈ SL(2,R) . (1.92)

Finally, it is convenient to define the 2× 2 matrixMij

M = eϕ

 |λ|2 C(0)

C(0) 1

 , M−1 = eϕ

 1 −C(0)

−C(0) |λ|2

 , (1.93)

where λ is the complex scalar

λ = C(0) + ie−ϕ . (1.94)

Observe thatM is a symmetric SL(2,R) matrix and therefore, as a consequence of Eq. (1.92)
it has the property

M−1 = ηMηT , (1.95)

To see that λ parametrizes the SL(2,R)/SO(2) coset, it is convenient to consider how one
arrives at M. First one considers the non-symmetric SL(2,R) matrix V

V =

 e−ϕ/2 eϕ/2C(0)

0 eϕ/2

 . (1.96)

This SL(2,R) matrix is generated by only two of the three SL(2,R) generators and it should
cover the SL(2,R)/SO(2) coset. The choice for the form of V can be understood as a choice of
gauge or as a choice of coset representatives. However, an arbitrary SL(2,R) transformation Λ
will transform V into a non-upper-triangular matrix ΛV (which is not a coset representative).
A further Λ-dependent SO(2)-transformation h will, by using the definition of a coset, take
us to another coset representative V ′ = ΛV h. The transformation h will be local but not
arbitrary. It can be thought of as a compensating gauge transformation. The condition that V ′

is upper-triangular fully determines h(Λ, V ) and the transformations of C(0) and ϕ:

V ′ =

 e−ϕ′/2 eϕ
′/2C(0) ′

0 eϕ
′/2

 = ΛV h =

=

 a b

c d

 e−ϕ/2 eϕ/2C(0)

0 eϕ/2

 cos θ sin θ

− sin θ cos θ

 ,

(1.97)

where ad− bc = 1. The result is that the parameter θ of the compensating transformation h is
given by

tan θ =
c

eϕ
(
cC(0) + d

) , (1.98)

and the transformation of the scalars can be written in the compact form

λ′ =
aλ+ b

cλ+ d
. (1.99)

The symmetric matrixM is nowM = V V T and transforms under Λ ∈ SL(2,R) according
to
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M′ = ΛMΛT , (1.100)

which is completely equivalent to the above transformation of λ. Observe that it is not necessary
to worry about the h-transformations anymore.

It is also worth stressing that the only SL(2,R) transformations that leave invariant λ or,
equivalently,M or V are ±I2×2. This is an important point: SO(2) is sometimes referred to as
the “stability subgroup”. Had we defined the coset by the equivalence relation V ∼ h|V , h ∈
SO(2), then, by definition, V would have been invariant under any Λ ∈ SO(2). Then, SO(2)
would have been the subgroup of SL(2,R) leaving invariant the coset scalars. This is, however,
not the way in which this coset is constructed and (as it can be explicitly checked) there is no
stability subgroup of SL(2,R) in that sense apart from this almost trivial Z2.

Under this Λ, the doublet of 2-forms transforms

~B′ = Λ ~B , (1.101)

and the 4-form D and the Einstein metric are inert.
Now, it is a simple exercise to rewrite the NSD type IIB action in the following manifestly

S duality invariant form

SNSD = 1

16πG
(10)
N

∫
d10x

√
|E |

{
R(E) + 1

4Tr
(
∂MM−1

)2
+ 1

2·3!H
TM−1 ~H+ 1

4·3!F
2 − 1

27·33
1√
|E |

ε D ~H T η ~H
}
,

(1.102)

It is easy to find how the fields H, G(3), C
(4) in the action Eq. (1.82) transform under

SL(2,R): 

H′ =
(
d+ cC(0)

)
H+ cG(3) ,

G(3) ′ = 1
|cλ+d|2

[(
d+ cC(0)

)
G(3) − ce−2ϕH

]
,

C(4) ′ = C(4) − 3
(
C(2) B

)( ac bc
bc db

)(
C(2)

B

)
.

(1.103)

λ transforms as above and we stress that the string metric does transform under SL(2,R):

′ = |cλ+ d| . (1.104)

The string-frame supersymmetry variations11 are

δψµ = ∇µε− 1
8 6Hµσ

3ε+ 1
16e

ϕ
∑5

n=1
1

(2n−1)! 6G
(2n−1)ΓµPnε

δλ = 6∂ϕε− 1
2·3! 6H σ3ε+ 1

4e
ϕ
∑5

n=1
n−3

(2n−1)! 6G
(2n−1) Pnε (1.105)

where

Pn =
{
σ1 : n even
iσ2 : n odd

(1.106)

11The 2 chiral spinors are grouped into a 2 vector.
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1.3.1. T-duality and Background Fields: Buscher’s Map

As we have seen in Sec. (1.1.3), a string moving on a manifold compactified on a circle, enjoys
T-duality. We now ask ourselves whether there is something analogous to this in supergravity
theories. The answer was first found by Buscher [30] but we will use ideas taken from [2, 97].
The basic idea in T-duality is that one of the target space directions was compactified. In
the sigma model, this translates to the requirement that the background fields admit to an
isometry, i.e. the background fields are independent, up to possible gauge transformations, of
this direction. Taking the isometry direction to be Y , only the combination ∂aY occurs in the
sigma model. This then means that we can Hodge dualize the field strength ∂aY : Substitute
Θa = ∂aY , introduce a Lagrange multiplier χ imposing dΘ = 012 and making use of the equation
of motion of Θa to integrate it out of the action, et voilá the result is another sigma model, once
we interpret χ as a new coordinate. The explicit mapping, known as Buscher’s transformation
[30], is given by

G̃χχ = 1
GY Y

, G̃χm = BmY
GY Y

,

B̃mχ = GY m
GY Y

, G̃mn = Gmn − GmY GnY −BmY BnY
GY Y

,

B̃mn = Bmn + 2BY [mGn]Y

GY Y
.

(1.107)

As one can see by doing the above transformation twice, it defines a Z2 mapping between sigma
models.

The thing is that, although the above formulae relate sigma models, starting with a model
with vanishing β-functions, one does not end up with a background that satisfies them. The
situation is however ameliorated by taking the dilaton to transform as well [30], i.e.

Φ̃ = Φ − 1
2 log (| GY Y |) . (1.108)

Although there are various ways of demonstrating the above, in this case it best shown using the
action (1.76): Imposing the existence of an isometry in our theory, we can apply Kaluza-Klein
reduction. Using the standard techniques we decompose the Zehnbein as

Eµ̂
â =

(
em

a kAm

0 k

)
−→


k =

√
−GY Y ,

Am = GY mG
−1
Y Y ,

gmn = Gmn −GmYGnYG
−1
Y Y ,

, (1.109)

and decompose the Kalb-Ramond field, in form notation, as

B̂ = B − 1
2A ∧ C + C ∧ dy , (1.110)

and the dilaton, Φ̂, is taken to be y independent. Thus reducing (1.76) to 9 dimensions, one
obtains∫

d9x
√
ge−2Φ̂k

[
R(g) + 4∂ log(k)∂Φ̂− 4

(
∂Φ̂
)2

+ 1
2·3!H

2 − 1
2·3!k

2F (A)2 − 1
2·3!k

−2F (C)2
]
,

(1.111)
where F (A) = dA, F (C) = dC and

H = dB − 1
2A ∧ F (C) − 1

2C ∧ F (A) . (1.112)

12This imposes that, locally, Θ is indeed a field strength, so that one does not introduce extra degrees of
freedom.
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By defining then the field φ ≡ Φ̂− 1
2 log(k), the above action takes the form∫

d9x
√
ge−2φ

[
R(g) + (∂ log(k))2 − 4 (∂φ)2 + 1

2·3!H
2 − 1

2·3!k
2F (A)2 − 1

2·3!k
−2F (C)2

]
.

(1.113)
It is obvious that the above, 9-dimensional, action is invariant under the Z2 mapping

k → k−1 , Aµ ↔ Cµ , (1.114)

and the rest of the fields invariant. It will not come as a surprise that upon re-expressing this 9-
dimensional mapping in terms of 10-dimensional fields, one obtains the Buscher transformation
(1.107,1.108).

1.4. D = 11 Sugra and M Theory

It was known for quite some time that the maximal admissible sugra was N = 1 D = 11
supergravity.13 The gravitational N = 1 multiplet consists of a spin 2 field, the metric, gµν , or,
if you like, the Elfbein, a Majorana Rarita-Schwinger field, Ψµ, and a 3-form field, C(3). The
bosonic part of the sugra action reads

S =
∫
d11x
√
−g
[
R(g) + 1

2·4!G
2
(4)

]
− 1

6

∫
11C

(3) ∧ dC(3) ∧ dC(3) , (1.115)

where G(4) = dC(3). Apart from invariance under general coordinate transformations, the
action is invariant under δC(3) = dΛ(2) which then is about it regarding symmetries of the
action. There is a scaling symmetry that scales the action, though.

The supersymmetry variation reads, all spinors are Majorana,

δΨµ = ∇µε + i
25·32 [Γαβγδµ − 8Γβγδ gαµ]Gαβγδ

(4) ε . (1.116)

Using dimensional reduction, i.e. using the decomposition as displayed in appendix (B.1),
one can see that the above action becomes the type IIA action given above.

It has been argued [6], that the correct and complete supertranslation algebra which is valid
for this case is

{Q,Q} = iΓµC−1 Pµ + 1
2!Γ

µνC−1Z
(2)
µν + i

5!Γ
µ1...µ5C−1Z

(5)
µ1...µ5 , (1.117)

where Q is a Majorana spinor operator, generating the susy transformations, and the Z’s are
central form-charges, i.e. they transform as forms under the Lorentz group but are central with
respect to the rest of the Susy algebra.

Since the D = 11 supergravity contains a three form, and this couples naturally to a three
surface in space-time, one might be inclined to think that there is an extended object, a mem-
brane, also called the ‘M2’ brane, in a theory having as a low energy limit the D = 11 super-
gravity.14 Dually, the theory can also be formulated with a 6 form field [25], which then signals
the existence of a M5 brane.

Taking the existence of these M-branes seriously, one can compactify the membrane over
a circle, thus naively leading to a string when we restrict ourselves to the zero modes. If the

13Going beyond this limit, would mean that the gravitational multiplets necessarily incorporate particles with
spin 5/2 and up, which cannot be done consistently.

14One can write down Nambu-Goto type actions for the M2 brane, moving in a given background [13], and
then consistency implies that the background satisfies the equations of motion for D = 11 supergravity.
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radius of the eleventh dimension is R, and we denote the M-2-brane tension by T3 ≡ l−3
11 , the

string tension (traditionally denoted by α′) will be given by T2 = R
l311
≡ 1

l2s
≡ 1

α′
. This gives the

string length as

ls =
l
3/2
11

R1/2
. (1.118)

The mass of the first Kaluza-Klein excitation with one unit of momentum in the eleventh
direction is M(KK) ≡ R−1. As we shall see later on, this state is interpreted, from the 10-
dimensional point of view, as a D0-brane, and its mass could serve as a definition of the string
coupling constant, M(D0) ≡ 1

gsls
. Equating the two expressions gives

gs =
R

ls
=
(
R

l11

)3/2

. (1.119)

This formula is very intriguing, because it clearly suggests that the string will only live in 10
dimensions as long as the coupling is small. The historical way in which Witten [115] arrived to
this result was exactly the opposite, by realizing that the mass of a D0 brane (in 10 dimensions)
goes to zero at strong coupling, and interpreting this fact as the opening of a new dimension.
Although some partial evidence exists on how the full O(1,10) can be implemented in the theory
(as opposed to the O(1,9) of ten-dimensional physics), there is no clear understanding about the
rôle of conformal invariance (which is equivalent to BRST invariance, and selects the critical
dimension) in eleven dimensional physics.

The radius could also be eliminated, yielding the beautiful formula

gs =
(
l11
ls

)3

. (1.120)
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Chapter 2

Black holes and Duality

Black-hole physics is probably the only non perturbative problem in gravity in which non
trivial progress has recently been made owing to the different perspective afforded by “string
dualities” (for a recent review see e.g. [85]).

In the literature [29] a systematic analysis was made of the behaviour of asymptotic charges
under T duality (see e.g. [51, 2] for four-dimensional non-rotating black holes1. The main goal
of the present chapter is to extend their results, by essentially widening the class of metrics
considered both by allowing a more general asymptotic behaviour and by including more non-
trivial fields. This simultaneously widens the subgroup of the duality group that acts on that
class preserving the asymptotic behaviour.

Therefore, we will define the asymptotic behaviour considered (“TNbh”) and we will identify
the subgroup that preserves it (the “ADS”). We will find that the charges naturally fit in
multiplets under the action of this subgroup and that the Bogomol’nyi bound can be written
as a natural invariant of this subgroup. This was to be expected since duality transformations
in general respect unbroken supersymmetries, but, since duality transformations in general
transform conserved charges that appear in the Bogomol’nyi bound into non-conserved charges
(associated to primary scalar hair) that, in principle, do not, the consistency of the picture will
require us to include those non-conserved charges into the generalized Bogomol’nyi bound. A
by-product of our study will be the identification of the known supersymmetric massless black
holes as the T duals in the time direction of the usual supersymmetric massive black holes.
These are the main results of this chapter.

One of the motivations for this investigation was to try to constrain the angular momentum
of black holes using duality and supersymmetry in such a way that the extreme limit would
never be surpassed. As it is well known the striking difference between the black-hole extremal-
ity bound and the supersymmetry (or Bogomol’nyi) bound: although the angular momentum
appears in the extremality bound, it does not enter the supersymmetry bound. This difference
is even more surprising in view of the fact that in presence of only NUT charge (that is, for
some stationary, non-static, cases) both bounds still coincide; the NUT charge squared must
simply be added to the first member in the two bounds [72]. On the other hand, it is also
known that some T duality transformations seem to break spacetime supersymmetry making it
non-manifest [7]. These two facts could perhaps give rise to an scenario in which extremal Kerr-
Newman black holes (which are not supersymmetric) could be dual to some supersymmetric
configuration. At the level of the supersymmetry bounds one would see the angular momentum

1Since some of the objects studied are singular, as opposite to black holes with a regular horizon, the name
black hole will be used in a generalized sense for (usually point-like) objects described by asymptotics such that
a mass, angular momentum etc. can be assigned to them.
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transforming under a non-supersymmetry-preserving duality transformation into a charge that
does appear in the supersymmetry bound (like the NUT charge). In this way, the constraints
imposed by supersymmetry on the charge would constraint equally the angular momentum.

Although this scenario has been disproved by the calculations that we are going to present2

the transformation of black-hole charges and the corresponding Bogomol’nyi bounds under
general string duality transformations remains an interesting subject in its own right and its
study should help us gain more insight into the physical space-time meaning of duality.

Thus, in the sequel, the transformation of asymptotic observables (as multipoles of the
metric or of other physical fields) of four-dimensional “black holes” under the T duality and
S duality groups will be systematically analyzed, from the four-dimensional effective action
point of view3.

We are going to consider for simplicity a consistent (from the point of view of the equations
of motion and of the supersymmetry transformations) truncation4 of the four-dimensional het-
erotic string effective action including the metric, dilaton and two-form field plus two Abelian
vector fields. This truncation is, however, rich enough to contain solutions with 1/4 of the
supersymmetries unbroken [70, 88].

Since all the configurations we are going to consider are stationary and axially symmetric, the
theory can be reduced to two dimensions were the T dualities due to the presence of isometries
in four dimensions become evident. This we will do in Section 2.1 getting manifest O(2, 4) due
to the presence of the two Abelian vector fields in four dimensions [84]. We will also find the
S duality transformations in their four-dimensional form.

Then, in Section 2.2 we will define the asymptotic behaviour of those fields in the config-
urations we are interested in: (charged, rotating) black holes, Taub-NUT metrics etc. which
are stationary and axially-symmetric. This class of asymptotic behaviour will be referred to
as TNbh asymptotics. Any configuration in this class will be characterized by a set of param-
eters (charges) such as the electric and magnetic charges with respect to the gauge fields, the
ADM mass, the angular momentum, the NUT charge and some other charges forced upon us
by duality.

The rest of the chapter is organized as follows: In Section 2.3 we study the transformation
of the charges under different elements of the T and S duality groups and show explicitly the
transformations that preserve TNbh asymptotics including the effect of constant terms in the
asymptotics of the vector fields (Section 2.3.4). In Section 2.4 we define the Asymptotic Duality
Subgroup as the subgroup of the duality group that preserves TNbh asymptotics and study the
transformation of the Bogomol’nyi bound under duality. We will find full agreement with the
preservation of unbroken supersymmetry if we admit the presence of primary scalar hair in the
generalized Bogomol’nyi bound. We illustrate this with several examples in Section 2.4.3 where
we also find that the known massless supersymmetric black holes are the T duals of the common
massive supersymmetric ones. Section 2.5 contains our conclusions.

2.1. The Derivation of the Duality Transformations

In this chapter we are going to consider a consistent truncation of the four-dimensional
heterotic string effective action in the string frame including the metric, axion 2-form and two

2In fact, the angular momentum is part of a set of charges which transform amongst themselves under duality
and never appear in the Bogomol’nyi bound.

3The transformation of some of the charges we are going to consider here was studied previously in Refs. [88,
71]. Here we will extend that study to other sets of charges.

4This truncation is also invariant under duality transformations in the compact six-dimensional space direc-
tions.
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Abelian vector fields given by5:

S =
∫
d4x
√
|ĝ| e−

ˆφ
[
R(ĝ) + ĝµ̂ν̂∂µ̂φ̂∂ν̂ φ̂− 1

12Ĥµ̂ν̂ρ̂Ĥ
µ̂ν̂ρ̂ − 1

4 F̂
I
µ̂ν̂F̂

Iµ̂ν̂
]
, (2.1)

where I = 1, 2 sums over the Abelian gauge fields ÂI
µ̂ with standard field strengths F̂ I = dÂI

and the two-form field strength is Ĥ = dB̂ − 1
2 F̂

I ÂI .
Before proceeding, an explanation of the origin of this action is in order. This action can

be obtained from the ten-dimensional heterotic string effective action by first considering only
the lowest order in α′ terms (so the Yang-Mills fields and R2 terms are consistently excluded),
then compactifying the theory on T 6 to four dimensions following essentially Ref. [84] and
afterwards setting to zero all the scalars and identifying the six Kaluza-Klein vector fields with
the six vector fields that come from the ten-dimensional axion. This last truncation is done in
the equations of motion and it is perfectly consistent with them and with the supersymmetry
transformation rules. The result of this truncation is the action of N = 4, d = 4 supergravity
[31] in the string frame and with the axion 2-form. Setting to zero four of the six vector fields
one gets the above action.

The above action is invariant under Buscher’s T duality transformations in the six compact
directions because these interchange the vector fields whose origin is the ten-dimensional metric
with the the vector fields whose origin is the ten-dimensional axion and we have identified these
two sets of fields. There are still some trivial T duality transformations which correspond to
rotations in the internal compact space. They correspond to global O(2) rotations of the two
vector fields (O(6) rotations in the full N = 4 supergravity theory).

The reason why we consider two vector fields instead of six or just one is that the generating
solution for black-hole solutions of the full N = 4, d = 4 theory only needs two non-trivial vector
fields. Starting from this generating solution and performing T duality transformations in the
compact space and S duality transformations (to be described later) which do not change the
Einstein metric one can generate the most general black-hole solution (if the no-hair theorem
holds). Also, the minimal number of vector fields required in this theory for allowing solutions
with 1/4 of the N = 4 supersymmetries unbroken, is two [70, 88].

As announced in the Introduction, it will be assumed that the metric has a timelike and
a spacelike rotational isometry6. The former is physically associated to the stationary (but
not static, in general) character of the spacetime and the other to the axial symmetry7. They
commute with each other and, thus, one can find two coordinates, in this case the time t and
the angular variable ϕ, adapted to them, such that the background does not depend on them.
This, then, implies that the theory can be dimensionally reduced. Using the standard technique
[101] the resulting dimensionally reduced, Euclidean, action turns out to be

S =
∫
d2x
√
|g| e−φ

[
R(g) + gµν∂µφ∂νφ+ 1

8Tr∂µM∂µM−1

(2.2)
−1

4W
i
µν(M−1)ijW

jµν
]
,

Now the spatial indices µν = 2, 3 for simplicity and we also have internal indices α, β = 0, 1. The
two-dimensional fields are the metric gµν , six vector fields Ki

µ = (K(1)α
µ,K

(2)
αµ,K

(3)I
µ) with

5The signature used in this chapter, and only in this chapter, is (−, +, +, +). All hatted symbols are four-
dimensional and so µ̂, ν̂ = 0, 1, 2, 3. The relation between the four-dimensional Einstein metric ĝEµ̂ν̂ and the

string-frame metric ĝµ̂ν̂ is ĝEµ̂ν̂ = e−φ̂ĝµ̂ν̂ .
6The action of rotational isometries has fixed points, while translational isometries act with no fixed points.
7The axis corresponds obviously to the set of fixed points of the isometry.
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the standard Abelian field strengths W i
µν (i = 1, . . . , 6) and a bunch of scalars Gαβ , B̂αβ , Â

I
α

that appear combined in the 6× 6 matrixMij . They are given by

Gαβ = ĝαβ , φ = φ̂− 1
2 log | detGαβ | ,

K(1)α
µ = ĝµβ(G−1)βα , Cαβ = 1

2Â
I
αÂ

I
β + B̂αβ ,

gµν = ĝµν −K(1)α
µK

(1)β
νGαβ , K

(3)I
µ = ÂI

µ − ÂI
αK

(1)α
µ ,

K(2)
α µ = B̂µα + B̂αβK

(1)β
µ + 1

2Â
I
αK

(3)I
µ ,

(2.3)

and

(Mij) =


G−1 −G−1C −G−1AT

−CTG−1 G+ CTG−1C +ATA CTG−1AT +AT

−AG−1 AG−1C +A I2 +AG−1AT

 , (2.4)

A being the 2× 2 matrix with entries ÂI
α. If B stands for the 2× 2 scalar matrix (B̂αβ), then

the 2× 2 scalar matrix C is given by

C = 1
2A

TA+B . (2.5)

Any explicit contribution from the three-form automatically vanishes in two dimensions,
which explains why it does not occur in Eq. (2.2). On the other hand, the dynamics of a
two-dimensional vector field is trivial8 and this seems to suggest that we can safely ignore it.
However, the correct procedure to eliminate the vector fields is to solve their equation of motion
and then substitute the solution into the equations of motion of the other fields. The equations
of motion for the vector fields in the action above tell us that the components of the fields
(M−1)ijW

j
µν are constant. In Ref. [106] the constants were chosen to be zero by setting the

vector fields themselves to zero, which can be consistently done at the level of the action. This
is obviously an additional restriction on the backgrounds considered9. This restriction was also
made (in the purely gravitational sector) in the original article by Geroch [45] and it has been
done in all the subsequent literature on this subject in the form proposed in Refs. [77] where it
was expressed as the requirement that the background possess “orthogonal insensitivity”, i.e. it
is invariant under (t, ϕ)→ (−t,−ϕ).

This restriction is crucial to obtain an infinite-dimensional algebra of invariances of the
equations of motion of the two-dimensional system. As we are going to explain, though, in
this chapter we are not interested in the infinite-dimensional algebra but only in its zero-mode
subalgebra and so we will not impose this restriction. Nevertheless, all the configurations that
we will explicitly consider will obey it.

2.1.1. T Duality Transformations

The matrix M satisfies MLML = I6, with
8The equation of motion of a two-dimensional vector field implies that the single independent field-strength

component is a constant.
9Other choices could lead to two-dimensional cosmological terms.
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L ≡

 0 I2 0
I2 0 0
0 0 I2

 . (2.6)

It can be immediately seen from Eq. (2.2) that the dimensionally reduced action, is invariant
under the global transformations given by

M→ Ω M ΩT , Ki
µ → Ωi

j Kj
µ , (2.7)

if the transformation matrices Ω satisfy the identity

Ω L ΩT = L . (2.8)

The matrix L given in Eq. (2.6) can be diagonalized and put into the form η = diag(−,−,+,+,+,+)
by a change of basis associated to the orthogonal matrix ρ:

ρ L ρT = η , ρ =
1√
2

 I2 −I2 0
I2 I2 0
0 0

√
2I2

 , ρ ρT = I6 , (2.9)

where now η is the diagonal metric of O(2, 4; R) which implies that the Ω’s are O(2, 4; R)
transformations in a non-diagonal basis. The transformations in the diagonal (Ωη) and non-
diagonal basis are related by

Ωη = ρ Ω ρT , Ωη η ΩT
η = η . (2.10)

This symmetry group corresponds to the classical T duality group. From the quantum-
mechanical point of view, O(2, 4; R) is broken to O(2, 4; Z) and this group is an exact pertur-
bative symmetry of string theory.

We must stress at this point that no S duality transformations are included in this group.
S duality is a non-local symmetry while T duality consists only on local transformations10. So,
where are the S duality transformations that were present in four dimensions?

It is well-known [8, 106] that this finite symmetry group can be extended to the infinite
algebra ô(2, 4). The zero-mode subalgebra corresponds to the algebra o(2, 4; R) of the symmetry
we just described. The S duality transformations are included in this algebra as non-local
transformations which are not in the zero-mode subalgebra.

Observe that we could have proceeded in a completely different way: we could have started
by reducing the theory in the time direction to three dimensions and we could have dualized in
three dimensions all vectors into scalars (as in Ref. [105]). In this way we would have gotten two
scalars from each vector field: one would be the electrostatic potential ÂI

t and the other would
be the magnetostatic potential ˜̂

AI
t, non-locally related to the other three components of the

vector. In this three-dimensional theory, S duality would be realized by local transformations
rotating the electrostatic and magnetostatic potentials into each other. Further reduction to
two dimensions would give us a different (“dual”) version of the two-dimensional theory related
to the one we have obtained and we are going to study by a non-local transformation. The dual
theory has also a ô(2, 4)2 invariance but now the S duality transformations are in the zero-mode
subalgebra o(2, 4; R)2 [106].

Another possibility is to study the S duality transformations directly in four dimensions.

10At the level of the effective action, of course.
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2.1.2. S Duality Transformations

The N = 4, d = 4 supergravity equations of motion [31] have another duality symmetry
nowadays called S duality that consists of electric-magnetic duality rotations accompanied of
the inversion of the dilaton (the string coupling constant) and constant shifts of pseudoscalar
axion (see e.g. Ref. [104] for a review with references). This symmetry is only manifest in the
Einstein frame and with the pseudoscalar axion. To study it we have to rewrite the action
Eq. (2.1) in the Einstein frame and then trade the axion two-form B̂µ̂ν̂ by the pseudoscalar
axion â by means of a Poincaré duality transformation. (One would get an inconsistent result
if one replaced Ĥ by its dual field strength directly in the action). Thus, we consider first the
above action as a functional of Ĥ which is now unrelated to B̂. Then, we have to introduce a
Lagrange multiplier (â) to enforce the Bianchi identity of Ĥ. Eliminating Ĥ in the action by
using its equation of motion one finally gets the following action

S =
∫
d4x
√
|ĝE |

[
R̂(ĝE)− 1

2(∂φ̂)2 − 1
2e

2φ̂(∂â)2 − 1
4e

−φ̂F̂ I F̂ I + 1
4 âF̂

I?F̂ I
]
. (2.11)

It is important for our purposes to have a very clear relation between the fields in both
formulations since we have to identify the same charges in both and track them after their
transformation. The (non-local) relation between â and B̂ and the relation between the Einstein-
and string-frame metric are given by

∂µ̂â = 1

3!
√
|ĝE |

e−2φ̂ε̂µ̂ν̂ρ̂σ̂Ĥ
ν̂ρ̂σ̂ ,

ĝEµ̂ν̂ = e−φ̂ ĝµ̂ν̂ .

(2.12)

Defining now the complex scalar λ̂ and the S dual vector field strengths ˜̂
F I [71]

λ̂ ≡ â+ ie−φ̂ ,
˜̂
F I ≡ e−φ̂ ?F̂ I + âF̂ I = λ̂F̂ I + + c.c. , (2.13)

where

F̂ I ± ≡ 1
2

(
F̂ I ∓ i ?F̂ I

)
, ?F̂ I ± = ±iF̂ I ± , (2.14)

one gets the action

S =
∫
d4x
√
|gE |

R̂(ĝE)− 1
2

∂µ̂λ̂∂
µ̂ ¯̂
λ(

=mλ̂
)2 + 1

4 F̂
I ? ˜̂
F I

 . (2.15)

The equations of motion plus the Bianchi identities for the vector field strengths can be
written in the following convenient form

ĜEµ̂ν̂ +
2

(λ̂− λ̂)

[
∂(µ̂λ̂∂ν̂)λ̂− 1

2 ĝEµ̂ν̂∂λ̂∂λ̂
]

−1
4

(
? ˜̂
F I

µ̂
ρ̂ ?F̂ I

µ̂
ρ̂
) 0 1

−1 0


 ˜̂

F I
ν̂ρ̂

F̂ I
ν̂ρ̂

 = 0 , (2.16)
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∇2λ̂− 2
(∂λ̂)2

(λ̂− λ̂)
+ i

8(λ̂− λ̂)2
(
F̂ I−

)2
= 0 , (2.17)

∇µ̂

 ? ˜̂
F I µ̂ν̂

?F̂ I µ̂ν̂

 = 0 . (2.18)

In this way, it is easy to see that the last equation is covariant under linear combinations of
the vector fields and the S dual vector fields ˜̂

F I′ µ̂ν̂

F̂ I′ µ̂ν̂

 =

 a b

c d


 ˜̂

F I µ̂ν̂

F̂ I µ̂ν̂

 , (2.19)

with the only requirement that the transformation matrix is non-singular. However, these vector
fields are not independent and consistency implies the following non-linear transformations for
the complex scalar λ̂

λ̂′ =
aλ̂+ b

cλ̂+ d
. (2.20)

The Einstein equation and the scalar equations are invariant if the constants a, b, c, d are
the entries of an SL(2,R) (Sp(2,R)) matrix i.e.

ad− bc = 1 . (2.21)

These transformations do not act on the Einstein metric. Observe that, although they are
local transformations of the vector field strengths they are in fact non-local transformations in
terms of the true variables; the vector fields themselves. Observe that the equations of motion of
the vector fields are nothing but the Bianchi identities for the dual vector fields ˜̂

F I
µ̂ν̂ implying

the local existence of the dual vector fields ˜̂
AI

µ̂ such that

˜̂
F I

µ̂ν̂ = 2∂[µ̂
˜̂
AI

ν̂] , (2.22)

which justifies the definition of the ˜̂
F I ’s. ˜̂

AI depends non-locally on ÂI and the pair ˜̂
AI , ÂI

transforms as an SL(2,R) doublet.
SL(2,R) is generated by three types of transformations11: rescalings of λ̂(

a 0
0 1/a

)
, λ̂′ = a2λ̂ , (2.23)

continuous shifts of the axion (
1 b
0 1

)
, λ̂′ = λ̂+ b , (2.24)

and the discrete transformation(
0 1
−1 0

)
, λ̂′ = −1/λ̂ . (2.25)

11SL(2, Z) can be generated by the discrete versions of the last two.
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2.2. TNbh Asymptotics

In this section we will present the asymptotic behaviour that we will assume for the solutions
of the equations of motion originating from the action (2.1).

As advertised in the Introduction we are going to consider generalizations of asymptotically
flat Einstein metrics. The asymptotic behaviour of four-dimensional asymptotically flat met-
rics is completely characterized to first order in 1/r by only two charges: the ADM mass M
and the angular momentum J . However, duality transforms asymptotically flat metrics into
non-asymptotically flat metrics which need different additional charges to be asymptotically
characterized. One of them [29] is the NUT charge N and closure under duality forces us to
consider it. We will not need any more charges in the metric but, for completeness we define a
possible new charge u which we will simply ignore in what follows.

With these conditions on the asymptotics of the four-dimensional metric it is always possible
to choose coordinates such that the Einstein metric in the t − ϕ subspace has the following
expansion in powers of 1/r:

(ĝEαβ) =


−1 + 2M/r 2N cos θ +

[
2J sin2 θ − 4M(N + u) cos θ

]
/r

2N cos θ +
[
2J sin2 θ − 4M(N + u) cos θ

]
/r (r2 + 2Mr) sin2 θ

+ . . . (2.26)

We will assume the following behaviour for the dilaton

e−φ̂ = 1− 2Qd/r + 2W cos θ/r2 − 2Z/r2 + . . . (2.27)

where Qd is the dilaton charge, W is a charge related to the angular momentum that will be
forced upon us by S duality and Z is a charge which is not independent, but a function of the
electric and magnetic charges (see below) and is also forced upon us by S duality . This implies
for the two-dimensional scalar matrix G:

(Gαβ) =

0BB@
−1 + 2(M −Qd)/r 2N cos θ +

ˆ
2J sin2 θ − 4N(M −Qd) cos θ

˜
/r

2N cos θ +
ˆ
2J sin2 θ − 4N(M −Qd) cos θ

˜
/r

ˆ
r2 + (M +Qd)r

˜
sin2 θ

1CCA (2.28)

where we have already set u = 0.
Observe that we have fixed its constant asymptotic value equal to zero using the same

reasoning as Burgess et.al. [29], i.e. rescaling it away any time they arise. The time coordinate,
when appropriate, will be rescaled as well, in order to bring the transformed Einstein metric to
the above form (i.e. to preserve our coordinate (gauge) choice), but in a duality-consistent way.

Sometimes it will also be necessary to rescale the angular coordinate ϕ in order to get a
metric looking like (2.26). Conical singularities are then generically induced, and then the
metric is not asymptotically TNbh in spite of looking like (2.26).

The objects we will consider will generically carry electric (QI
e) and magnetic (QI

m) charges
with respect to the Abelian gauge fields ÂI

µ̂. Since we allow also for angular momentum,
they will also have electric (PI

e ) and magnetic (PI
m) dipole momenta. This implies for the

two-dimensional scalar matrix A the following asymptotic behaviour

(
ÂI

α

)
= −2

 Q1
e/r − PI

e cos θ/r2 Q1
m cos θ + P1

m sin2 θ/r

Q2
e/r − PI

e cos θ/r2 Q2
m cos θ + P2

m sin2 θ/r

+ . . . (2.29)

28



Electric dipole momenta appear at higher order in 1/r and it is not strictly necessary to
consider them from the point of view of T duality, since it will not interchange them with any of
the other charges we are considering and that appear at lower orders in 1/r. However, S duality
will interchange the electric and magnetic dipole momenta and we cannot in general ignore
them.

The different behaviour of T and duality is due to the fact that T duality acts on the
potential’s components and S duality acts on the field strengths. Thus, for the purpose of
performing T duality transformations the electric charge and the magnetic momentum terms
in the potentials are of the same order in 1/r. From the point of view of S duality, the electric
and magnetic charge terms are of the same order in 1/r.

To the matrix A in (2.29) we could have added a constant 2× 2 matrix which would be the
constant value of the t, ϕ components of the vector fields at infinity. Usually these constants
are not considered because they can be removed by a four-dimensional gauge transformation
with gauge parameters depending linearly on t and ϕ.

In [29] it was claimed those constants (in particular a constant term in the asymptotic
expansion of ÂI

t), although pure gauge, do have an influence on physical characteristics of the
dual solutions (actually this fact was interpreted there as evidence against the possibility of
performing duality with respect to isometries with non-compact orbits).

However, a glance at the steps necessary to derive the O(2, 4) invariance of the dimension-
ally reduced theory [84] immediately reveals the necessity of not only staying in an adapted
coordinate system, but also that the allowed four-dimensional gauge transformations are those
which correspond to two-dimensional gauge transformations which are obviously independent
of cyclic coordinates (in this case t and ϕ) and keep the matrix A invariant.

In other words: a constant shift in the matrix A, is not a symmetry of the two-dimensional
theory but relates two inequivalent vacua12. The situation from the point of view of S duality
is not different: the result of the same classical S duality transformation (i.e. SL(2,R) transfor-
mation) depends on the asymptotic constant values of the dilaton and axion. These can always
be absorbed by further classical S duality transformations, but they do not relate equivalent
vacua in general.

Thus, at least from the point of view adopted here, constant terms are indeed physically
meaningful. From the point of view of obtaining a closed class of solutions under duality they are
necessary because they are generated by duality transformations. Setting the constant terms to
zero is just a specific gauge choice (as much as the coordinate choice made for the metric is also
a coordinate choice). Duality transformations do not respect these gauge choices. In the next
section we will study the inclusion of these constant terms in a consistent way by performing
gauge transformations and coordinate changes in all the fields. However, the transformations
with constant terms become very clumsy and we will consider most transformations on the
configurations we are describing in this section, with zero constant terms. Only in Section 2.3.4,
we will briefly consider a discrete duality transformation on the most general configuration.

The two-index form will have the usual charge Qa. Closure under duality again demands
the introduction of a new extra parameter (“charge”) that we denote by F and which will play
an important role in what follows. At the same order in 1/r it is possible to define another
charge H which is not independent, but a function of the electric and magnetic charges, as we

12In any case, one should not be too dogmatic in this issue. After all, we are studying only the massless spectrum
of four-dimensional string theory and performing dimensional reduction to two dimensions disregarding all the
massive Kaluza-Klein modes which are associated to specific functional dependences on the coordinates t and
ϕ. A full answer on whether t- or ϕ-dependent gauge transformations are allowed and their effect on the two-
dimensional theory can only be obtained from the study of the full theory and it is beyond the scope of the
effective theory that describes the massless spectrum.
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will show. Its presence, is required by closure of duality but it transforms as a dependent charge
and it does not play a relevant role. The asymptotic expansion are, then

(
B̂αβ

)
= 2

 0 Qa cos θ + F sin2 θ/r +H cos θ/r

−Qa cos θ −F sin2 θ/r −H cos θ/r 0

+ . . . (2.30)

As we will show in Section 2.3.3, the necessity of the new charge F becomes clear when
looking at discrete duality subgroups checking that the subgroup’s multiplication table is satis-
fied. From the physical point of view it is clear that the presence of angular momentum should
induce such a charge.

Observe that we could have added a constant term to B̂tϕ as well which could be reabsorbed
by four-dimensional gauge transformations which are not allowed from the two-dimensional
point of view. We choose them to be initially zero as well for simplicity13.

Now we have to show that the asymptotics that have been assumed on the gauge fields ÂI ,
and on the two-index field B̂ correspond to the gauge-invariant charges that one can define
by looking directly in the asymptotic expansions of the field strengths F̂ I , or Ĥ. The field
strengths corresponding to the above potentials are

F̂ I = 2
(
QI

e − 2
PI

e

r
cos θ

)
1
r2
dr ∧ dt+ 2PI

m sin2 θ
1
r2
dr ∧ dϕ

+2
(
QI

m − 2
PI

m

r
cos θ

)
sin θ dθ ∧ dϕ− 2PI

e sin θ
1
r2
dθ ∧ dt+ . . . (2.31)

and

Ĥ = −2
{
Qa −

[(
QI

eQI
m +H

)
− 2F cos θ

] 1
r

}
sin θ dθ ∧ dt ∧ dϕ

−2
[
F sin2 θ −

(
QI

eQI
m −H

)
cos θ

] 1
r2

dr ∧ dt ∧ dϕ+ . . . (2.32)

Observe that the effect of taking the Hodge dual of F̂ I is equivalent to replacing (QI
e,PI

e )
by (QI

m,PI
m) and (QI

m,PI
m) by (−QI

e,−PI
e ).

Now we have to identify H. A convenient way of doing this is to dualize the three-form
field strength to find the asymptotics of the pseudoscalar axion â defined in Eq. (2.12). The
partial-differential equation ∂µ̂â for â the consistency condition ∂[µ̂∂ν̂]â = 0 (which is the Bianchi
identity for â and, therefore, the equation of motion for B̂) has to be satisfied and this implies
that the combination QI

eQI
m −H vanishes, so

H = QI
eQI

m , (2.33)

and we find

Ĥ = −2
{
Qa − 2F cos θ

1
r

+ 2QI
eQI

m

1
r

}
sin θ dθ ∧ dt ∧ dϕ

−2F sin2 θ
1
r2
dr ∧ dt ∧ dϕ+ . . . (2.34)

13A constant term in B̂tϕ implies via duality a constant term in Gtϕ which we have also initially set to zero
for the same reason. We will consider both kinds of constant terms in the next section
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From this expression and (2.31) we see that all charges considered have a gauge-invariant
meaning. The asymptotic expansion of the pseudoscalar axion â is (allowing for a constant
value at infinity â0 that we will set to zero in the initial configuration)

â = â0 + 2Qa/r − 2F cos θ/r2 + 2QI
eQI

m/r
2 + . . . (2.35)

which shows that Qa is the standard axion charge defined, for instance, in Ref. [88]. With the
pseudoscalar axion and the dilaton we find the asymptotic expansion of the complex scalar λ̂
(allowing also for a non-vanishing asymptotic value for the dilaton φ̂0)

λ̂ = λ̂0 + 2e−φ̂0Υ/r − 2e−φ̂0χ cos θ/r2 + 2e−φ̂0Θ/r2 + . . . (2.36)

where

λ̂0 = â0 + ie−φ̂0 ,

Υ = Qa − iQd ,

χ = F − iW ,

Θ = QI
eQI

m − iZ .

(2.37)

2.2.1. Inclusion of Constant Terms

The inclusion of constant terms in the asymptotics of the matrices G,A and B in a consistent
way is trickier than it seems at first sight. Let us start by discussing the modifications needed
to include constant terms in A.

In the presence of constant terms in A one has to be very careful when identifying the right
axion charges. If we consider the presence of only constant terms vI in ÂI

t for the moment

(
ÂI

α

)
=

 v1 − 2Q1
e/r + 2P1

e cos θ/r2 −2Q1
m cos θ − 2P1

m sin2 θ/r

v2 − 2Q2
e/r + 2P2

e cos θ/r2 −2Q2
m cos θ − 2P2

m sin2 θ/r

+ . . . (2.38)

the above expression for the axion field strength changes due to the Chern-Simons terms to

Ĥ = −2
{(
Qa − 1

2v
IQI

m

)
− 2

(
F − 1

2v
IPI

m

)
cos θ/r + 2QI

eQI
m

1
r

}
sin θ dθ ∧ dt ∧ dϕ

−2
(
F − 1

2v
IPI

m

)
sin2 θ/r2dr ∧ dt ∧ dϕ+ . . . (2.39)

Now, the right charges are no longer Qa and F but the combinations Qa − 1
2v

IQI
m and

F − 1
2v

IPI
m that appear in Ĥ. This really means that in presence of constant terms in ÂI

t as
above, the asymptotic expansion of B that gives the right charges as in Eq. (2.34), and the one
that on has to use is (setting H = 0)

B̂tϕ = 2
(
Qa + 1

2v
IQI

m

)
cos θ + 2

(
F + 1

2v
IPI

m

)
sin2 θ/r

+2QI
eQI

m cos θ/r + . . .

(2.40)
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Analogous results would have been obtained by creating the constant terms via a t-dependent
gauge transformation of the gauge fields (which induces, due to the Chern-Simons term present
in Ĥ a gauge transformation of the two-form field) of and looking for a gauge-independent
definition of the axion charges. This way of thinking (i.e. that the terms arise because of
gauge transformations that take us from the gauge in which we have written the asymptotic
expansion of the potentials and metric in the previous section) is the most appropriate to study
the inclusion of constant terms in G and B. For instance, let us now perform a ϕ-dependent
gauge transformation of the gauge fields with parameter ΛI = wIϕ that induces a constant
term in ÂI

ϕ

δÂI
ϕ = wI . (2.41)

This transformation induces on the two-form field Eq. (2.40) (taking into account the con-
stant terms vI) a gauge transformation in B. To make the story short, we will simply say that
if we consider a general matrix A with constant terms

“
ÂI

α

”
=

0@ v1 − 2Q1
e/r + 2P1

e cos θ/r2 w1 − 2Q1
m cos θ − 2P1

m sin2 θ/r

v2 − 2Q2
e/r + 2P2

e cos θ/r2 w2 − 2Q2
m cos θ − 2P2

m sin2 θ/r

1A + . . . (2.42)

we must consider a B matrix of the form (we only write the B̂tϕ entry)

B̂tϕ = x+ 1
2v

IwI2
(
Qa + 1

2v
IQI

m

)
cos θ − wIQI

e/r

+2
(
F + 1

2v
IPI

m

)
sin2 θ/r + 2QI

eQI
m cos θ/r + . . .

(2.43)

to get an axion field strength of the form (2.34) so the constants Qa and F are still the axion
charges. Now, a new t- or ϕ-dependent gauge transformation of the form Λ = δvIt + δwIϕ
is reabsorbed in a redefinition of the constants x, vI , wI and does not affect the charges, that
keep their gauge-invariant meaning. The constant x can also be generated or absorbed by a
gauge transformation of the two-form field and it does not induce any other changes in the
asymptotics of other fields.

Finally, we will see that duality sometimes creates a constant term in ĝEtϕ. This term can
be reabsorbed or induced by a reparametrization of the time coordinate t → t − qϕ. This
transformation changes G and A to

(Gαβ) =

0BB@
−1 + 2(M −Qd)/r (q + 2N cos θ) [1− 2 (M −Qd) /r] + 2J sin2 θ/r

(q + 2N cos θ) [1− 2 (M −Qd) /r] + 2J sin2 θ/r
ˆ
r2 + (M +Qd)r

˜
sin2 θ

1CCA . . . (2.44)

and

“
ÂI

α

”
=

0BBBBBBBBBB@

v1 − 2Q1
e/r + 2P1

e cos θ/r2 (w1 − qv1)− 2Q1
m cos θ

+2qQ1
e/r − 2P1

m sin2 θ/r

v2 − 2Q2
e/r + 2P2

e cos θ/r2 (w2 − qv2)− 2Q2
m cos θ

+2qQ2
e/r − 2P2

m sin2 θ/r

1CCCCCCCCCCA
+ . . . (2.45)

Observe that the electric dipole momenta do not appear in the right column because they are
of higher order.

It is easy to see that there is no need to do further changes in B. Thus, the most general
asymptotic expansions that we will consider are given by the matrices G in Eq. (2.44) A in
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Eq. (2.45) and B in Eq. (2.43) which define gauge-invariant charges in the sense that t and
ϕ-dependent gauge transformations ΛI = δvIt + (δwI − qδvI) and reparametrizations of the
form t→ t+δqϕ which are the ones that do not take us out of the Kaluza-Klein Ansatz become
simple redefinitions of the constants vI → vI + δvI etc. leaving the charges invariant (which
justifies their name).

The class of asymptotic behaviour just described, determined by the twelve charges{
M,J,N,Qa,F ,Qd,QI

e,QI
m,PI

m

}
(2.46)

(with or without constant terms in the matrices G,B,A) will be referred to henceforth as TNbh
asymptotics.

2.3. Transformation of the Charges under Duality

In this Section we are going to study the transformation of the charges of asymptotically
TNbh configurations under the T and S duality transformations found in Section 2.1.

2.3.1. Deriving the Form for the T Duality Transformation Matrices

The problem that now will be tackled is how to generate the explicit transformations of
the full O(2, 4,R) classical T duality group to find which subgroup maps TNbh asymptotics
into TNbh asymptotics. O(2, 4) is a non-compact, non-connected group and our first task is to
elucidate its structure.

It is known that every element from a group G, can be written as a sequence of operators,
which are always part of the connected component containing the identity G0 (which is itself
a subgroup of G), and elements from the coset G/G0. The action of these elements on any
element of G is to take them from a connected part to a different connected part. This coset is
called the mapping-class group π0(G).

O(2, 4) has four connected pieces: two correspond to matrices with determinant +1 and two
to matrices with determinant −1. The former two connected pieces constitute the subgroup
SO(2, 4) and are related to the other two by a discrete transformation that generates the group
O(2, 4)/SO(2, 4) = Z(B)

2 . The two connected components of the subgroup14 SO(2, 4) differ by
the sign of the (1, 1) component of the matrices of the defining representation. The component
with positive sign contains the identity and is the subgroup SO↑(2, 4) and is related to the
other connected component (which is not a subgroup and we denote by SO↓(2, 4)) by a discrete
transformation that generates another Z(S)

2 = SO(2, 4)/SO↑(2, 4) subgroup.
Thus, the mapping-class group of O(2, 4) is O(2, 4)/SO↑(2, 4) = Z(B)

2 × Z(S)
2 .

We will study it in detail later. Now we are going to concentrate on describing the duality
transformations in the component connected with the identity SO↑(2, 4).

Every element of the connected component of a group can be written as a sequence of its
one-parameter-subgroups [50] and we are going to study these first.

In our case these are the exponentiated versions of the generators of the Lie algebra so(2, 4),
which we write in the covariant form Mij

Ωij(αij) = exp{−α(ij)M(ij)} , (2.47)

and which satisfy the commutation relations

14All groups SO(n, m) have two connected components [60].
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[Mij ,Mkl] = ηilMjk − ηikMjl + ηjkMil − ηjlMik , (2.48)

where, again, the indices i, j, k, l = 1 . . . , 6 and η = diag(−,−,+,+,+,+) is the diagonal metric
of O(2, 4).

It should be noted that the action of O(2, 4) is 6-dimensional, which means that the group
acts through its vector representation on the matrixMij and on the vectors Ki

µ. The generators
of so(2, 4) in the vector representation, denoted by Γ, are given by

Γ (Mij)
k

l = 2ηl[iη
k
j] . (2.49)

Upon exponentiation of a single generator, one gets a one-parameter subgroup. In this way
to get all the basic one-parameter subgroups of SO↑(2, 4) in the diagonal basis with metric η.
Thus, we still need to transform the on-parameter subgroup transformations to the non-diagonal
basis using Eq. (2.10) and finally we can study the effect of these transformations on the fields
using Eq. (2.7).

2.3.2. The One-Parameter Subgroups of the T Duality Group

The one-parameter subgroups of SO↑(2, 4) are either boosts involving one of the indices 1, 2
and one of the indices 3, 4, 5, 6 or rotations involving the indices 1 and 2 or two of the indices
3, 4, 5, 6.

Boost matrices are taken to have the form

Ωη(boost) =


ch .. sh ..
.. .. .. ..
sh .. ch ..
.. .. .. ..

 , (2.50)

and generate a non-compact SO↑(1, 1) = R+ subgroup and every rotation will be taken to have
the form

Ωη(rotation) =


cos .. sin ..
.. .. .. ..
− sin .. cos ..
.. .. .. ..

 , (2.51)

and generates a compact U(1) subgroup. Here the operators will be labelled by the Lie algebra
generator that generates the operators. For instance, we have15

Ωη13 ≡ exp {−α13Mη13} =


ch 0 sh
0 1 0
sh 0 ch

I3

 , (2.52)

and in the non-diagonal basis

15Throughout we shall use the abbreviations c = cos(αij), s = sin(αij), ch = cosh(αij) and sh = sinh(αij), the
ij being the indices of the transformation.
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Ω13 =



ch + sh 0 0

0 1 0

0 0 ch− sh

I3


, (2.53)

etc. Therefore it is not difficult to compute the action of these subgroups on the background
fields. It turns out that only a few of them (seven, but only five with a non-trivial action and
just three with different actions on the charges) preserve TNbh asymptotics.

When the transformations that leave TNbh asymptotics intact are known the exact change
in the asymptotic charges can be computed. The charges transform linearly. Actually, the
T duality transformations close on sets of four charges and their effect can be described by
matrices acting on three four-component charge vectors:

~M ≡


M
Qd

Q1
e

Q2
e

 , ~N ≡


N
Qa

Q1
m

Q2
m

 , ~J ≡


J
F
P1

m

P2
m

 , (2.54)

which will be referred to, respectively, as electric, magnetic and dipole charge vectors.
There is a fourth charge vector that contains the electric dipole momenta PI

e , the dilaton
dipole-type charge W and an unidentified geometrical charge that we denote by K

~K ≡


K
W
P1

e

P2
e

 . (2.55)

The presence of this fourth charge vector is required by S duality, as we will explain later.
For each TNbh duality transformation there is a unique matrix action on the three vectors.

This, for the moment, can be considered merely a convenient representation of the duality
transformations. It will be shown later in the chapter that the Bogomol’nyi bound can be
rewritten in terms of our multiplets in an exceedingly convenient way.

Let us examine now examine the interesting duality transformations case by case.

Ω13

The action of this subgroup is simply equivalent to a rescaling of the time coordinate and
obviously it preserves TNbh asymptotics. Using the inverse rescaling to rewrite the metric in
the gauge (2.26) we find the the action of this duality transformation is trivial.

Ω15

This subgroup preserves TNbh asymptotics and our gauge choice for the metric (2.26) and for
the matrices A,B. In particular it does not generate any constant term in the A,B,G matrices.
Thus, one can proceed to compute the transformation of the charges. This transformation is
described by the 4× 4 symmetric matrix
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Ω(4)
15 ≡



1+ch
2

1−ch
2

sh√
2

0

1−ch
2

1+ch
2 − sh√

2
0

sh√
2
− sh√

2
ch 0

0 0 0 1


, (2.56)

so

~̃M = Ω(4)
15

~M , ~̃N = Ω(4)
15
~N , ~̃J = Ω(4)

15
~J . (2.57)

Ω16

The effect of this transformation is identical to the previous one with the interchange of the
labels I = 1 and I = 2. This, the matrix that describes it on the charges is

Ω(4)
16 ≡



1+ch
2

1−ch
2 0 sh√

2

1−ch
2

1+ch
2 0 − sh√

2

0 0 1 0

sh√
2
− sh√

2
0 ch


. (2.58)

Ω24

This transformation is analogous to the transformation Ω13: its effect is equivalent to a
rescaling of the coordinate ϕ that preserved it periodicity, which is initially fixed to be 2π,
i.e. all components of fields with indices ϕ are rescaled, but the coordinate itself is not rescaled.
Now, to go back to our coordinate choice (2.26) we have to rescale ϕ, changing its periodicity
and, thus, introducing conical singularities. Therefore, this transformation does not preserve
TNbh asymptotics.

Ω35

The result of this transformation is another asymptotically TNbh metric written in our
gauge (2.26) up to a rescaling of the time coordinate and up to constant term in the matrix A:

v1 =
√

2 sinα35 , (2.59)

and this has to be taken into account in the definitions of the axion charges that have to be
identified in the transformed configurations using the expansion of B in Eq. (2.40). The rescaling
of the time coordinate can be performed combining ω35 with an ω13 transformation with the
right parameter. The result of this composition is a one-parameter subgroup of transformations
that do preserve TNbh asymptotics and our gauge choice except for the non-vanishing v1. The
effect of this composite transformation on the charges can be described by the 4× 4 symmetric
matrix
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(Ω13Ω35)
(4) ≡



c+1
2c

c−1
2c

1√
2

s
c 0

c−1
2c

c+1
2c − 1√

2
s
c 0

1√
2

s
c − 1√

2
s
c

1
c 0

0 0 0 1


. (2.60)

Now, this matrix is exactly the same as Ω(4)
15 with the replacement

cosα35 = 1/ coshα15 , (2.61)

and, so, these transformations are identical on the charges.

Ω36

This transformation is identical to the previous one with the interchange of the labels I = 1
and I = 2. Thus, it also generates a constant term in the matrix A which has to be taken care
of when identifying the axion charges of the transformed configurations:

v2 =
√

2 sinα36 , (2.62)

Therefore, although it does not preserve TNbh asymptotics, it can be combined with an Ω13

transformation into a TNbh-preserving one-parameter subgroup of transformations that can be
described by the action of the 4× 4 symmetric matrix

(Ω13Ω36)
(4) ≡



c+1
2c

c−1
2c 0 1√

2
s
c

c−1
2c

c+1
2c 0 − 1√

2
s
c

0 0 1 0

1√
2

s
c − 1√

2
s
c 0 1

c


. (2.63)

on the three four-component charge vectors ~M, ~N, ~J .

Ω56

This transformation is just the SO(2) subgroup acting on the gauge fields only and rotates
the electric and magnetic charges and the magnetic dipole momenta.Thus, it can be described
by the 4× 4 antisymmetric matrix

Ω(4)
56 ≡

 I2
c s
−s c

 . (2.64)
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2.3.3. The Mapping-Class Group T Duality Transformations Z(B)
2

The last “elementary” duality transformations of O(2, 4) that we have to study are those
in the coset O(2, 4)/SO↑(2, 4) = Z(B)

2 × Z(S)
2 . What do these transformations correspond to?

In Ref. [16] the simpler duality groups O(1, 1) and O(1, 2) where analyzed in detail and it was
found that the subgroup Z(S)

2 is essentially generated by a reflection in all directions in the
scalar σ-model target space. Here we can do the same and take the generator of Z(S)

2 as the
total reflection −I6. In the same reference it was also found that the subgroup Z(B)

2 corresponds
essentially to Buscher’s duality transformations [30].

The generator of Z(B)
2 is not unique (it is a representative element of a coset group). Two

obvious choices correspond to the Buscher transformations in the directions t and ϕ. The
Buscher transformation in the direction ϕ does not preserve TNbh asymptotics and so we will
take as generator of Z(B)

2 the Buscher transformation in the direction t, that we denote by τ ,
with matrix

Ωη(τ) =
(

+1
−I5

)
. (2.65)

Observe that there is no inconsistency in taking one and not the other as inequivalent
representatives because from the point of view of the TNbh-preserving duality subgroup they
are no related: only an infinite boost (Ω14) will completely rotate t into ϕ and, in any case, this
subgroup does not preserve TNbh asymptotics itself.

As was said in Section 2.2, the necessity of introducing additional “charges” like F be-
comes evident16 when one studies discrete duality subgroups like Z(B)

2 . If we analyze the τ -
transformation explicitly, we see that the τ -transform of ĝtϕ is

˜̂gtϕ =
1

2Ω

{
ĝtt

[
ÂI

tÂ
I
ϕ − 2B̂tϕ

]
− ĝtϕÂ

I
tÂ

I
t

}
, (2.66)

where Ω goes asymptotically as

Ω = 1− 4M
r

+O(r−2) . (2.67)

Looking at the asymptotic behaviour of the terms involved, it is easy to see that to get
a contribution to J , the initial configuration has to have a r−1 sin2 θ term in its asymptotic
expansion of the Kalb-Ramond field. This also shows that J transforms into the new charge F
since τ−1 = τ .

The effect of τ on all the charges can be expressed in terms of the same symmetric 4 × 4
matrix Ω(4)

τ

Ω(4)
τ =

 0 1
1 0

I2

 , (2.68)

acting on the charge vectors ~M, ~N, ~J . The involutive property, that on the charges τ2 = id is
immediately apparent.

A natural worry at this point is whether a combination of transformations that do not
preserve TNbh asymptotics, can result in a TNbh asymptotics-preserving transformation.

16To see it in the continuous subgroups one has to study the invertibility of the transformations, which is much
harder.
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This is a complicated and time-consuming problem that can only be handled by compu-
tational methods for just products of two transformations. The result of our (CPU-limited)
search is negative.

2.3.4. Constant Parts in the Gauge Fields and the Closed Set of Asymptotic
“Charges” Under τ

We have to find the way in which the transformations of the charges change when we include
constant terms in the matrices G,A,B. To do a general study would take to much CPU time.
Thus, we will only perform a full check of only the τ transformation, although the general
picture should become quite clear from our results for τ and other general arguments.

First of all, the consistency in the way we have defined charges and constant terms (which will
be referred to as moduli) implies that the moduli transform non-linearly amongst themselves
and, thus, their transformations can be studied by setting to zero the charges. For the τ
transformation this allows us to immediately get17

ṽI = vI , q̃ = ξx ,

w̃I = wI , x̃ = ξ−1q .
(2.69)

where we have used ξ = (1− ~v 2/2)−1.
Next, we expect the multiplet structure of the duality transformations to remain valid in

the presence of non-trivial moduli. (The multiplets contain multipole terms of the same order
of different fields.) This can be checked explicitly, but it also allows us to set to zero all charges
except for those in one multiplet and find their transformation more easily. The result is that
we can describe in all of them the τ transformation with a unique moduli-dependent matrix
Ω(4)

τ (x, q, v, w)

Ω(4)
τ (x, q, v, w) =



−1
2ξ~v

2 ξ ξv1 ξv2

ξ −1
2ξ~v

2 −ξv1 −ξv2

−ξv1 ξv1 1 + ξ(v1)2 ξv1v2

−ξv2 ξv2 ξv1v2 1 + ξ(v2)2


. (2.70)

Observe that this matrix indeed squares to the identity.
What happens to the other transformations in presence of non-trivial moduli? The rule is

that now the 4×4 matrices Ω(4)
ij will become moduli-dependent matrices Ω(4)

ij (x, q, v, w) and the
group multiplication table is satisfied in the following sense:

Ω(4)
T2

(x̃, q̃, ṽ, w̃)Ω(4)
T1

(x, q, v, w) = Ω(4)
T2·T1(x, q, v, w) , (2.71)

where (x̃, q̃, ṽ, w̃) are the transformed moduli under T1. In the case of τ we had, trivially

Ω(4)
τ (x̃, q̃, ṽ, w̃)Ω(4)

τ (x, q, v, w) = I4 . (2.72)

because Ω(4)
τ (x, q, v, w) only depends on the vI and these are invariant under τ .

17Simultaneous rescalings of the dilaton and the time coordinate t are necessary to eliminate the constant value
of the dilaton at infinity and to get an asymptotically TNbh metric.
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2.3.5. Transformation of the Charges under S Duality

The transformation of the electric, magnetic, dilaton and axion charges under S duality
has been previously studied in Ref. [88, 71]. Here we are considering more charges and we are
choosing initial configurations with vanishing asymptotic values of the axion and dilaton. In
general, S duality generates non-vanishing values of these constants and we will remove them
by applying further S duality transformations.

Let us first see the effect of general classical S duality transformations on arbitrary config-
urations. It is easy to see that the transformation (2.20) acts on the asymptotic value of λ̂ as
follows [88, 71]

λ̂′0 =
aλ̂0 + b

cλ̂0 + d
, (2.73)

and on its complex charge as follows

Υ′ =

(
cλ̂0 + d

cλ̂0 + d

)
Υ . (2.74)

The factor multiplying Υ is just a λ̂0-dependent complex phase and, thus the axion and dilaton
charges are simply rotated into one another. It is also easy to see that the additional complex
charge that we are considering here χ = F − iW transforms exactly as Υ.

The effect on the electric and magnetic charges is a bit more difficult to explain because the
electric and magnetic charges that transform in a natural way under S duality, and which are
the ones conserved in the quantum theory when the Witten effect [114] is taken into account,
are not the ones we have defined. To be precise, the equation of motion and the Bianchi
identity tell us that the two charges that are well defined in the quantum theory and obey the
Dirac-Schwinger-Zwanziger quantization condition are

qI
e ∼

∫
S2
∞

˜̂
F I = e−φ̂0QI

e − â0QI
m ,

qI
m ∼

∫
S2
∞
F̂ I = QI

m .

(2.75)

This pair of charges transform under (2.19) as an SL(2,R) doublet

(
qI ′
e qI ′

m

)
=
(
qI
e qI

m

) a −c

−b d

 , (2.76)

which ensures that the DSZ quantization condition, which can be written for two dyons in the
form

(
qI (1)
e qI (1)

m

) 0 1

−1 0


 q

I (2)
e

q
I (2)
m

 = cn , n ∈ Z , (2.77)

where c is some constant, is S duality invariant. From the relation between the charges(
q
I (1)
e q

I (1)
m

)
and the charges QI

e,QI
m that we are using (2.75) one readily finds

QI ′
e = (câ0 + d)QI

e + ce−φ̂0QI
m ,

QI ′
m = −ce−φ̂0QI

e + (câ0 + d)QI
m .

(2.78)
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It is easy to see that the electric and magnetic dipole momenta transform in exactly the
same fashion.

Now we have to adapt these formulae to our case in which the original configuration has
λ̂0 = i and in which we want the transformed configuration to have also λ̂′0 = i. This can be
achieved by applying after the general SL(2,R) transformation, two transformations (2.23,2.24)
with the appropriate values of a and b to absorb the constant values of the axion and dilaton.
This is equivalent to allow only an SO(2) subgroup of SL(2,R) to act on the charges. The
result, expressed in terms of the entries of the original SL(2,R) matrix is QI ′

e

QI ′
m

 =


d√

c2+d2
c√

c2+d2

−c√
c2+d2

d√
c2+d2


 QI

e

QI
m

 , (2.79)

and similarly for the vector of dipole momenta
(
PI

m ,PI
e

)
and Q′d

Q′a

 =


d2−c2√
c2+d2

2cd√
c2+d2

−2cd√
c2+d2

d2−c2√
c2+d2


 Qd

Qa

 , (2.80)

and, analogously for the charge vector (W ,F). Observe that the last SO(2) transformation
matrix is precisely the square of the former.

It is now clear that the multiplet structure that we built for the T duality transformations is
not respected by S duality: the last three components of the “electric” multiplet M̂ are rotated
into the last three components of the “magnetic” multiplet ~N and vice versa. The same happens
with the multiplet ~K defined in Eq. (2.55), whose last three components are rotated into those
of the multiplet ~J in exactly the same way, and vice versa (this is the reason why we introduced
K and ~K in the first place). To respect the T duality multiplet structure and, at the same time
incorporate the S duality multiplet structure it is useful to introduce the complexified multiplets

~M≡ ~M + i ~N =


M
iΥ
Γ1

Γ2

 , (2.81)

where

M≡M + iN , ΓI ≡ QI
e + iQI

m , (2.82)

and

~J ≡ ~K + i ~J =


J
iχ
Π1

Π2

 , (2.83)

where

J ≡ K + iJ , ΠI ≡ PI
e + iPI

m . (2.84)

These two complex vectors transform under T duality with exactly the same Ω(4)
ij matrices

as the real vectors and, under the above S duality transformations with the complex Σ(4) SO(2)
matrix
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Σ(4) =



1

e2iθ

eiθ

eiθ


θ = Arg(d− ic) , (2.85)

so

~M′ = Σ(4) ~M , ~J ′ = Σ(4) ~J . (2.86)

2.4. The Asymptotic Duality Subgroup

We define the Asymptotic Duality Subgroup (ADS) as the subgroup of the full duality
group that respects TNbh asymptotics. In the previous section we have identified several one-
parameter subgroups of the T duality part of the ADS and we know that the full S duality
group is a subgroup of the ADS. However these two subgroups do not commute and, together,
generate a large ADS. We proceed to identify it in the next section and later we will use it to
study the invariance of the Bogomol’nyi bound relevant for the theory we are considering under
it.

2.4.1. Identification of the Asymptotic Duality Subgroup

First, we are going to identify the T duality subgroup of the ADS. As we have seen, from the
point of view of its action on the charges it has only three non-trivial one-parameter subgroups
which we take to be the ones corresponding to the transformations Ω(4)

15 ,Ω
(4)
16 ,Ω

(4)
56 . To find the

group that they generate we first study the algebra of their infinitesimal generators M (4)
ij

Ω(4)
ij = I4 − α(ij)M

(4)
(ij) , (2.87)

which are given by

M
(4)
15 = 1√

2


0 0 −1 0
0 0 1 0
−1 1 0 0

0 0 0 0

 , M
(4)
16 = 1√

2


0 0 0 −1
0 0 0 1
0 0 0 0
−1 1 0 0

 ,

M
(4)
56 =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 .

(2.88)

These infinitesimal generators obey the algebra

[M (4)
56 ,M

(4)
15 ] = M

(4)
16 , [M (4)

56 ,M
(4)
16 ] = −M (4)

15 , [M (4)
15 ,M

(4)
16 ] = −M (4)

56 . (2.89)

A small calculation of the Killing metric then show that on the base {M (4)
15 ,M

(4)
16 ,M

(4)
56 } the

metric is diagonal with entries η(3) = diag(+,−,−) thus proving that the algebra is o(1, 2) and
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the group generated by the one-parameter subgroups is SO↑(1, 2) and that the T duality part
of the ADS (taking into account the discrete transformations) is O(1, 2).

This raises now the question as to what is the meaning of the four-component charge vectors.
Clearly they transform in the four-dimensional reducible representation of O(1, 2) furnished by
the matrices Ω(4). The only representation of this kind is the direct sum of a singlet and a
vector (three-dimensional) representation of O(1, 2), which in turn means that there is a linear
combination of the charges in each charge vector that is invariant under the full T duality part
of the ADS. It is easy to see that these combinations are

1√
2
(M +Qd) , 1√

2
(N +Qa) , 1√

2
(J + F) . (2.90)

The triplets over which T duality acts in the vector representation of SO(1, 2) are

~M (3) =

 1√
2
(M −Qd)
Q1

e

Q2
e

 , ~N (3) =

 1√
2
(N −Qa)
Q1

m

Q2
m

 ,

~J (3) =

 1√
2
(J −F)
P1

m

P2
m

 ,

(2.91)

and, on this representation the generators of the algebra are

M
(3)
15 = 1√

2

 0 1 0
1 0 0
0 0 0

 , M
(3)
16 = 1√

2

 0 0 1
0 0 0
1 0 0

 ,

M
(3)
56 =

 0 0 0
0 0 −1
0 1 0

 .

(2.92)

We remark for future use that the four-dimensional matrices Ω(4) of the 1⊕3 representation
of O(1, 2) respect the diagonal O(2, 2) metric η(4) = diag(+,+,−,−) and are also automatically
O(2, 2) matrices.

2.4.2. The Bogomol’nyi Bound and its Variation

In N = 4 supergravity there are two Bogomol’nyi (B) bounds, of the form

M2 − |Zi|2 ≥ 0 , i = 1, 2 , (2.93)

where the Zi’s are the complex skew eigenvalues of the central charge matrix and are combi-
nations of electric and magnetic charges of the six graviphotons. These two bounds can be
combined into a single bound by multiplying them and then dividing by M2. One gets, then, a
generalized B bound

M2 +
|Z1Z2|
M2

− |Z1|2 − |Z2|2 ≥ 0 . (2.94)

In regular black-hole solutions the second term can be identified with scalar charges of
“secondary” type. The identification is, actually (with zero value for the dilaton at infinity)
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|Z1Z2|
M2

= Q2
d +Q2

a , (2.95)

and, taking into account the expression of the central charges in terms of the QI
e,m’s one gets

the generalized B bound18 [88]

M2 +Q2
d +Q2

a −QI
eQI

e −QI
mQI

m ≥ 0 . (2.96)

Note however that this bound is valid only for asymptotically flat spaces (i.e. with N = 0).
This problem can however be overcome by the reasoning of Ref. [72] where it was observed that
the NUT charge N does enter in the generalized B bound. With our definitions the B bound
for asymptotically TNbh spaces takes the form

M2 +N2 +Q2
d +Q2

a −QI
eQI

e −QI
mQI

m ≥ 0 . (2.97)

Now we want to study the invariance of this bound under the T and S duality pieces of the
ADS that preserves TNbh asymptotics. We will not make distinctions between primary and
secondary scalar charges since all we are interested in are the transformation rules of the scalar
charges which are the same for primary- or secondary-type scalar charges. We will focus on this
distinction in the next section.

Before perform a direct check, let us analyze what we can expect the result to be. The
T duality piece of the ADS preserves in general unbroken supersymmetries of the low-energy
string effective action: one can prove that if one solution admits Killing spinors the dual solution
does as well. Equivalent properties can be checked from the world-sheet point of view. The
only instances in which T duality seems not to respect unbroken supersymmetries (at least in a
manifest fashion from the spacetime point of view) is when a Buscher T duality transformation
is performed with respect to an isometry with fixed points, like the isometry in the direction ϕ in
our axially-symmetric case [7]. However, this transformation does not respect TNbh asymptotics
and therefore it does not belong to the ADS. S duality is known to always preserve unbroken
supersymmetry [88] and, thus, we can expect the B bound to be invariant under the full ADS.

To study the transformation properties of the B bound under the physical TNbh asymptotics-
preserving duality group it is convenient to use the diagonal metric of SO(2, 2) η(4) = diag (1, 1,−1,−1)
already introduced at the beginning of this section. Using this metric and the charge vectors
defined in Eqs. (2.81,2.83) the B bound can be easily rewritten in this form:

~M†η(4) ~M≥ 0 . (2.98)

In this form the B bound of N = 4, d = 4 supergravity is manifestly U(2, 2)-invariant.
Observe that U(2, 2) ∼ O(2, 4), although it is not clear if this fact is a mere coincidence or it
has a special significance. The T duality piece of the ADS is an O(1, 2) subgroup of the O(2, 2)
canonically embedded in U(2, 2) and obviously preserves the B bound. The S duality piece of
the ADS is a U(1) subgroup diagonally embedded in U(2, 2) through the matrices Σ(4) defined
in Eq. (2.85) and obviously preserve the B bound.

The charges in the vector ~J do not appear in the B bound and neither T nor S duality
change this fact. It is not possible to constrain the values of any of the charges it (in particular
J) by using duality and supersymmetry, as was suggested in the Introduction.

Although we are not going to study the full ADS generated by the T duality and the S duality
pieces, it is clear that there are transformations in it that rotate the massM into the NUT charge

18A general expression of the same kind for black holes with regular horizons in genera; theories with scalars
non-minimally coupled to vector fields has been found in [49].
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N and J into K: it is enough to perform first a τ transformation to interchange the first and
second components of the U(2, 2) vectors ~M and ~J , then perform an S duality transformation
that interchanges the real and imaginary parts of the second component of those vectors and a
further τ -transformation to bring this rotated component back to the first position.

2.4.3. Primary Scalar Hair and Unbroken Supersymmetry

So far we have not discussed in detail the physical meaning of the charges that define TNbh
asymptotics. In particular, we have considered completely unrestricted charges Qd and Qa.

The dilaton charge Qd, not being protected by a gauge symmetry, is not a conserved charge.
In four dimensions the Kalb-Ramond two-form is dual to the pseudoscalar axion and the charge
Qa is just its charge. Again, Qa is not a conserved charge. This may seem contradictory because
in the two-form version there is indeed a gauge symmetry. However, the two-form conserved
charge is actually associated to one-dimensional extended objects, not to the point-like objects
we are considering here. Thus both charges can be considered non-conserved scalar charges
(hair).

If these scalars were minimally-coupled scalars the standard no-hair theorems would apply to
them and any non-vanishing value of Qd and Qa would imply the presence of naked singularities.
The prototype of this kind of singular solution with non-trivial scalar hair (called primary hair)
is the one given in Refs. [67] for the theory with a massless scalar and action

S =
∫
d4x
√
|ĝE |

[
R̂(ĝE) + 1

2∂µ̂φ̂∂
µ̂φ̂
]
. (2.99)

The solutions take the form
dŝ2E = W

M
r0
−1
Wdt2 −W 1−M

r0

[
W−1dr2 + r2dΩ2

]
,

φ̂ = φ̂0 − Qd
r0

lnW ,

(2.100)

where 
W = 1− 2r0/r ,

r20 = M2 +Q2
d .

(2.101)

The three fully independent parameters that characterize each solution are the mass M , the
scalar charge19 Qd and the value of the scalar at infinity φ0. Only when Qd = 0 one has a
regular solution (Schwarzschild). In all other cases there is a singularity at r = r0, where the
area of 2-spheres of radius r vanishes.

Before continuing with our discussion a couple of remarks should be made: first, this whole
family of solutions belong to the TNbh class and, second, observe that the above family of
solutions includes a non-trivial massless solution. Setting M = 0 above we find

dŝ2E = dt2 − dr2 −Wr2dΩ2 ,

φ̂ = φ̂0 − lnW , eφ̂−φ̂0 = W−1 ,

(2.102)

with
19We use the symbol of the dilaton charge because these solutions (which are written in the Einstein frame)

are also solutions of the equations of motion of the low-energy string-effective action Eq. (2.1) with φ̂ identified
with the dilaton.
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W = 1− 2Qd

r
. (2.103)

In the full low-energy string effective action, the dilaton and the axion are non-minimally
coupled scalars, though, and the existence of black-hole solutions with regular horizons in theo-
ries with non-minimally coupled scalars is known [47, 44]. In these solutions, the scalar (dilaton)
charge is identical to a certain fixed combinations of the other, conserved, charges:

Qd ∼
QI

mQI
m −QI

eQI
2

2M
. (2.104)

The same is true of the axion charge in solutions with non-trivial axion hair and regular
horizons [108, 88, 71, 73]. The axion charge is in those cases given by

Qa ∼
QI

eQI
m

2M
. (2.105)

This kind of scalar hair, whose existence does not imply the presence of naked singularities
is called secondary hair. It is clear that the existence of secondary hair does not preclude the
existence of primary hair. In fact, the solutions above can be interpreted in the framework of
string theory with primary but no secondary hair and there are solutions which have both kinds
of hair at the same time [1].

Primary scalar hair always seems to imply the presence of naked singularities, and the no-
hair theorem (if it existed such a general theorem) should probably be called no-primary hair
theorem.

So, what can duality and supersymmetry tell us about primary scalar hair? At first sight,
nothing. In the standard derivations of the different B bound formulae only conserved electric
and magnetic charges appear and only when all the scalar hair is secondary and given by the
above formulae one can derive the generalized B bounds of the previous section in which the
scalar charges appear.

Nevertheless, let us consider a simple example: Schwarzschild’s solution (given above just
by setting Qd = 0). This solution has no unbroken supersymmetries, which can be understood
in terms of non-saturation of the B bound (M ≥ 0). A Buscher T duality transformation in the
time direction belongs to the physical duality group and should preserve the supersymmetry
properties and asymptotic behaviour of the solution and so it should yield a new solution
with no unbroken supersymmetries and TNbh asymptotics. A short calculation shows that
the dual solutions is exactly the massless solution with primary scalar hair written above in
Eqs. (2.102,2.103)! It is easy to check that this solution admits no N = 4 Killing spinors and
so it has no unbroken supersymmetries20. However, the fact that this solution has no unbroken
supersymmetries would not have been clear from the B bound point of view , had we used the
once-standard form in which primary hair should not added to it, since its mass and all the
other conserved charges are zero, meaning that the bound would be trivially saturated.

All that happened in this transformation is that the mass M , which does appear in the B
bound has completely transformed in primary dilaton charge Qd which in principle does not.

After our study of the transformation of charges it is clear that to reconcile these two results
one has to admit that the generalized B bound formula Eq. (2.97) does apply to all kinds of
scalar charge and not only to the secondary-type one. Only in this way the invariance of the B
bound becomes consistent with the covariance of the Killing spinor equations.

20The dilatino supersymmetry transformation rule would be equal to δελ
I ∼6 ∂φ̂εI which only vanishes for

εI = 0. (I is an SU(4) index here).
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Although our reasoning is completely clear when we look on specific solutions one should
be able to derive B bounds including primary scalar charges using a Nester construction based
on the supersymmetry transformation laws of the fermions of the supergravity theory under
consideration. To be able to do this one has to be able to manage more general boundary
conditions including the seemingly unavoidable naked singularities that primary hair implies.

Although we have kept this discussion strictly four-dimensional it is easy to generalize these
arguments to higher dimensions. In fact, solutions generalizing the one above to higher (d)
dimensions can be straightforwardly found

ds2 = −W
M
r0
−1
Wdt2 +W

1
d−3

“
1−M

r0

” [
W−1dρ2 + ρ2dΩ2

(d−2)

]
,

φ = φ0 + Qd
r0

lnW .

(2.106)

where

W = 1− 2r0
ρd−3

, (2.107)

and now

r20 = M2 + 2
(

d−3
d−2

)
Qd . (2.108)

For Qd = 0 we recover the d-dimensional Schwarzschild solution. In all other cases we have
metrics with naked singularities either at ρ = 0 or ρd−3 = 2r0.

A further example can be useful to fix these ideas.
Using our conventions, it is possible to write the stringy RN solution in the following form:

dŝ2E = −H−2Wdt2 +H2
[
W−1dr2 + r2dΩ2

]
,

e−φ̂ = H/H = 1 ,

Â(1)
t = 2α1

|Q|
M−r0

(
H−1 − 1

)
,

Â(2)
ϕ = −2α2|Q| cos θ ,

(2.109)

where H and W are (not independent) harmonic functions

H = 1 +
M − r0

r
, W = 1− 2r0

r
, (2.110)

and the constants are:

α2
i = 1 , r20 = M2 − 2Q2 , (2.111)

where we have set

Q1
e = α1|Q| , Q2

m = α2|Q| . (2.112)

The dilaton charge is identically zero for this family. Observe also that M − r0 ≥ 0 always,
and thus H never vanishes and so it never gives rise to any singularities in the metric apart
from the one at r = 0, which is the curvature singularity. The metric is also singular at the
horizon r = 2r0 > 0 where W vanishes, covering the physical singularity at r = 0.
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The extremal limit is r0 = 0, M =
√

2|Q|, which makes W disappear and H becomes an
unrestricted harmonic function (we could describe many BHs if we wanted). In this limit the
horizon is placed at r = 0, which is th locus of a two-sphere instead of a point, as can be seen
by a coordinate change. The curvature singularity is not covered by these coordinates.

Th B bound for this family of solutions is

M2 − 2Q2 = M2 − (Q1
e)

2 − (Q2
m)2 ≥ 0 , (2.113)

with the equality satisfied in the extreme r0 = 0 limit. Performing the τ transformation on the
above family of solutions we get the dual family of solutions

d˜̂s
2
E = −H−1K−1Wdt2 +HK

[
W−1dr2 + r2dΩ2

]
,

e
˜̂
φ = H/K ,

˜̂
A

1

t = 2α1
|Q|

M−r0

(
K−1 − 1

)
,

˜̂
A

2

ϕ = −2α2|Q| cos θ ,

(2.114)

where

K = 1− M + r0
r

, (2.115)

The above metric has several singularities: there is a curvature singularity at r = 0 and
the would-be horizon singularity at r = 2r0 but both lie beyond another physical singularity at
r = M + r0 ≥ 2r0 which is where the function K vanishes and where 2-spheres of radius r have
zero area. This is, therefore, a naked singularity.

Now the mass of the dual solution is clearly equal to the dilaton charge of the original RN
solution M̃ = Qd = 0 and vice-versa Q̃d = M . The electric and magnetic charges have the
same values.

This is a non-extreme massless “black hole” where the non-extremality is provided by pri-
mary scalar hair.

Now, if one takes the “extreme limit” r0 = 0 (that is, the extreme limit in the original
solution) which is also the limit in which all the primary scalar hair vanishes and all the dilaton
charge is completely determined by the electric and magnetic charges21 Q̃2

d = 2Q2 so the B
bound is saturated 

d˜̂s
2
E = −H−1K−1dt2 +HK

[
dr2 + r2dΩ2

]
,

e
˜̂
φ = H/K ,

˜̂
A

1

t = −
√

2α1

(
K−1 − 1

)
,

˜̂
A

2

ϕ = −2α2|Q| cos θ ,

(2.116)

21The situation parallels the usual situation in which there is unconstrained “primary mass” and “secondary
mass” which is completely fixed by the electric and magnetic charges through the B bound.
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which is one of the extreme massless black holes in Refs. [12], identified as composite objects in
the sense of Ref. [96] in Ref. [89] and further studied in Refs. [40].

Observe that, while primary scalar hair should be included in the B bound, the primary
scalar hair completely disappears in the saturated B bound. Thus, unbroken supersymmetry
acts as a cosmic hairdresser and it is not possible to find solutions with unbroken supersymmetry
and primary scalar hair.

As a last example we consider the well-known Kerr spacetime metric which in Boyer-
Lindquist coordinates reads:

dŝ2E = −r
2 − 2Mr + a2

r2 + a2 cos2 θ
(dt− a sin2 θdφ)2

+
sin2 θ

r2 + a2 cos2 θ
[
(r2 + a2)dφ− adt

]2
+

r2 + a2 cos2 θ
r2 − 2Mr + a2

dr2 + (r2 + a2 cos2 θ)dθ2 , (2.117)

where a = J/M . This metric belongs to a more general class of metrics which can be written
in appropriate coordinates as:

dŝ2E = −G(dt− ωdφ)2 +Adr2 +Bdθ2 + Cdφ2 , (2.118)

where G,ω,A,B and C are arbitrary functions of r and θ, conveying the adapted character of
the coordinates employed.

The T dual with respect to the isometry with Killing vector ∂
∂t is easily found to be, in the

Einstein frame,

d˜̂s
2
E = −G−1dt2 +Adr2 +Bdθ2 + Cdφ2 , (2.119)

There is also a two-form present, given by

B̂ = −ωdt ∧ dφ , (2.120)

as well as a dilaton, namely

φ̂ = −1
2 log |G| , (2.121)

It is well known that in the static Schwarzschild case [29] what appear as horizons in one
metric, look as singularities in the T dual of it. In the more general, stationary case considered
here, there are two related concepts: the infinite redshift surface, (also called the “static limit”)
that is, the stationary limit surface bordering the region in which the Killing ∂

∂t is timelike;
and the event horizon; that is the hypersurface where r = constant becomes null ; the region
between those two surfaces being the ergosphere.

In the ˜Kerr metric presented above, there is no “infinite redshift surface”, and before the
surface r = const becomes null, a singularity develops, located at

G ≡ r2 + a2 cos2 θ − 2mr
r2 + a2 cos2 θ

= 0 . (2.122)

The metric is easily seen to be asymptotically flat, and the 2-form goes to zero at infinity as

B̂ = 2ma sin2 θ
1
r

[
1 +

2m
r

+O(r−2)
]
dt ∧ dφ . (2.123)
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2.5. Conclusions

The results of the present chapter concerning the transformation of the charges under du-
ality leave unanswered the question posed at the beginning of this chapter: why the angular
momentum appears in the definition of extremality (defining the borderline between regular
horizon and a naked singularity, with zero Hawking temperature) but not in the Bogomol’nyi
bound (whose saturation guarantees absence of quantum corrections, as well as a “zero force
condition”, allowing superposition of static solutions).

We hold this to be due to the fact that stationary (as opposed to static) black holes possess
a specific decay width, which can even be seen classically by scattering waves off the black hole.
This process is known as “superradiance” ([113]; see also [42]) in the black hole literature.

The way this appears is that the amplitude for reflected waves is greater than the correspond-
ing incident amplitude, for low frequencies, up to a given frequency cutoff, mΩH , depending
on the angular momentum of the hole, and such that ΩH(a = 0) = 0. The angular momentum
of the hole decreases by this mechanism until a static configuration is reached. The physics
underlying this process is similar to the one supporting Penrose’s energy extraction mechanism,
namely, the fact that energy can be negative in the ergosphere. This, in turn, is an straight-
forward consequence of the mathematical fact that the Energy of a test particle is defined as
E = p.k, where p is the momentum of the particle, and k is the Killing vector (which has
spacelike character precisely in the ergosphere); and the product of a spacelike vector with a
timelike one does not have a definite sign.

Quantum mechanically, this means that there are two competing mechanisms of decay for
a rotating (stationary) black hole: spontaneous emission (the quantum effect associated to the
superradiance), which is not thermal (and disappears when the angular momentum goes to
zero) and Hawking radiation, which is thermal.

The first one is most efficient for massive black holes, but its width is never zero even for
small masses, until the black hole has lost all its angular momentum.

This clearly shows that even if the black hole is extremal, it cannot be stable quantum
mechanically as long as its angular momentum is different from zero. This argument taken
literally would suggest that it is not possible to have BPS states with non zero angular momen-
tum, unless they are such that no ergosphere exists. This is the case of the supersymmetric
Kerr-Newman solutions which are singular and, therefore, do not have ergosphere. What is not
clear is why supersymmetry signals as special that singular case and not the usual extremal
Kerr-Newman black hole22.

It could well be that Supergravity is not capable to give that answer but String Theory
is: from the String Theory point of view, given an extreme Reissner-Nordström black hole, if
we want to add angular momentum, we can only do it at the expense of adding mass at the
same time. Thus, according to the String Theory black-hole building rules, one can get extreme
Kerr-Newman black holes but never a supersymmetric (singular) object with non-zero angular
momentum. In this sense, while Supergravity acts as a cosmic censor only in static cases, String
Theory seems to act as a true cosmic censor in all cases. The singular solutions cannot be built
in the theory.

A similar argument could also be enough to prove a no-hair theorem in String Theory:
it could happen that it is impossible to build String Theory states with primary scalar hair
because there is no primary source for scalar hair in it. In this sense String Theory would act

22This argument seems to be valid only in four dimensions, though, since rotating charged black holes which
are BPS states exist in five dimensions [28]. The existence of two Casimirs for the five-dimensional angular
momentum seems to play an important role.
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as a cosmic hairdresser. Here the situation is, though, a bit different. First of all, we are clearly
a long way from proving that there are no microscopic configurations in String Theory that
result in macroscopic primary scalar hair. In fact, the situation resembles a bit the situation of
the “primary mass” (the mass that exceeds the Bogomol’nyi identity) since it is not clear what
the microscopic configuration that manifests itself as that primary mass is and, thus, there is
no String Theory model for the Schwarzschild black hole. It is, in fact, conceivable that both
quantities have the similar origins, as T duality seems to be indicating. This would be a more
attractive scenario since then we would have a tool ins String Theory to understand no-hair
theorems from first principles.

There is, yet, another, more speculative, possibility that we could like to mention. Since
extreme and non-extreme massless “black holes” seem to have the same kind of singularities as
their regular T dual counterparts (null and spacelike, respectively) one could, in principle, use
the spacetime of the massless black hole to patch up the spacetime of the massive one, gluing
them at the singularity. This would be a non-analytic continuation through the singularity with
the help of T duality much in the same spirit as T duality at finite temperature can relate high
and low-temperature regimes of the heterotic string even though, in between the free energy
diverges at the Hagedorn temperature [99].

From the point of view of String Theory this possibility looks more plausible when one takes
into account the lower sensitivity of strings to spacetime singularities, as compared to point
particles [61],
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Chapter 3

Massive Supergravity in D = 10, i.e.
IIAm

As we have seen in the chapter (1), type IIA string theory contains D(2n)-branes. It is also
widely known that the low-energy-effective action describing this theory is the so-called type
IIA supergravity, in which the D0-, D2-branes are represented by form-fields. The D4- and
D6-branes can then be introduced by Hodge duality. The only D-brane not fitting into the
usual IIA supergravity is the D8-brane.

The D8-brane in supergravity would be represented by a nine-form field or rather a 10-form
fieldstrength, which carries no degrees of freedom. dualizing this field strength, one expects a
scalar field, which, due to the Bianchi identity, is readily seen to be a constant. As was first
noted by Polchinski [93], in ten dimensions there actually exists a supergravity Lagrangian which
contains a free, constant, parameter and which can be truncated to type IIA, when taking this
parameter to zero. It is this massive IIA, also called Romans’ theory [98], which is interpreted
as the low energy effective action describing type IIA strings with D8 brane contributions.

In this chapter we are going to study the massive IIA sugra, its relation to IIB by means of
T-duality, the brane solutions and intersections of the D8 with a fundamental string and a D6
brane and the possible 11-dimensional origin of this action.

3.1. Massive D = 10 IIA Supergravity

The action of the massive IIA, Romans’ for short, theory, reads

SRomans =
∫
d10x
√
g
[
e−2φ

{
R − 4(∂φ)2 + 1

2·3!H
2
}

−1
2m

2 − 1
2·2!G

2
(2) −

1
2·4!G

2
(4)

− 1
144

√
g ε
(
∂C(3)∂C(3)B + m

2 ∂C
(3)B3 + 9m2

80 B
5
)]

, (3.1)

where we have defined 
H = 3∂B ,

G(2) = 2∂C(1) + mB ,

G(4) = 4∂C(3) + 4C(1)H + 3mB2 .

(3.2)

53



The above action is invariant under the following transformations
δC(1) = ∂Λ(0) − mΛ(1) ,

δB = 2∂Λ(1) ,

δC(3) = 3∂Λ(2) − 3mΛ(1)B + 3∂Λ(0)B

(3.3)

The variations1 containing Λ(0) and Λ(2) are nothing but the usual gauge invariances of the 1-
and 3-form fields, although adapted to the case at hand. The real surprise are the variations
of the B field, as propagated by Λ(1): As one can see from the symmetry rules, we can absorb
the U(1) field into the Kalb-Ramond field. This has as a consequence that the fieldstrength for
C(1), G(2), gets converted into a mass term for B. The explicit action reads

SRomans =
∫
d10x
√
g
[
e−2φ

{
R − 4(∂φ)2 + 1

2·3!H
2
}
− 1

2m
2 − 1

2·2!m
2B2 − 1

2·4!G
2
(4)

− 1
144

√
g ε
(
∂C(3)∂C(3)B + m

2 ∂C
(3)B3 + 9m2

80 B
5
)]

, (3.4)

A field which has the transformation laws as the C(1) in this case, is generically called a ‘Stück-
elberg’ field.

In [19] a stringy interpretation was given for the occurrence of the mass parameter as the
dual fieldstrength of a D8-brane. The argument goes as follows: A constant is nothing but
a function constrained to be constant. If we then introduce this function, M(x) say, we can
impose a Bianchi identity on it

dM(x) = 0 , (3.5)

which clearly states that the function M must be constant. Now, interpreting this fact in the,
by now, standard manner, we would say that M is a 0-form field strength, and as a p-form
field strength signals the existence of a (p − 2)-brane, we conclude that the bugger signals the
existence of a (−2)-brane. However, since there are (-2)-branes, the massparameter can only
signal the presence of its Hodge dual brane: A D8-brane. Note that the absence of a dilaton
factor for m in Eq. (3.1) supports the fact that one is indeed dealing with a D-brane.

Note that type IIA string theory states that the theory admits to D8-branes, although
there is no representation of it, by means of its field strength or its dual, in the usual type
IIA Supergravity. This then means that, knowing no other type IIA supergravity representing
D8-branes than Romans’ theory, Romans’ theory ought to be considered the true low energy
effective action of type IIA string theory.

Making a conformal rescaling as to switch to the Einstein frame one gets the action

S =
∫
d10x
√
g
{
R + 1

2(∂φ)2 + 1
2·3!e

−φH2 − 1
2·4!e

φ/2G2
(4) −

1
2·2!e

3φ/2G2
(2) −

1
2e

5φ/2m2

− 1
144

√
g ε
[
∂C(3)∂C(3)B + m

2 ∂C
(3)B3 + 9m2

80 B
5
]}

. (3.6)

The susy rules are the same as for the usual type IIA supergravity, see Eq. (1.81), but now
taking into account the presence of the zero- and ten-fieldstrengths. Since we are interested in

1The most compact way of writing the RR field strengths is by introducing the sum of all RR-fields into one
big form, C ≡ C(0) + C(2) . . ., and to define G ≡ dC −H ∧C + meB . The variations are then compactly written
as δC = dΛ eB −mΛ(1)eB .
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supersymmetric configurations, we must discuss the supersymmetry variations of the fermionic
fields.2 The susy variation of the gravitino and the dilatino read

δεψµ =
{
∂µ − 1

4

(
6ωµ + 1

4Γ11 6Hµ + 1
2·7!e

2φΓµν1···ν7H
(7) ν1···ν7

)}
ε

+ i
16e

φΣn=4
n=0

1
(2n)! 6G

(2n)Γµ (−Γ11)
n ε ,

δελ =
[
6∂φ+ 1

4

(
1
3!Γ11 6H − 1

7!e
2φ6H(7)

)]
ε+ i

8e
φ
∑n=4

n=0
5−2n
(2n)! 6G

(2n) (−Γ11)
n ε .

(3.7)

3.1.1. Equations of Motion etc.

Here we give the bosonic equations of motion and the Bianchi identities of massive type IIA
Sugra in the string frame including the dual RR and NSNS potentials. Many of the general
expressions are also valid for the IIB theory. Due to the explicit occurrence of potentials in
the action, they can only be dualized on-shell. The dual potentials are defined by the relations
between field strengths 

G(10−n) = (−1)[n/2]?G(n) ,

H(7) = e−2φ?H ,

(3.8)

plus the Bianchi identities 
dG−H ∧G = 0 ,

dH = 0 ,

dH(7) + 1
2

?G ∧G = 0 ,

(3.9)

and the equations of motion 
d?G+H ∧ ?G = 0 ,

d
(
e−2φ?H

)
+ 1

2
?G ∧G = 0 ,

d
(
e2φ?H(7)

)
= 0 ,

(3.10)

where we are using the notation [39, 54, 25] in which which forms of different degrees are
formally combined into a single entity:

C = C(0) + C(1) + C(2) + . . . ,

G = G(0) +G(1) +G(2) + . . . .

(3.11)

These expressions are valid both for the type IIB and for the massive type IIA theory if one
selects respectively odd and even rank and odd rank RR differential form field strengths and
one makes the identification

G(0) = m. (3.12)

2For type IIA Sugra, the spinors are real 32-component spinors and the gamma matrices are purely imaginary
satisfying

˘
γa, γb

¯
= 2ηab and γ11 = −γ0 . . . γ9.
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The field strengths that correspond to these Bianchi identities and equations of motion are
given by 

G = dC −H ∧ C +meB ,

H(7) = dB(6) + m
2 C ∧ e

−B − 1
2

?G ∧ C ,

H(7) = dB(6) + 1
2

∑n=4
n=1

?G(2n+3) ∧ C(2n) ,

(3.13)

where calligraphic fields belong to the IIB theory.
These equations have to be supplemented by the dilaton equation of motion

R+ 4 (∂φ)2 − 4∇2φ+ 1
2·3!H

2 = 0 , (3.14)

and the Einstein equation of motion (where we have already eliminated R with the use of the
dilaton equation of motion)

Rµν − 2∇µ∇νφ+ 1
4Hµ

ρσHνρσ − 1
4e

2φ
∑

n

(−1)n

(n−1)!T
(n)

µν , (3.15)

where T (n)
µν are the energy-momentum tensor of the RR fields:

T (n)
µν = G(n)

µ
ρ1···ρn−1G(n)

νρ1···ρn−1 − 1
2ngµνG

(n) 2 , (3.16)

when n 6= 0 and

T (0)
µν = −1

2m
2gµν . (3.17)

These equations are also valid both for the type IIA and IIB theories. Observe that the
contributions of the energy-momentum tensors of dual fields add up, except in the n = 5 case.

The field strengths as displayed in Eq. (3.13), and therefore also the Bianchi identities and
the equations of motion, are invariant under

NS :


δB = dχ(1)

δC = −mχ(1) ∧ eB
δB(6) = dχ(5) + m

2 χ
(1) ∧ C ∧ e−B

(3.18)

RR :


δB = 0
δC = dΛ−H ∧ Λ
δB(6) = −m

2 Λ ∧ e−B + 1
2

?G ∧ Λ
(3.19)

As explained in the introduction, the mass parameter occurs in the form of a cosmological
constant (or, in the Einstein frame, of an unbound potential for the dilaton). Furthermore, the
field strengths of C(1) and B(6), see Eqs. (3.13), contain the terms

G(2) = dC(1) +mB ,

H(7) = dB(6) +mC(7) + . . .

(3.20)

associated to these terms there are two massive gauge transformations
δC(1) = −mχ(1) ,

δB = dχ(1) ,


δB(6) = −mΛ(6) ,

δC(7) = dΛ(6) ,

(3.21)
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using which one can completely eliminate C(1) and B(6) everywhere. Then, the kinetic terms of
these Stückelberg fields become mass terms for B and C(7) respectively. Only these two terms
are massive.

Now, solutions describing p-branes in massive type IIA Sugra are automatically solutions
describing the intersection of those p-branes with a D8-brane associated to the mass parameter.
General solutions for the intersection of p1 and p2 branes have been found in the literature
using a generic model whose action contains only kinetic terms for the dilaton and the (p1 +2)-
and (p2 + 2)-form field strengths (See section (3.4.1) for a better introduction). Therefore,
those solutions can potentially describe correctly intersections involving a D8-brane and a D0-,
D2- and D4-brane, associated to massless fields. However, they cannot correctly describe the
intersections of a D8-brane and a fundamental string, a solitonic 5-brane or a D6-brane. Study
of the supersymmetry algebra reveals that these solutions should exist and preserve 1/4 or
the supersymmetries [100]. In sections (3.4.2) and (3.4.3) we will present the corresponding
solutions and will comment on some of their unusual features.

3.2. Sl(2, R) Covariant D = 9 Sugra and T-duality

T-duality between type IIB and ordinary type IIA, in the sugra limit is achieved, by making
use of dimensional reduction. It is however clear that simple dimensional reduction will not lead
to similar duality between massive IIA and IIB. It was shown in [19] that in order to establish
such a duality, one needs to use Generalized Scherk-Schwarz reduction [101]. The underlying
idea is that when an action is invariant under some global symmetry, one can introduce a local
transformation, depending only on the coordinate we are reducing over, such that the resulting
action is independent of this coordinate, but introducing mass parameters.

Type IIB sugra is Sl(2,R) invariant, and although one only needs a U(1) in order to achieve
T-duality between type IIB and massive IIA, we will have a look at the complete GSS reduction
and discuss some of its results.

3.2.1. Generalized Dimensional Reduction: A Toy Model

We consider the following toy model which exhibits the general features of generalized di-
mensional reduction associated to global symmetries with no geometrical origin3:

Ŝ =
∫
ddx̂
√
|ĝ|
[
R̂+ 1

2

(
∂φ̂
)2
]
. (3.22)

This action is invariant under constant shifts of the scalar φ̂, the reason being that φ̂ only
occurs through its derivatives. The presence of this global symmetry allows us to extend the
general Kaluza-Klein Ansatz (i.e. all fields, and in particular φ̂, are independent of some coor-
dinate, say z) to a more general Ansatz in which φ̂ depends on z in a particular way:

φ̂(x, z) = φ̂b(x) +mz , x̂µ̂ = (xµ, z) , (3.23)

where the superscript b stands for bare, or z-independent.
This dependence on z can be produced by a local shift of φ̂(x) with a parameter linear in z.

The invariance of the action under constant shifts ensures that the action will not depend on z.
This is only a practical recipe to write a good Ansatz. To understand better what one

is doing, one has to recall that z is a coordinate on a circle S1 subject to the identification
3In this section we use hats for d-dimensional objects and no hats for (d− 1)-dimensional objects.
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z ∼ z+2πl. In standard Kaluza-Klein reduction one only considers single-valued fields, so that
the needed Fourier decomposition of the fields living onM⊗ S1, reads

φ̂ (x̂) =
∑
n∈Z

e2πnz/l φ(n)(x) . (3.24)

Dimensional reduction then means keeping the massless modes, i.e. φ(0), only. Some fields can
be multivalued, however. If the scalar φ̂ is such that φ̂ = φ̂+2πm, the above Fourier expansion
is enhanced to

φ̂ (x̂) =
mNz

l
+
∑
n∈Z

e2πnz/l φ(n)(x) , (3.25)

where N ∈ Z labels the different topological sectors. Now, the action for a field living on an S1

is always invariant under arbitrary shifts of the field, even if the field is to be identified under
discrete shifts. This then ensures that the lower dimensional theory does not depend on z, the
dimensional reduction, if only mNz

l + φ(0) is kept. Each topological sector is characterized by
the charge

N = lim
x→∞

1
2πlm

∮
dφ̂ , (3.26)

which is nothing but the winding number.
A more physical interpretation of the technical description of the generalized dimensional

reduction recipe will be given later on.
Making use of the standard KK Ansatz for the Vielbein

(
êµ̂

â
)

=

 eµ
a kA(1) µ

0 k

 ,
(
êâ

µ̂
)

=

 ea
µ −A(1) a

0 k−1

 , (3.27)

we readily obtain the (d− 1)-dimensional action

S =
∫
dd−1x

√
|g| k

[
R− 1

4k
2F 2

(2) + 1
2 (Dφ)2 − 1

2m
2k−2

]
, (3.28)

where the field strengths are defined by
F(2) µν = 2∂[µA(1) ν] ,

Dµφ = ∂µφ−mA(1) µ ,
(3.29)

and

φ ≡ φ̂b . (3.30)

A further rescaling of the metric

gµν → k−2/(d−3)gµν , (3.31)

brings us to the final form of the action:

S =
∫
dd−1x

√
|g|
[
R+ 1

2 (∂ϕ)2 − 1
4e

−aϕF 2
(2) + 1

2 (Dφ)2 − 1
2m

2eaϕ
]
, (3.32)

where
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k = e−ϕ/2a , a = −

√
2(d− 2)
(d− 3)

. (3.33)

This action and the field strengths are invariant under the following massive gauge trans-
formations: 

δφ = mχ ,

δA(1) µ = ∂µχ .
(3.34)

These transformations correspond in the d-dimensional theory to the z-independent reparametriza-
tions of z:

δz = −χ(x) . (3.35)

This is the theory resulting from the standard recipe for generalized dimensional reduction
[19].

There is another way of getting the same result in this toy model: We gauge the translation
φ̂→ φ̂+m and impose that the gauge field is non-vanishing and constant in the internal direction
only (a Wilson line). Since the metric does not transform, it is sufficient to demonstrate this
on the kinetic term for φ̂.

In order to gauge the translation invariance on φ̂ we introduce the gauge field by minimal
coupling

∂µ̂φ̂ → Dµ̂φ̂ = ∂µ̂φ̂ + Êµ̂ , (3.36)

so that under a local transformation φ̂ → φ̂ + Λ(x̂) the gauge field transforms in an Abelian
manner, i.e.

Ê ′µ̂ = Êµ̂ + ∂µ̂Λ(x̂) . (3.37)

Making then the standard KK Ansatz and imposing that Êµ̂ is non-vanishing and constant,
with value m, in the compact direction only, one finds

Daφ = ea
µ
(
∂µφ − mA(1) µ

)
≡ ea

µDµφ ,

Dzφ = k−1m ,
(3.38)

leading to ∫
ddx
√
|ĝ| 12 (∂φ)2 =

∫
dd−1x

√
|g| k

[
1
2 (Dφ)2 − 1

2k
−2m2

]
. (3.39)

Comparing this result with Eq. (3.28), one sees that, at least in this toy-model, generalized
Scherk-Schwarz reduction leads to the same result as the above algorithm.

We will also use this method in the context of type IIB supergravity and check that one
gets the same results as well.

Observe that the field content looks the same as in the standard dimensional reduction:
There is a vector and two scalars (apart from the metric). The symmetries and couplings
are different, though. The massive gauge symmetry allows us to eliminate one scalar (the
Stückelberg field Ref. [110]) and give mass to the vector field. The number of degrees of freedom
is exactly the same. So, what is it we have done? To shed some light on the meaning of this
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procedure we are going to perform the “standard” dimensional reduction of the action (3.22)
but Poincaré-dualizing first the scalar into a (d− 2)-form potential4 Â(d−2) µ̂1···µ̂(d−1)

:

∂φ̂ = ?F̂(d−1) . (3.40)

The dual action is

˜̂
S =

∫
ddx
√
|ĝ|
[
R̂+ (−1)(d−2)

2·(d−1)! F̂
2
(d−1)

]
. (3.41)

Standard dimensional reduction with the same Vielbein Ansatz gives

S̃ =
∫
dd−1x

√
|g| k

[
R− 1

4k
2F 2

(2) + (−1)(d−2)

2·(d−1)! F
2
(d−1) + (−1)(d−3)

2·(d−2)! k
−2F 2

(d−2)

]
, (3.42)

where 
F(d−1) = (d− 1)∂A(d−2) + (−1)(d−1)A(1)F(d−2) ,

F(d−2) = (d− 2)∂A(d−3) ,

(3.43)

are the field strengths of the (d − 2)- and (d − 3)-form potentials of the (d − 1)-dimensional
theory.

We can now dualize the potentials. A (d − 2)-form potential in (d − 1) dimensions is dual
to a constant that we call m. Adding the term

− 1
(d−1)!

∫
dd−1x mε

[
F(d−1) + (−1)d(d− 1)A(1)F(d−2)

]
, (3.44)

to the action (3.42), and eliminating F(d−1) using its equation of motion

m = k?F(d−1) , (3.45)

in the action we get

S̃ =
∫
dd−1x

√
|g|
{
k
[
R− 1

4k
2F 2

(2) + (−1)(d−3)

2·(d−2)! k
−2F 2

(d−2) −
1
2m

2k−2
]

+ 1
(d−2)!

ε√
|g|
F(d−2)

[
−mA(1)

]}
.

(3.46)

Now we dualize into a scalar field the (d − 3)-form potential: We add to the above action the
term

1
(d−2)(d−2)!

∫
dd−1x εF(d−2)∂φ , (3.47)

and eliminate F(d−2) by substituting in the action its equation of motion

F(d−2) = (−1)(d−2)k ?Dφ , (3.48)

obtaining, perhaps surprisingly, Eq. (3.28).
4When indices are not explicitly shown we assume all indices to be antisymmetrized with weight one. This is

slightly different from differential form notation.
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What we have done is represented in figure 3.1.
The translation to brane language is obvious: Generalized dimensional reduction, which is

essentially applied to scalars, is a way of keeping track of the dual (d− 3)- and (d− 4)-branes
which should arise had we started with the dual of the scalar field.

Observe that in the generalized dimensional reduction Ansatz, Eq. (3.23), the scalar is not
single-valued in the compact coordinate: φ̂(z + 1) = φ̂(z) +m. The charge of the (d− 3)-brane
can be associated to the monodromy of φ̂ and to the (d− 1)-dimensional vector mass:

q ∼
∫

?F̂(d−1) ∼
∫
dφ̂ ∼ m. (3.49)

The implication of these results is obvious: The standard recipe for generalized dimensional
reduction is just a way of performing a dimensional reduction taking into account all the possible
fields (i.e. branes) that can arise in (d − 1) dimensions. In particular, the presence of (d −
3)-branes is associated to the dependence on the internal coordinate and the charge of the
background (d − 3)-branes is proportional to the mass parameter. Generalized dimensional
reduction should, from this point of view, be considered the standard full dimensional reduction,
while the standard dimensional reduction is incomplete and there is an implicit truncation. The
reason why this has not been realized before is that the missing fields only carry discrete degrees
of freedom. The mass parameters are to be considered fields, although one can equally consider
them as expectation values of those fields.

Figure 3.1: This diagram represents two different ways of obtaining the same result: Generalized dimensional

reduction and “dual” standard dimensional reduction.

3.2.2. The Sl(2, R)-Covariant Generalized Dimensional Reduction of Type IIB
Supergravity: An S Duality Multiplet of N = 2, d = 9 Massive Super-
gravities

In this Section we perform the complete generalized dimensional reduction of type IIB super-
gravity in the direction parametrized by y using the ideas of Ref. [19] as they were generalized
in Ref. [78]. As we are going to explain, in the end we will obtain a three-parameter family (a
triplet) of type II 9-dimensional supergravities connected by SL(2,R) transformations (in the
adjoint representation).

We are going to perform the generalized dimensional reduction in a manifestly SL(2,R)-
covariant way. SL(2,R) symmetry is manifest in the Einstein-frame. However, T duality, being
a stringy symmetry, is better described in string frame. Thus we will spend some time relating
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the fields appearing in both frames. Since reducing an action is easier than reducing equations
of motion, we are going to use the non-self-dual (NSD) action introduced in Ref. [17]. We study
these two points in the following subsection and we perform the actual reduction in the next
section.

Generalized Dimensional Reduction

Now that we have set up the action we want to reduce, we can proceed. First, we will
explain the generalized KK Ansatz. In this point we will follow the recipe of Ref. [78] adapted
to our conventions. Then we will reduce the action and the self-duality constraint and finally
we will eliminate the constraint, obtaining the action of the 9-dimensional theory.

The fields of the Einstein-frame 9-dimensional theory are the same as in the massless case:

{gE µν , A(3) µνρ, ~A(2) µν , ~A(1) µ, A(1) µ,K,M} , (3.50)

and only the couplings and symmetries will be different.
As usual in dimensional reductions, we assume the existence of a Killing vector ŝµ̂∂µ̂ = ∂y

associated to the coordinate y. We choose adapted coordinates x̂µ̂ = (xµ, y) so that the metric
does not depend on y. We normalize the coordinate y such that it takes values in the interval
[0, 1] and so y ∼ y + 1. Our Ansatz for the Einstein-frame Zehnbeins is then that of Eq. (3.27)
adapted to ten dimensions and with the scalar k, the length of the (spacelike) Killing vector,
relabeled

|ŝµ̂ŝµ̂|1/2 = K−3/4 , (3.51)

for convenience.
Now, instead of assuming that all the other fields in our theory have vanishing Lie derivatives

with respect to ŝµ̂, we assume that the remaining fields depend on y but in a very specific way:
All the y-dependence is introduced by a local SL(2,R) transformation with parameters linear
in y, Λ(y): 

M̂(x̂) ≡ Λ(y)M̂b(x)ΛT (y) ,

~̂B(x̂) ≡ Λ(y) ~Bb(x) ,

D̂(x̂) = D̂b(x) ,

(3.52)

where we have denoted by a superscript b the bare y-independent fields.
Obviously, the Ansatz for M̂ is equivalent, in terms of λ̂(x̂) to

λ̂(x̂) =
a(y)λ̂b(x) + b(y)

c(y)λ̂b(x) + d(y)
. (3.53)

In this scheme D̂ cannot depend on y because it is inert under SL(2,R), but it is worth
stressing that the string-frame metric does depend on y. The bare fields are y-independent and
will become the 9-dimensional fields. On the other hand, they transform under SL(2,R as the
real fields do.

The meaning of this kind of Ansatz is the following: We are constructing a non-trivial line
bundle over the circle parametrized by y with fiber λ̂ (or, equivalently M̂) and structure group
SL(2,R) (we will later study the restriction to SL(2,Z)). Going once around the circle we go
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back to the same M̂ up to a global SL(2,R) transformation that we can describe by an SL(2,R)
monodromy matrix M . The explicit form of M depends on the explicit form of Λ(y).

Let us now describe more precisely the form of Λ(y). If

T1 = σ3 =
(

1 0
0 −1

)
, T2 = σ1 =

(
0 1
1 0

)
, T3 = iσ2 =

(
0 1
−1 0

)
, (3.54)

are the generators of SL(2,R), then the most general SL(2,R) transformation with local pa-
rameters linear in y can be written in the form

Λ(y) = exp {1
2ym

iTi} . (3.55)

The three real parameters mi fully determine Λ(y) and therefore the particular compacti-
fication. These parameters are going to become masses in the lower-dimensional theory. We
define the mass matrix m

m ≡
(
∂yΛ

)
Λ−1 = 1

2m
iTi = 1

2

 m1 m2 +m3

m2 −m3 −m1

 . (3.56)

This matrix belongs to the Lie algebra sl(2,R) and therefore it transforms in the (irreducible)
adjoint representation:

m′ = ΛmΛ−1 , (3.57)

and thus the three mi transform as a triplet (a vector of SO(2, 1) ∼ SL(2,R)). The expression

α2 = Tr (m2) = 1
4m

imjhij , hij = diag(+ +−) , (3.58)

where hij is the Killing metric, is thus SL(2,R)-invariant. Furthermore, the mass matrix satisfies

ηmη−1 = −mT . (3.59)

Observe that the parameters m1,m2 are associated to non-compact generators of SL(2,R),
while m3 is associated to the maximal compact subgroup of SL(2,R) (SO(2)). Thus, we are
bound to get mass terms with the wrong sign (for instance in terms like Eq. (3.58)) but we
must keep the three mass parameters in order to have full SL(2,R)-covariance and the most
general 9-dimensional massive type II supergravity.

Our Ansatz generalizes that of Ref. [78], which only had two independent parameters:
m1,m2 = m3. The authors argued that generalized dimensional reduction using SL(2,R)
y-dependent transformations in the stability subgroup SO(2) (i.e. those generated by T3 and
associated to m3 in our conventions) would have no effect. As we discussed in the previous
Section, there is no stability subgroup for the coset scalars. Furthermore, since the three mass
parameters we just defined transform irreducibly, the three of them are required to obtain
SL(2,R)-covariant families of theories. Finally, the SL(2,R) transformation S = η is inside the
excluded SO(2) and this is one of the generators of the quantum S duality group SL(2,Z).

Λ(y) will only manifest itself through the mass matrix in the lower-dimensional theory.
However, in order to reconstruct the 10-dimensional fields we need to know it explicitly. The
explicit form of Λ(y) reads
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Λ(y) =

 coshαy + m1

2α sinhαy m2+m3

2α sinhαy

m2−m3

2α sinhαy coshαy − m1

2α sinhαy

 , (3.60)

where α was defined in Eq. (3.58).
It is easy to see from our definition of Λ(y) that the monodromy matrix will be

M(mi) = exp {1
2m

iTi} = Λ(y = 1) , (3.61)

and


M̂(x, y + 1) = MM̂(x, y)MT ,

~̂B(x, y + 1) = M ~B(x, y) .
(3.62)

Quantum-mechanically, the monodromy matrices can only be SL(2,Z) matrices. It is conve-
nient to describe the most general SL(2,Z) monodromy matrix by for integers ni, n , i = 1, 2, 3
subject to the constraint

nini = n2 − 1 . (3.63)

Given that this constraint is satisfied, then we simply make the identifications

α = cosh−1 n , mi =
2α√
n2 − 1

ni , (3.64)

and write the monodromy matrix as follows:

M =

 n+ n1 n2 + n3

n2 − n3 n− n1

 . (3.65)

Thus, in our conventions, the mass parameters mi will be naturally quantized in terms of
the three integers ni which also transform in the “adjoint” of SL(2,Z). n is SL(2,Z)-invariant.

In Section 3.5 we will relate the integers ni to the charges of 7-branes.
We can now perform the dimensional reduction.

Dimensional Reduction

Using the standard techniques [101] we get with the just-described Ansatz the NSD 9-
dimensional action
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SNSD =

∫
d9x
√
|g|
{
K−3/4

[
R(g) + 1

4Tr
(
DMM−1

)2 − 1
4K

−3/2F 2
(2)

−1
4K

3/2 ~F T
(2)M

−1 ~F(2) + 1
2·3!

~F T
(3)M

−1 ~F(3) − 1
4·4!K

3/2F 2
(4)

+ 1
4·5!F

2
(5) −K

3/2V (M)
]

+ 1
27·32·5

1√
|g|
ε
{(
F(5) − 5A(1)F(4)

)
×

×
[
2
(
~F(3) − 3A(1)

~F(2)

)T
η ~A(1) + 3~F T

(2)η
~A(2)

]

−5F(4)

(
~F(3) − 3A(1)

~F(2)

)T
η ~A(2)

}
,

(3.66)

and the 9-dimensional duality constraint

F(5) = −K3/4 ?F(4) , (3.67)

where the field strengths are defined as follows:

DM = ∂M−
(
mM+MmT

)
A(1) ,

F(2) = 2∂A(1) ,

~F(2) = 2∂ ~A(1) −m~A(2) ,

~F(3) = 3∂ ~A(2) + 3A(1)
~F(2) ,

F(4) = 4∂A(3) − 3 ~A T
(2) η

~F(2) + 2 ~A T
(1) η

~F(3) + 6A(1)
~A T

(1) η
~F(2) ,

F(5) = 5∂A(4) − 5 ~A T
(2) η

~F(3) + 15A(1)
~A(2)

T η ~F(2) + 5A(1)F(4) ,

(3.68)

and

V (M) = 1
2Tr

(
m2 +mMmTM−1

)
, (3.69)

is the scalar potential.
The 10- and 9-dimensional fields are related as follows:

M̂b = M , D̂µ1µ2µ3y = −A(3) µ1µ2µ3
,

~Bb
µy = − ~A(1) µ , D̂µ1···µ4 = A(4) µ1···µ4

.

~Bb
µν = ~A(2) µν ,

(3.70)

In order to eliminate the self-duality constraint Eq. (3.67) we first Poincaré-dualize the NSD
action with respect to the 4-form potential. First, we add the Lagrange multiplier term
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1
25·32

∫
d9x ε∂Ã(3)∂A(4) =

1
25·32

∫
d9x ε∂Ã(3)

[
F(5) + 5 ~A T

(2) η
~F(3) − 15A(1)

~A(2)
T η ~F(2) − 5A(1)F(4)

]
,

(3.71)

to the NSD action (3.66). The equation of motion of the Lagrange multiplier field Ã(3) enforces
the Bianchi identity of F(5) and we can consider the new action as a functional of F(5) instead
of A(4) which does not occur explicitly. The equation of motion for F(5) is nothing but

F(5) = −K3/4 ?F̃(4) , (3.72)

where F̃(4) is like F(4) but with A(4) replaced by Ã(4). This equation is purely algebraic and
we can use it to eliminate F(5) in the NSD action (3.66) plus the Lagrange multiplier term.
The result is an action the depends both on A(4) and Ã(4). Now, we simply observe that the
equation of motion for F(5) has the same form as the self-duality constraint Eq. (3.67) and
therefore, eliminating the self-duality constraint amounts to the simple identification

F(4) = F̃(4) . (3.73)

The result of these manipulations plus a Weyl rescaling to go to the Einstein frame (the
metric g is neither the string metric nor Einstein’s)

gµν = K3/14gE µν . (3.74)

is the action of the type II massive supergravity:

S =
∫
d9x

√
|gE |

{
RE + 9

14 (∂ logK)2 + 1
4Tr

(
DMM−1

)2 − 1
4K

−12/7F 2
(2)

−1
4K

9
7 ~F T

(2)M
−1 ~F(2) + 1

2·3!K
−3/7 ~F T

(3)M
−1 ~F(3) − 1

2·4!K
6/7F 2

(4) −K
12/7V (M)

− 1
27·32

1√
|gE |

ε
{
16(∂A(3))2A(1)

+24∂A(3)

[
∂ ~A T

(2)η
~A(2) −

(
4 ~A T

(2)η∂
~A(1) + 2 ~A T

(1)η∂
~A(2) − ~A T

(2)ηm
~A(2)

)
A(1)

]
−36

(
~A T

(2)η∂
~A(1) + ~A T

(1)η∂
~A(2)

)
∂ ~A T

(2)η
~A(2)

−36
(
~A T

(2)η∂
~A(1) − ~A T

(1)η∂
~A(2)

)2
A(1)

+9 ~A T
(2)ηm

~A(2)

[
∂ ~A T

(2)η
~A(2) − 4

(
~A T

(2)η∂
~A(1) − ~A T

(1)η∂
~A(2)

)
A(1)

+( ~A T
(2)ηm

~A(2)

)
A(1)

]}}
.

(3.75)

whose topological term, in order to facilitate comparison with the results of Section 3.3, was
rewritten in terms of potentials only (no field strengths) by integrating several times by parts
and using algebraic properties like(

~A T
(1)η∂

~A(2)

)(
∂ ~A T

(2)η
~A(2)

)
= −1

2

(
~A T

(1)η
~A(2)

)(
∂ ~A T

(2)η∂
~A(2)

)
. (3.76)
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Gauge and Global Symmetries of the 9-Dimensional Theory

The local symmetries of the 9-dimensional theory (3.75) have three different origins: The
gauge transformations of the 2-form fields:

δ ~̂B = 2∂~̂Σ , (3.77)

the gauge transformations of the 4-form

δD̂ = 4∂∆̂− 2
5
~̂ΣT η ~̂H , (3.78)

and the y-independent reparametrizations of the compact coordinate y

δx̂µ̂ = δµ̂yχ(x) . (3.79)

The dependence of the 10-dimensional fields on y, inexistent in standard dimensional reduc-
tion, induces new terms (the transport terms) in the χ-transformations.

The 9-dimensional fields have the following infinitesimal χ gauge transformations and finite
Σ(0), ~Σ(0), ~Σ(1),Σ(3) gauge transformations:

δM = χ
(
mM+MmT

)
,

δA(1) = ∂χ ,

δ ~A(1) = ∂~Σ(0) +m~Σ(1) + χm~A(1) ,

δ ~A(2) = 2∂~Σ(1) + 2∂χ ~A(1) + χm~A(2) ,

δA(3) = 3∂Σ(2) + 3
2
~Σ(1)

T η ~F(2) − 3
2
~Σ(0)

T η∂ ~A(2) ,

δA(4) = 4∂Σ(3) + 6~Σ(1)η∂ ~A(2) + 4∂χA(3) .

(3.80)

The χ-transformations can be exponentiated:

V ′ = eχmV ,

M′ = eχmM eχmT
,

A′(1) = A(1) + ∂χ ,

~A′(1) = eχm ~A(1) ,



~A′(2) = eχm
(
~A(2) + 2∂χ ~A(1)

)
,

A′(3) = A(3) ,

A′(4) = 4∂χA(3) .

(3.81)

Under the χ-transformations, the field strengths transform covariantly instead of being in-
variant: 

(DM)′ = eχmDM eχmT
,

~F ′
(2,3) = eχm ~F(2,3) ,

F ′
(4,5) = F(4,5) .

(3.82)

We could easily define field strengths invariant under χ-transformations: For instance
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~̃F (2,3) = V −1 ~F(2,3) , (3.83)

as was done in Ref. [19], but we will choose not to do so.
It is trivial to check the invariance of the action (3.75) under the above gauge transforma-

tions.
The action Eq. (3.75) enjoys some global invariances as well, namely rescalings of K and

SL(2,R) transformations. The latter are the most interesting. Their action on the fields
M, ~A(1) µ, ~A(2) µν is

M′ = ΛMΛT , ~A′(1,2) = Λ ~A(1,2) . (3.84)

As was said before, the mass matrix belongs to the Lie algebra sl(2,R) and transforms in the
adjoint representation:

m′ = ΛmΛ−1 , (3.85)

and thus the three mi transform as a triplet (a vector of SO(2, 1) ∼ SL(2,R)).
Finally, the theory is also invariant under constant rescalings of the fields:

K → e14αK , m → e−12αm ,

A(1) → e12αA(1) , ~A(1) → e−9α ~A(1) ,

A(3) → e−6αA(3) , ~A(2) → e3α ~A(2) .

(3.86)

3.2.3. An Alternative Recipe for Generalized Dimensional Reduction: Gaug-
ing of Global Symmetries

In this Section we will apply an alternative recipe for generalized dimensional reduction to
type IIB supergravity. The general idea is that gauging the global symmetry and imposing
that the gauge field takes non-vanishing and constant values in the internal direction only, is
equivalent to applying generalized Scherk-Schwarz reduction. In order to demonstrate this,
the algorithm will be applied to the NSD IIB action, albeit written in terms of forms. The
conventions for forms are the ones used in Ref. [87] and in particular we need∫

F(p)
?F(p) =

∫
ddx
√
|g| 1

p!F(p) µ1...µp
F(p)

µ1...µp , (3.87)

The NSD IIB action written in forms reads

SIIB =
∫
d10x

√
|ĝ|
[
R̂(ĝ)− 1

4 Tr
(
∂µ̂M̂ · ∂µ̂M̂−1

)]
+
∫
10

{
1
2
~̂HTM̂−1 ? ~̂H + 1

4 F̂(5)
?F̂(5) + 1

4 F̂(5)
~̂BT η ~̂H

}
,

(3.88)

where we have defined 
~̂H = d ~̂B ,

F̂(5) = dD̂ − 1
2
~̂BT η ~̂H ,

(3.89)

which are nothing else than the definitions in Eqs. (1.90), but written in terms of forms.
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In order to follow through the above procedure, we start by gauging the SL(2,R) symmetry.
We introduce a covariant derivative through

∂µ̂M̂ → Dµ̂M̂ = ∂µ̂M̂+ Êµ̂M̂+ M̂ÊT
µ̂ ,

d ~̂B → D ~̂B = d ~̂B + Ê ∧ ~̂B ,
(3.90)

and one finds that Ê has to transform as a gauge field

Ê → Λ−1ÊΛ + Λ−1dΛ . (3.91)

Now, applying the same KK Ansatz for the metric as was used in the preceding section, one
sees that the covariant derivatives on M̂ get transformed into, changing notation such that E
is the constant matrix in the internal direction,

DaM̂ = ∂aM−A(1)a

[
EM+MET

]
,

DyM = K3/4
(
EM+MET

)
.

(3.92)

Clearly E is going to be the mass matrix m. This then means that we can write down

Tr
(
∂M̂∂M̂−1

)
→ Tr

(
∂M∂M−1

)
+2A(1)µTr

[
M−1∂µM

(
M−1EM+ ET

)]
+2
(
K

3
2 −A2

(1)

)
Tr
(
M−1EMET + E2

)
(3.93)

One will readily acknowledge that this is exactly the result found in Section 3.2.2 with E = m.

Decomposing ~̂B as

~̂B = ~A(2) − ~A(1)dy , (3.94)

one finds that the reduction of ~̂H leads to

~̂H = ~F(3) − K
3
4 ~F(2)dy ,

~F(2) = d ~A(1) − E ~A(2) ,

~F(3) = d ~A(2) + A(1)
~F(2) .

(3.95)

This then allows us to reduce the ~̂H term in the action as∫
10

~̂HTM−1 ? ~̂H =
∫

9

[
K− 3

4 ~F T
(3)M

−1 ? ~F(3) −K
3
4 ~F T

(2)M
−1 ? ~F(2)

]
. (3.96)

Doing the same thing on the 5-form field strength, we find that∫
10
F̂(5)

?F̂(5) =
∫

9

[
K− 3

4F(5)
?F(5) −K

3
4F(4)

?F(4)

]
, (3.97)

where we have used
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D̂ = A(4) − A(3)dy ,

F(4) = dA(3) + 1
2
~A T

(1)η
~F(3) − 1

2
~A T

(2)η
~F(2) + 1

2A(1)
~A T

(1)η
~F(2) ,

F(5) = dA(4) + A(1)F(4) + 1
2A(1)

~A T
(2)η

~F(2) − 1
2
~A T

(2)η
~F(3) .

(3.98)

Now, reducing the CS-term and dualizing the d = 9 5-form field strength we end up with the
following contribution to the d = 9 action

S(4) =
∫
9

{
−1

2K
3
4F(4)

?F(4) − 1
2F(4)F(4)A(1) + 1

2F(4)
~A T

(2)η
(
~F(3) −A(1)

~F(2)

)
+ 1

8

[
~A T

(2)η
~F(2) −A T

(1)η
(
~F(3) −A(1)

~F(2)

)]
~A T

(2)η
(
~F(3) −A(1)

~F(2)

)}
.

(3.99)

Comparing the above results with the results in Eq. (3.75) one can see that both ways of
reducing lead to the same thing.

Derivation of the Massive Transformations

Before the gauging, in d = 10, we have the invariance

δ ~̂B = d ~̂N , (3.100)

and we want to find the effect of these transformations after the gauging and the reduction:
These will turn out to be related to some of the massive transformations.

When gauging the action, we have to covariantize the corresponding transformations. Since
the SL(2,R) acts on the ~̂B fields, it is only natural to introduce the covariantized transformation
rules

δ ~̂B = d ~̂N → δ ~̂B = D ~̂N = d ~̂N + Ê ∧ ~̂N , (3.101)

under which the field strength for the ~̂B field transforms as

δ ~̂H = F (Ê) ∧ ~̂N , (3.102)

where we have defined F (Ê) = dÊ + Ê ∧ Ê . This looks worse than it actually is: Since we take
the gauge field to be constant and in one direction only, the field strength for the gauge field Ê
is identically zero, rendering the variation for ~̂H nil.

Splitting the ~̂B fields then as before, and defining

~̂N = ~Σ(1) − ~Σ(0)dy , (3.103)

one finds the following massive transformations
δ ~A(2) = d~Σ(1) ,

δ ~A(1) = d~Σ(0) + E~Σ(1) .

(3.104)

One can then see that the field strengths for the d = 9 fields ~A(2) and ~A(1) are indeed invariant
under these transformations, and are SL(2,R) invariant.
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Under the d = 10 transformation δ ~̂B = d ~̂N one finds that

δF̂(5) = dδD̂ − 1
2(δ ~̂B)T η ~̂H , (3.105)

because ~̂H is invariant. Now, using the facts

dÊ = 0 , Ê ∧ Ê = 0 , (Ê ∧ ~̂N )T = − ~̂N T ∧ Ê T , Ê T η = −ηÊ , (3.106)

one finds that the variation reads

δF̂(5) = dδD̂ − 1
2d
(
~̂N T η ~̂H

)
. (3.107)

This then means that iff

δD̂ = d∆̂(3) + 1
2
~̂N T η ~̂H , (3.108)

the 5-form field strength is invariant.
Dimensional reduction of the above transformation rule, leads to the variation rule for the

3-form, i.e.

δA(3) = d∆(2) + 1
2
~Σ T

(1)η
~F(2) − 1

2
~Σ(0)

T η
[
~F(3) −A(1)

~F(2)

]
. (3.109)

Clearly, these transformations correspond to the non-χ transformations found in the preceding
subsection.

3.3. The Eleven-Dimensional Origin of IIAm

In this Section we construct an 11-dimensional action which, upon dimensional reduction
(zero-mode compactification) over a 2-torus gives the massive 9-dimensional type II supergrav-
ity action Eq. (3.75). In Section 3.2.2 it was important for us to keep SL(2,R)-covariance
throughout the dimensional reduction and as a result we got a general action which describes a
3-parameter family of massive 9-dimensional type II supergravities. The three mass parameters
transform in the adjoint representation of SL(2,R) and thus, an SL(2,R) transformation takes
us from one member of the family (a supergravity theory) to another one.

Thus, in order to make contact with that result from an 11-dimensional (that is, from a
type IIA/M-theoretical) starting point, it is important to have full control over the SL(2,R) ⊂
GL(2,R) symmetry that arises in the dimensional reduction in two dimensions. This symmetry
in the type IIA side exactly corresponds to the S duality of the type IIB side [15, 16, 18, 5].
Thus, we will first reduce standard 11-dimensional supergravity making this symmetry manifest.

3.3.1. Compactification of 11-Dimensional Supergravity on T 2 and Sl(2, R)
Symmetry

The bosonic fields of N = 1, d = 11 supergravity [32] are the Elfbein and a 3-form potential{
ˆ̂eˆ̂µ

ˆ̂a,
ˆ̂
C ˆ̂µˆ̂νˆ̂ρ

}
. (3.110)

The field strength of the 3-form is

ˆ̂
G = 4∂ ˆ̂

C , (3.111)
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and is obviously invariant under the gauge transformations

δ
ˆ̂
C = 3∂ ˆ̂χ , (3.112)

where ˆ̂χ is a 2-form. The action for these bosonic fields is

ˆ̂
S =

∫
d11x

√
|ˆ̂g|

 ˆ̂
R− 1

2·4!
ˆ̂
G2 − 1

64

1√
|ˆ̂g|

ˆ̂ε∂ ˆ̂
C∂

ˆ̂
C

ˆ̂
C

 . (3.113)

We have 2 mutually commuting Killing vectors {ˆ̂k(m)
ˆ̂µ} and use coordinates adapted to both

of them: {ˆ̂xˆ̂µ} = {xµ, xm} with m = 9, 10 and x9 = x, x10 = z and

ˆ̂
k(m)

ˆ̂µ ∂

∂ ˆ̂xˆ̂µ
=

∂

∂xm
. (3.114)

In these coordinates

ˆ̂
k(m)

ˆ̂µˆ̂
k(n)

ˆ̂ν ˆ̂g ˆ̂µˆ̂ν = ˆ̂gmn . (3.115)

This is the internal space metric and it is in general non-diagonal, so the Killing vectors are
not mutually orthogonal in general.

The standard KK Ansatz is5

(
ˆ̂eˆ̂µ

ˆ̂a
)

=

 eµ
a em

iA(m)
µ

0 em
i

 ,
(
ˆ̂eˆ̂a

ˆ̂µ
)

=

 ea
µ −A(m)

a

0 ei
m

 , (3.116)

where A(m)
a = ea

µA(m)
µ. For the metric, this means the following decomposition in 9-

dimensional fields: 

ˆ̂gµν = gµν +GmnA
(m)

µA
(n)

ν ,

ˆ̂gµm = GmnA
(n)

µ = ˆ̂
k(m) µ ,

ˆ̂gmn = Gmn = ˆ̂
k(m)

ˆ̂µˆ̂
k(n) ˆ̂µ .

(3.117)

The inverse relations are given in Appendix B.1.
From now on we will write the internal metric in matrix form and the two KK vectors in a

column vector form:

G ≡
(
Gxx Gxz

Gzx Gzz

)
, ~Aµ ≡

 A(x)
µ

A(z)
µ

 . (3.118)

Under global transformations in the internal space

xm ′ =
(
R−1 T

)m
n x

n + am , R ∈ GL(2,R) , (3.119)

objects with internal space indices transform as follows:
5This is not exactly the standard KK Ansatz, which includes a rescaling of the lower-dimensional metric to

end up in the Einstein conformal frame. We will perform the rescaling as a second step for pedagogical reasons.
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G′ = RGRT , ~A′µ = (R−1)T ~Aµ . (3.120)

We know that GL(2,R) can be decomposed in SL(2,R) × R+ × Z2 and any matrix R can
therefore be decomposed into

R = aΛ(σ1)α , Λ ∈ SL(2,R) , σ1 =
(

0 1
1 0

)
, α = 0, 1 , a ∈ R+ . (3.121)

The effect of a Z2 transformation σ1 is the relabeling of the two internal coordinates and we
will ignore it. Thus, we will focus on GL(2,R)/Z2 ∼ SL(2,R)×R+. We want to separate fields
that transform under the different factors. First we define the symmetric SL(2,R) matrix6

M = −G/|det G|1/2 , (3.122)

and the scalar

K = |det G|1/2 . (3.123)

Now, under SL(2,R) onlyM and ~Aµ transform:

M′ = ΛMΛT , ~A′µ = (Λ−1)T ~Aµ , (3.124)

that is, ~Aµ transforms contravariantly, while under R+ rescalings only K and ~Aµ transform:

K ′ = aK , ~A′µ = a ~Aµ . (3.125)

It is convenient for our purposes to use a slightly different set of vector fields ~A(1) µ trans-
forming covariantly under SL(2,R), defined as follows:

~A(1) µ = η ~Aµ , ~F(2) µν = 2∂[µ
~A(1) ν] , ~A′(1) µ = aΛ ~A(1) µ . (3.126)

Using the standard techniques, the above Elfbein Ansatz and rescaling the resulting 9-
dimensional metric to the Einstein frame

gµν = K−2/7gE µν , (3.127)

one finds

∫
d11 ˆ̂x

√
|ˆ̂g|
[ ˆ̂
R
]

=
∫
d9x

√
|gE |

[
RE + 9

14 (∂ logK)2

+1
4Tr

(
∂MM−1

)2 − 1
4K

9
7 ~F T

(2)M
−1 ~F(2)

]
.

(3.128)

The 3-form term can be reduced along the same lines and we decompose the 11-dimensional
3-form potential into the 9-dimensional fields A(3) µνρ, ~A(2) µν and A(1) µ as follows:

6The minus sign is due to our mostly minus signature which makes the internal metric negative definite. We
want M to be positive definite.
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ˆ̂
Cµνρ = A(3) µνρ + 3

2
~A T

(1) [µη
~A(2) νρ] + 3A(1) [µ

~A T
(1) νη

~A(1)ρ] ,( ˆ̂
Cµνx

ˆ̂
Cµνz

)
= ~A(2) µν − 2A(1) [µ

~A(1) ν] ,

 0 ˆ̂
Cµxz

ˆ̂
Cµzx 0

 = +ηA(1) µ ,

(3.129)

The corresponding 9-dimensional field strengths F(4), ~F(3) and F(2) are defined exactly by

the massless limit of Eq. (3.68). The relation with the 11-dimensional field strength ˆ̂
G is

ˆ̂
Gµνρσ = F(4) µνρσ − 4 ~A T

(1) [µη
~F(3) νρσ]

+5 ~A T
(1) [µη

~A(1) νF(2) ρσ] ,( ˆ̂
Gµνρx

ˆ̂
Gµνρz

)
= ~F(3) µνρ − 3 ~A(1) [µF(2) νρ] ,

(
0 ˆ̂

Gµνxz

ˆ̂
Gµνzx 0

)
= ηF(2) µν .

(3.130)

This allows us to decompose the kinetic term as follows:

√
|ˆ̂g| −1

2·4!
ˆ̂
G2 =

√
|gE |

{
−1
2·4!K

6/7F 2
(4) + 1

2·3!K
−3/7 ~F T

(3)M
−1 ~F(3) − 1

4K
−12/7F 2

(2)

}
. (3.131)

and the topological term as follows:

1
(144)2

ˆ̂ε ˆ̂G ˆ̂
G

ˆ̂
C = 1

32·28 εε
mn
{ ˆ̂
G

ˆ̂
G

ˆ̂
Cmn + 4 ˆ̂

G
ˆ̂
Gm

ˆ̂
Cn

}
= 1

32·27 ε
[
F(4) − 4 ~A(1)

T η ~F(3) + 6 ~A(1)
T η ~A(1)F(2)

]
×

×
{[
F(4) − 4 ~A(1)

T η ~F(3) + 6 ~A(1)
T η ~A(1)F(2)

]
A(1)

+2
[
~F(3) − 3 ~A(1)F(2)

]T
η
[
~A(2) + 2 ~A(1)A(1)

]}
.

(3.132)

Putting all our partial results together, Eqs. (3.128,3.131,3.132), we arrive at the action of
type II 9-dimensional supergravity in Einstein frame, Eq. (3.75), which we obtained through
generalized dimensional reduction of the 10-dimensional type IIB theory with the mass matrix
set to zero [15].
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The fact that upon dimensional reduction the type IIA and type IIB supergravity theories
are identical in nine dimensions is nothing but the manifestation at the level of the massless
modes of the T duality existing between the type IIA and type IIB superstring theories when
they are compactified in circles of dual radii [34, 38].

There are four important points we would like to stress:

1. There is no “hidden symmetry” of the 9-dimensional type II theory corresponding to this
T duality.

2. To obtain two identical actions it is crucial that the two topological terms come with the
same global sign. In the M/type IIA side the sign can be changed by the 11-dimensional

transformation ˆ̂
C → − ˆ̂

C which is not a symmetry. In the type IIB side, flipping the
sign of the 4-form D̂ does not work because it changes the definition of its field strength.
Changing the signs of D̂ and, say, B̂(1) leaves F̂ invariant but also leaves invariant the
topological term. Thus, at first sight, there seems to be no IIB-side version of this rather
trivial M/IIA-side transformation.

It is, however, easy to see that the sign of the topological term in the NSD 10-dimensional
type IIB action is directly related to the self-duality of the 5-form field strength. Had we
considered an anti-self-dual 5-form the sign would have been exactly the opposite in ten
and nine dimensions. The (anti-) self-duality of the 5-form is related to the chirality of
the theory.

The picture that emerges is therefore the following: There are two (otherwise equivalent)
11-dimensional supergravity theories and two 10-dimensional type IIA theories that differ
only in the sign of the action’s topological term. Upon dimensional reduction to nine
dimensions they are related to the two type IIB theories of opposite chiralities.

In the decompactification limit, each of these two 9-dimensional (and, thus, non-chiral)
theories knows to which chiral 10-dimensional type IIB theory it should decompactify.

3. The above observation solves in part the puzzle found in Ref. [90] where it was argued that
approximately half of all extreme black holes are not supersymmetric in type II theories.
Clearly, those which are not supersymmetric in one of the 11-dimensional supergravities
are supersymmetric in the 11-dimensional supergravity with the sign of the 3-form ˆ̂

C
reversed. As suggested also in Ref. [76], the whole picture begs for both 11-dimensional
supergravities to be integrated into a higher-dimensional supergravity from which also the
type IIB would be derivable, perhaps one of those with the algebras studied in Ref. [9].
(This argument is completely different from the one in Ref. [10] and, in fact, it is in
disagreement with it).

4. The fact that the two theories (A and B) are identical allows us to relate the 10-dimensional
fields of the two type II theories. This relation provides a generalization of Buscher’s
T duality rules [30]. These type II Buscher rules were found in Ref. [15] and they are
determined again in Appendices B.1, B.2 and B.3 in our (more systematic) conventions
and extended to the massive case at hands.

3.3.2. Sl(2, R)-Covariant Massive 11-Dimensional Supergravity

So much for the massless case. Now, it is clear that the picture seems to break down
whenever the mass matrix does not vanish. In Ref. [19] the particular case with mass matrix
with m1 = 0,m2 = m3 = m
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mBRGPT =
(

0 m
0 0

)
, (3.133)

was considered. As will be discussed in Section 3.5 this particular choice of mass matrix corre-
sponds to compactification of the type IIB on a background with different species of 7-branes.
Since the T dual of a D-7-brane in a direction orthogonal to its worldvolume is a type IIA
D-8-brane, one expects the theory with mass matrix mBRGPT to correspond to the type IIA
theory on a background with D-8-branes.

While it is not possible to write the 10-dimensional type IIB theory in presence of D-7-branes
in a covariant fashion (there is dependence on the compactifying coordinate y) it is possible to
write in a covariant fashion the action for the type IIA theory in presence of D-8-branes. As was
first first realized in Ref. [94], this theory has long been known as Romans’ massive type IIA
supergravity [98]. The precise identification, leading to a further generalization of Buscher’s
rules was carried out in Ref. [19]. We stress that these T duality rules are essentially identical
to the original type II T duality rules of Ref. [15] but are deformed in a y-dependent fashion in
the type IIB side of the equations.

Our task in the remainder of this Section will be to generalize the results of Ref. [19]. It
is clear from the setting that this generalization amounts to its SL(2,R)-covariantization: We
start from the compactification of the type IIB theory on a background containing D-7-branes
and their S duals and, after T duality, we expect to find a type IIA theory on a background
of the T duals of D-7-branes and their S duals. We will not repeat here the discussion of
the Introduction where we concluded that we must look for a non-covariant generalization of
Romans’ type IIA supergravity.

As a matter of fact, it is easier to generalize the 11-dimensional theory that gives Romans’,
given in Ref. [25]. From our point of view this theory would correspond to 11-dimensional
supergravity with a KK-9M-brane in the background. To find in 9-dimensions an SL(2,R)-
covariant result we must consider a theory describing 11-dimensional supergravity with two
KK-9M-branes in the background.

In what follows we will construct such a theory along the same lines as Ref. [25] and show
that it gives the massive 9-dimensional type II theory constructed in Section 3.2.2.

Since each KK-9M-brane is associated to a Killing vector we assume the presence of the
two mutually commuting Killing vectors of the previous Section and also assume that the Lie
derivatives of all fields with respect to both of them vanishes.

Next, we define the 11-dimensional massive transformations. For a general tensor, except
for ˆ̂

C whose transformation law will be defined below, they are

δˆ̂χLˆ̂µ1...ˆ̂µr
= ˆ̂

λ(n)
ˆ̂µ1

ˆ̂
k(n)

ˆ̂ν ˆ̂
Lˆ̂ν ˆ̂µ2...ˆ̂µr

+ . . . + ˆ̂
λ(n)

ˆ̂µr

ˆ̂
k(n)

ˆ̂ν ˆ̂
Lˆ̂µ1...ˆ̂µr−1

ˆ̂ν , (3.134)

where we have defined

ˆ̂
λ(n) ≡ −iˆ̂

k(m)

ˆ̂χQnm , Qnm =
(
mT η

)mn
= 1

2

 −(m2 +m3) m1

m1 m2 −m3

 . (3.135)

The contraction of a space tensor with the Killing vectors will bear an SL(2,R) index: The
extension of the above rule for incorporating SL(2,R) indices is found by defining the inclusion
to commute with the massive transformations.

In particular we find that the 11-dimensional metric and r-forms ˆ̂
S transform as
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δˆ̂χ

ˆ̂g ˆ̂µˆ̂ν = 2ˆ̂
λ(n)

(ˆ̂µ
ˆ̂
k(n)

ˆ̂ρˆ̂gˆ̂ν)ˆ̂ρ ,

δˆ̂χ
ˆ̂
S ˆ̂µ1...ˆ̂µr

= (−)r−1r
ˆ̂
λ(n)

[ˆ̂µ1

ˆ̂
k(n)

ˆ̂ρ ˆ̂
S ˆ̂µ2...ˆ̂µr]ˆ̂ρ .

(3.136)

Observe that these rules imply that 
δˆ̂χ

√
|ˆ̂g| = 0 ,

δˆ̂χ
ˆ̂
S2 = 0 ,

(3.137)

where the latter holds due to the fact that also the metric varies under the massive transforma-
tions, and the former holds due to the fact that the matrix Q = mT η is symmetric.

The 3-form field ˆ̂
C is going to play the role of a connection-field with respect to the massive

transformations and, as such, does not transform covariantly

δˆ̂χ
ˆ̂
C = dˆ̂χ + ˆ̂

λ(n) ∧
(
iˆ̂
k(n)

ˆ̂
C

)
. (3.138)

The generalization of the field strength for ˆ̂
C, denoted as before by ˆ̂

G, is then found by requiring
that the field strength does transform covariantly. One can see that this implies that

ˆ̂
G = d

ˆ̂
C − 1

2

(
iˆ̂
k(n)

ˆ̂
C

)
Qnm

(
iˆ̂
k(n)

ˆ̂
C

)
. (3.139)

Comparing this with a torsionful covariant derivative acting on a 3-form, one sees that the
above equation states that the massive transformations induce a torsion term in our spacetime
connection. This then means that if we want our d = 11 theory to be invariant under the
massive transformations, we have to define our theory in terms of the torsionful connection.

The torsion we need is given by

ˆ̂
T ˆ̂µˆ̂ν

ˆ̂ρ = −
(
iˆ̂
k(n)

ˆ̂
C

)
ˆ̂µˆ̂ν

Qnmˆ̂
k(m)

ˆ̂ρ . (3.140)

The torsionful connection ˆ̂Ω is then defined in the standard way, by adding the so-called
contorsion-torsion tensor,

ˆ̂
K ˆ̂a

ˆ̂
bˆ̂c

= 1
2

( ˆ̂
T ˆ̂aˆ̂c

ˆ̂
b

+ ˆ̂
T ˆ̂

bˆ̂cˆ̂a
− ˆ̂
T ˆ̂a

ˆ̂
bˆ̂c

)
, (3.141)

to the Levi-Cività connection ˆ̂ω, i.e.

ˆ̂Ωˆ̂a

ˆ̂
bˆ̂c = ˆ̂ωˆ̂a

ˆ̂
bˆ̂c + ˆ̂

K ˆ̂a

ˆ̂
bˆ̂c . (3.142)

From the above equation we can obtain the non-vanishing components of the torsion written
directly in 9-dimensional Lorentz coordinates for future use

ˆ̂
T abi = −A(2)(n)abη

npmp
qeqi ,

ˆ̂
T aij = A(1)aei

pmp
qeqi .

(3.143)
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Having all this, one can see that the 11-dimensional theory invariant under the massive trans-
formation reads7

ˆ̂
S =

∫
d11 ˆ̂x

√
|ˆ̂g|
{

ˆ̂
R
( ˆ̂Ω
)

+
(
d
ˆ̂
k(n)

)
ˆ̂µˆ̂νQ

nm

(
iˆ̂
k(m)

ˆ̂
C

)
ˆ̂µˆ̂ν − 1

2·4!
ˆ̂
G2

−2 ˆ̂
K ˆ̂µˆ̂νˆ̂ρ

ˆ̂
K

ˆ̂νˆ̂ρˆ̂µ + 1
2

(ˆ̂
k(n) ˆ̂µQ

nmˆ̂
k(m)

ˆ̂µ
)2

−
(ˆ̂
k(n) ˆ̂µQ

nmˆ̂
k(m) ˆ̂ν

)2

− 1
64

ˆ̂ε√
|ˆ̂g|

{
∂

ˆ̂
C∂

ˆ̂
C

ˆ̂
C − 9

8∂
ˆ̂
C

ˆ̂
C

(
iˆ̂
k(n)

ˆ̂
C

)
Qnm

(
iˆ̂
k(m)

ˆ̂
C

)

+27
80

ˆ̂
C

[(
iˆ̂
k(n)

ˆ̂
C

)
Qnm

(
iˆ̂
k(m)

ˆ̂
C

)]2
}}

,

(3.144)

For the dimensional reduction of the above theory, the fields will be split in the same way as
in the preceding subsection; The only thing that changes, is the torsion part of the connection
and some terms in the 11-dimensional Chern-Simons term.

Let us first consider the reduction of the curvature term, evaluated using the connection in
Eq. (3.142). Using Palatini’s identity for torsionful connections

∫
d

√
|g| e−2φR(Ω) = −

∫
d

√
|g| e−2φ

{
Ωb

baΩc
c
a + Ωa

bcΩbc
a + 4Ωb

ba∂aφ

−2Ωb
baKc

c
a − 2Ωa

bcKbc
a
}
, (3.145)

the facts 
ˆ̂
K ˆ̂a

ˆ̂ab = Ab
(1)

ˆ̂η
ij
ei

menjmm
n = Ab

(1)Tr (m) = 0 ,

ˆ̂
K ˆ̂a

ˆ̂ai = 0 ,

(3.146)

and the fact that the second term in Eq. (3.144) annihilates the ΩK-terms whilst applying
Palatini’s identity to the case at hand, one can write

∫
d11 ˆ̂x

√
|ˆ̂g|
{

ˆ̂
R
( ˆ̂Ω
)

+
(
d
ˆ̂
k(n)

)
ˆ̂µˆ̂νQ

nm

(
iˆ̂
k(m)

ˆ̂
C

)
ˆ̂µˆ̂ν − 2 ˆ̂

K ˆ̂µˆ̂ν ˆ̂κ
ˆ̂
K ˆ̂ν ˆ̂κˆ̂µ

}
=

=
∫
d9x
√
|g| K

[
R(g)− (∂ logK)2 + 1

4

(
Fiab + T̂abi

)2

+1
4

(
ei

nej
m∂aGnm + 2T̂a(ij)

)2
)
.

(3.147)

Using now our previous partial results Eqs. (3.122,3.126,3.143) and rescaling to the Einstein
frame, Eq. (3.127), this can be written as

7Note that the cosmological constant part is, apart from correspondence with the massive d = 9 theory,
arbitrary. However, supersymmetry should completely determine it.
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=
∫
d9x
√
|gE |

[
R(gE) + 9

14(∂ logK)2 + 1
4Tr

(
DMM−1

)2 − 1
4K

9/7 ~F T
(2)M

−1 ~F(2)

]
, (3.148)

where the field strengths and covariant derivative are the same as the ones used in Section 3.2.2.
The cosmological constant part is readily reduced by using the well-known identity

ηmnηpq = −ηnpηmq − ηpmηnq , (3.149)

and it follows that

1
2

∫
d11 ˆ̂x

√
|ˆ̂g|
[(ˆ̂
k(n) ˆ̂µQ

nmˆ̂
k(m)

ˆ̂µ
)2

−
(ˆ̂
k(n) µ̂Q

nmˆ̂
k(m) ˆ̂ν

)2
]

=

= −1
2

∫
d9x
√
|gE | K12/7Tr

(
m2 + MmM−1mT

)
,

(3.150)

which is just the result obtained in the d = 9 theory.
The effect of the torsion included in definition (3.139), can readily be seen to promote the

field strengths to their massive equivalents Eq. (3.68). As such, it will be no surprise at all to
see that ∫

11−
1
2
ˆ̂
G? ˆ̂
G =

∫
9

{
−1

2K
6/7F(4)

?F(4) + 1
2K

−3/7 ~F T
(3)M

−1? ~F(3)

−1
2K

−12/7F(2)
?F(2)

}
.

(3.151)

From the fact that we do not change the decomposition of the fields while doing the reduction,
it is clear that the dĈdĈĈ will lead to the same result as in Eq. (3.132). The other terms can
easily be seen to result in

1
64

∫
11

ˆ̂ε 9
8∂

ˆ̂
C

ˆ̂
C

[(
iˆ̂
k(n)

ˆ̂
C

)
Qnm

(
iˆ̂
k(m)

ˆ̂
C

)]
= 1

3227

∫
9 ε
[
6F(4)

~AT
(2)Q

~A(2)A(1)

−9
(
~AT

(2)Q
~A(2)

)(
~AT

(2)η∂
~A(2)

)]
,

1
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∫
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ˆ̂ε 27
80

ˆ̂
C

[(
iˆ̂
k(n)

ˆ̂
C

)
Qnm

(
ik(m)

ˆ̂
C
)]2

= 1
3227

∫
9 ε 9

(
~AT

(2)Q
~A(2)

)2
A(1) .

(3.152)

Adding the above equations to Eq. (3.132) we find that the effect of the torsion is, once again,
precisely to turn the massless CS term, into the massive CS term of the massive 9-dimensional
type II theory we got by generalized dimensional reduction of the type IIB theory. Thus, we
have achieved our second goal.

The T duality rules that one can immediately deduce from this relation between 10-dimensional
theories will be worked out in the Appendices.

3.4. BPS Solutions and Intersections

The aim of this section is to introduce the solutions to the low-energy-effective actions, which
are interpreted as the fundamental objects in string theory. The duality relations between these
objects will be mentioned briefly, and are depicted in Fig. (B.1) for convenience.
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After the basic objects have been introduced, a class of solutions, the so-called intersections,
will be dealt with. There it will be shown that the intersections known to the literature, are
based on a generic action, which is however unable to capture the essence of the massive IIA
supergravity, in case of an intersection of a D8 with a string or a D6. Solutions, breaking susy
to one fourth, describing the aforementioned intersections do exist and are dealt with in sections
(3.4.2,3.4.3).

Thinking about the various extended objects, predicted by string theory, in the ‘static’
gauge, one sees that they break Poincaré invariance, as does every solution. This then means
that for a given solution a possible interpretation is closely related to the symmetry the solution
presents. If we then also think about supersymmetry, and notice that solutions will definitely
break translation invariance, so that one ought to expect a breaking of supersymmetry. This
then leads to the question of how much supersymmetry is broken by a given string state, and
whether we can find supergravity solutions with the appropriate properties.

The first solution one can think of is of course the string, in this ambiance called fundamental
string. The solution, in the sigma frame, is given by8

ds2 = H−1
(
dt2 − dy2

(1)

)
− d~x2

(8) , (3.153)

Bty = ±
{
H−1 − 1

}
, (3.154)

e−2φ = H , (3.155)

where H is a harmonic function of the ~x(8), i.e. it satisfies ~∂2H = 0. This solution breaks half
of the available supersymmetry, the necessary projector being

P∓F1 = 1
2

[
I ∓ γ01O

]
−→ ε = H1/4P±F1ε0 , (3.156)

where 0 (1) is the tangentspace coordinate associated to t (y resp.), ε0 is an arbitrary, constant,
spinor and O is γ11 (σ3) for the type IIA (IIB resp.).

As one can see from Eqs. (1.107), applying T-duality in a coordinate transverse to the
string, i.e. in one of the coordinates ~x(8), leads once again to a string. Applying the T-duality
rules in the y(1) direction however, one ends up with a pure gravitational solution, called the
wave. The metric for wave is given by

ds2σ = (2−H) dt2 ∓ 2 (1−H) dtdy −Hdy2 − d~x2
(8) , (3.157)

and in this case H is a function of t∓ y and ~x(8).
One can also find a ‘brane-like’ solution coupled magnetically to the Kalb-Ramond field,

and is called the ‘solitonic five-brane’, or the ‘H monopole’. The solution is given by

ds2 = dt2 − d~y2
(5) − H d~x2

(4) ,

e−2φ = H−1 ,

B
(6)
ty1...y5

= ±H−1 , (3.158)

8In all the solutions dealt with in this thesis, spacelike worldvolume coordinates will be called y(p), where (p)
denotes the number of worldvolume coordinates, and the transverse coordinates will be labeled x(q), where (q)
denotes the number of transverse coordinates. Furthermore, unless stated otherwise the functions H will only
depend on the transverse coordinates and is harmonic, i.e. ~∂2

(q)H = 0. It is also assumed that the spinors that
occur, are the ones appropriate for the theory we are considering, e.g. a doublet of Majorana-Weyl spinors for
the IIB. Furthermore we abstain from giving the exact expressions for the covariant spinors, when this is not
needed for the sequel.
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where one should note that a possible constant term in B(6) can be gotten rid of, using a gauge
transformation. This configuration also breaks half of the available supersymmetry and leads
to the projector

P±S5 = 1
2

(
I ± γ0...5O

)
−→ ε = P∓S5 ε0 , (3.159)

where O is I (σ3) for the type IIA (IIB resp.).
The solution for the D-branes, in the sigma-frame, reads

ds2p = H−1/2
[
dt2 − H1/2d~y2

(p)

]
− d~x2

(9−p) , (3.160)

C
(p+1)
t y1...yp

= H−1 , (3.161)

e−2φ = H
p−3
2 , (3.162)

where H is once again an harmonic function in the transverse coordinates. By applying the
Buscher rules, Eq. (1.107), on the above solutions, one can see that doing T-duality in the trans-
verse direction9 one ends up with a (p+1)-brane solution, whereas applying it in a worldvolume
direction one ends up with a (p− 1)-brane solution. In this case also half of the supersymmetry
is broken and the respective projectors read

IIA : P2n = 1
2

(
I ∓ iγ0...2n (−γ11)

n+1
)
, (3.163)

IIB : P2n+1 = 1
2

(
I ± γ0...2n+1Σn

)
, (3.164)

where in the last equation

Σn =
{
σ1 : n even
iσ2 : n odd

(3.165)

The covariant spinor then read ε = H−1/8ε0, where ε0 is a constant spinor which is annihilated
by the appropriate projector in Eqs. (3.163,3.164).

M branes

As by now must be obvious, the basic extended objects in ‘M effective theory’ is the two-
and the five-brane. By dimensional reduction these objects will transform into the fundamental
string, the D2-, the D4-brane and the solitonic five brane. The solution for the ‘M2’ is

ds211 = H−2/3
{
dt2 − d~y2

(2)

}
− H1/3d~x2

(8) ,

Cty1y2 = H−1 , (3.166)

whereas the one for the ‘M5’ reads

ds211 = H−1/3
[
dt2 − d~y2

(5)

]
−H2/3d~x2

(5) ,

G(4)µ1...µ4
= ±εµ1...µ4µ5∂µ5H , (3.167)

where the µ’s lie in the subspace spanned by the coordinates ~x(5) and ε... is the Levi-Cività
symbol on this (Euclidean) subspace.

9Note that this also means that one needs to impose an isometry in our solution, i.e. one needs to take H to
be independent of this direction.
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There are more things to be found in 11 dimensions however. One of these things is the ever
present gravitational wave. Since the wave is a pure gravitational solution, there is no problem
in oxidising it to D = 11. The ‘M-wave’ reads

ds2 = (2−H) dt2 ∓ 2 (1−H) dtdy −Hdy2 − d~x2
(9) , (3.168)

and in this case H is a function of t∓ y and ~x(9).
There is also something as a Kaluza-Klein monopole in D = 11, called ‘KK7’,10 and the

metric reads
ds2 = dt2 − dy(6) − H−1 (dz −A)2 − Hdx2

(3) , (3.169)

where H is a function of the ~x(3) only and A is a one-form depending and lying only in the ~x(3)

directions. Furthermore, A must satisfy

∂mAn − ∂nAm = εmnp∂pH . (3.170)

Note that when one dimensionally reduce this solution over the coordinate z, one finds the D6,
and that by dimensionally reducing over another direction one finds solutions of the same form,
and are correspondingly denoted by ‘KK6A’ or ‘KK7A’. Needless to say, the wave and the KK’s
exists in a multitude of dimensions.

Up to now we have not been able to obtain the D8-brane from 11 dimensions. There is a
proposed ‘M9’ brane, which is supposed to do the job. Having a look at the D8 brane, we can
oxidize it to D = 11 where it takes the form

ds2 = H1/3
[
dt2 − d~y2

(8)

]
− H−5/4dz2 − H4/3dx2

(1) , (3.171)

where H is harmonic and only depends on x(1). Using then the above nomenclature, it is also
denoted ‘KK9’.

All of the solutions presented, and solutions resembling the ones, presented in this section,
are connected by the various dualities. Figure (B.1) depicts the duality- and reduction relations
between the solutions.

3.4.1. Standard Intersections

An intersection is a solution to a sugra, which can be interpreted as consisting of several
extended objects and is BPS. A conditio sine qua non for this to occur is, of course, that
the various susy projectors commute, so that there is any residual supersymmetry that will
ensure stability. There exists a vast literature on the subject from which we will take the most
important results.

The first classification one can make is just to determine when the projectors, Eqs. (3.156,3.163,3.164)
commute. Due to the great homogeneity of the D-brane projectors, the classification of D-
branes intersection is straightforward [68]. Denoting a general intersection of two D-branes as
(q|D(q+ r), D(q+ s)), which means that we are dealing with a D(q+ r)- and a D(q+ s)-brane,
which have q world-volume dimensions in common, one can see that supersymmetry implies
that r + s = 0 mod 4.11 By making use of the various duality relations between the solutions
one can then generate the rest: E.g. Look at the intersection of a D1- and a D3-brane. In this
case, the only supersymmetric intersection is (0|D1, D3), which after S-duality should lead to

10The name KK7 comes from the fact that one takes ~y(6) and z as the ‘worldvolume directions, since the
function H does not depend on them.

11Note that the case r + s = 0, is nothing but two D-branes of the same kind lying in the same direction, and
therefore only breaks half of the available supersymmetry.
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the intersection of a D3-brane with a Fundamental string, also written as, abusing notation a
bit, (0|F1, D3). Now, since an F1 stays an F1 if we use T-duality in a direction transverse to the
string, we can use the invariance of the class of D-brane solutions to see that (0|F1, Dp) should
also lead to a supersymmetric, i.e. remembering one fourth of the available supersymmetry,
intersection.

Following Tseytlin’s [111] ideas, we can write down an Ansatz for these Following the Har-
monic Superposition rule, we can write an Ansatz for these intersections: Just overlap the forms
for the metric, multiply the expressions for the dilaton of each solution, and add some factor
to, if necessary for the equation of motion, the form-fields.

Using this idea, the (0|D1, D3) Ansatz, for example, reads

ds2σ = H
−1/2
D1 H

−1/2
D3 dt2 − H

−1/2
D1 H

1/2
D3 dy

2
(1) − H

1/2
D1 H

−1/2
D3 d~z2

(3) − H
1/2
D1 H

1/2
D3 d~x

2
(5) ,

e−2φ = H−1
D1 ,

C
(2)
ty = H−1

D1H
α
D3 ,

C
(4)
tz1z2z3

= Hβ
D1H

−1
D3 , (3.172)

where α and β are to be determined, HD1 = HD1(~z(3), ~x(5)) andHD3 = HD3(y(1), ~x(5)). Plugging
this kind of Ansätze into the equations of motions derived from the generic action12

Sp,q =
∫
d10x

√
|g|
{
e−2φ

[
R(g)− 4 (∂φ)2

]
+ (−)p+1 1

2·(p+2)!G
2
(p+2) + (−)q+1 1

2·(q+2)!G
2
(q+2)

}
(3.173)

where G(p+2) = dC(p+1), one finds that the Harmonic superposition works modulo some con-
straints [21, 23, 68, 116, 117, 79]: Both harmonic functions depend on the overall transverse
coordinates, ~x(5) in the example, only one of the function can depend on its relative transverse
coordinates, e.g HD1 can depend on ~z(3) or HD3 can depend on y(1). In the above example, the
constraints are

0 = ~∂2
xHD1 + HD3

~∂zHD1 , (3.174)
0 = ~∂2

xHD3 + HD1
~∂yHD3 , (3.175)

0 = ∂zHD1∂yHD3 . (3.176)

Furthermore, if r + s = 4 one finds α = β = 1, and if r + s = 8 one must have α = β = 1.
Note that the above rules apply to D-brane intersections only: By means of the duality rules

the intersections can be generalized to include the various other objects.
It is however paramount that the above intersection Ansatz possibly will not work for the

intersection of an F1 with a D8: The action describing the general intersection ignores the
fact that the F(2) becomes massive, thus ignoring this contribution. This is of course related
to the Stückelberg invariance, which allows for the Kalb-Ramond field to become massive.
Looking at the fieldstrengths and the invariances of the, manifestly duality invariant, massive
type IIA, one sees that the same thing can happen to the C(7). This then means that there are
possibly two intersections where the harmonic superposition Ansatz might not work: (0|F1, D8)
and (5|D6, D8). Just by examination of the dilatino variation one can see that the harmonic
superposition Ansatz will not lead to a solution breaking susy to one fourth.

12One might ask oneself, why there is no Chern-Simons term in this generic action: As one can see from the
actions (1.79,1.82), the Cern-Simons term is only important when we have more than 2 objects activated. In IIA
such a configuration would be (D2,D2,D1), and in IIB it would be (D3,D1,F1).
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3.4.2. Massive String

As was seen above, the harmonic superposition intersections automatically satisfy the equa-
tions of motion. Note however that this may be true in general, but when one switches on the
D8, the Kalb-Ramond field becomes massive. This then means that in at least the intersection
of a D8 with a fundamental string, F1, one may suspect that things do not work out according
to the harmonic rule. A look at the supersymmetry rules, one sees that such an intersection
is allowed and it can be shown [100] to exist and should lead to one quarter of remembered
supersymmetry. By direct inspection one can see that an Ansatz according to the harmonic
rule does not satisfy the equations of motion [69], so that one has to find another way of doing
things.

This solution is given by

ds2 = Ω−1
(
dt2 − dy2

)
− d~x 2

8 ,

Bty = ±
(
Ω−1 − 1

)
,

C(1)
t = ±my ,

e−2φ = Ω ,

(3.177)

where 
~x8 =

(
x1, . . . , x8

)
= (xm) ,

∂m∂mΩ = −m2 ,

∂yΩ = αm .

(3.178)

This solution has the following properties:

1. The function Ω consists of three pieces: a piece linear in y (which is interpreted as the
coordinate along the string and perpendicular to the D8-brane), a piece quadratic in ~x8

(which are interpreted as the worldvolume coordinates of the D8-brane, orthogonal to the
string) and a harmonic function of ~x8:

Ω = αmy −
∑

p

Mpx
pxp +H(~x8) ,

∑
p

Mp = 1
2m

2 , ∂m∂mH = 0 . (3.179)

Thus, it can describe, in principle, several objects in equilibrium.

2. In the massless limit Ω(y, ~x8) = H(~x8) and for the right choice of H it is just the funda-
mental string solution [33].

3. The limit in which the string is eliminated is unattainable from this solution. Even if we
set H = 0 Ω is still non-trivial and the solution will have only 1/4 of the supersymmetries
unbroken.

4. The C(1) field can be completely gauged away, canceling the∓1 inBty. We have introduced
it in order to have Bty in the form which corresponds to a fundamental string source. (It
can be argued that there is a D0-brane in the intersection between the string and the
D8-brane, as we will see when we study the unbroken supersymmetry the solution.)
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5. We have a solution for any value of the constant α. However, only for α = ∓1 the solution
is supersymmetric. This is a quite unusual behavior

Let us now find the unbroken supersymmetries. We will only analyze the dilatino super-
symmetry rule to show how it works. In this case

δελ =
(
6∂φ+ 1

2·3!Γ11 6H
)
ε+ 5i

4 me
φε− 3i

8 e
φ 6G(2)Γ11ε , (3.180)

with 
6H = ∓3!∂mΩΓmΓ0y ,

6∂φ = −1
2Ω−1∂mΩΓm − 1

2Ω−1/2∂yΩΓy ,

6G(2) = ±2mΓ0y .

(3.181)

Substituting into the dilatino supersymmetry rule we find

−1
2Ω−1∂mΩΓm

[
1∓ Γ0yΓ11

]
ε− 1

2Ω−1/2∂yΩΓyε+ i
4mΩ−1/2

[
5∓ 3Γ0yΓ11

]
ε = 0 . (3.182)

The first term cancels if we impose

1
2

[
1∓ Γ0yΓ11

]
ε = 0 , (3.183)

which is the condition satisfied by the Killing spinor of the fundamental string. This operator
is a projector and therefore has eigenvalues 1 or 0. The trace is 16, one half of the trace of the
identity and therefore this condition breaks a half of the supersymmetries. Using this condition
also in the third term we get

−∂yΩΓyε+ imε = 0 , (3.184)

which is solved by α = ∓1 and

m1
2 [1∓ iΓy] ε = 0 , (3.185)

which is the condition satisfied by the Killing spinor of a D8-brane. For analogous reasons,
this second condition breaks a half of the supersymmetries for m 6= 0. These two projectors
commute and therefore both conditions can be fulfilled simultaneously. Since the trace of the
product of both projectors is 8, 1/4 of the supersymmetries are preserved.

The gravitino equation also vanishes if the Killing spinor is

ε = Ω1/4ε0 , (3.186)

where ε0 is a constant spinor satisfying the above constraints.
Now, observe that if the Killing spinor is an eigenspinor of the fundamental string and

D8-brane projectors, then it obeys automatically

1
2

[
1∓ iΓ0Γ11

]
ε = 0 , (3.187)

which is the condition of the D0-brane Killing spinor. This may seem a bit surprising since
C(1) is trivial (unless y is a compact coordinate). However, its field strength G(2), which is the
meaningful quantity is not trivial.
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For all these reasons one can identify this solution with the intersection of fundamental
string and a D8-brane over a D0-brane13.

3.4.3. Massive D6-Brane

This solution is given by

ds2 = Ω−1/2
(
dt2 − d~y 2

6

)
− Ω1/2d~x 2

3 ,

Bmn = ∓m
3 εmnpx

p ,

B(6)
ty2···y6 = ±my1 ,

C(7)
ty1···y6 = ±

(
Ω−1 − 1

)
,

e−2φ = Ω3/2 ,

(3.188)

where 

~y6 =
(
y1, . . . , y6

)
=
(
yi
)
,

~x3 =
(
x1, x2, x3

)
= (xm) ,

∂m∂mΩ = −m2 ,

∂y1Ω = αm .

(3.189)

Some remarks are necessary:

1. As C(1) in the massive string case, B(6) is pure gauge but we have introduced it only for
the sake of consistency.

2. B is not pure gauge. A non-trivial C(7) (necessary for a D6-brane) implies a non-trivial
H(7) and, by Hodge duality, a nontrivial H and a non-trivial B. This (plus the constraints
of unbroken supersymmetry) will give support to the interpretation that there is a solitonic
5-brane in the intersection.

3. The coordinate y1 has been chosen for simplicity but any other direction in the D6-brane
worldvolume (coordinates

(
t, yi

)
) would do as direction orthogonal to the solitonic 5-brane

and D8-brane.

4. Again, the function Ω consists of three pieces: a piece linear in y1 (the coordinate or-
thogonal to the solitonic 5-brane and the D8-brane), a piece quadratic in ~x3 (which are
interpreted as worldvolume coordinates of the D8-brane, orthogonal to both the solitonic
5-brane and the D8-brane) and a harmonic function of ~x3:

Ω = αmy1 −
∑

p

Mpx
pxp +H(~x3) ,

∑
p

Mp = 1
2m

2 , ∂m∂mH = 0 . (3.190)

13A string solution to a class of massive supergravity theories was recently given in [109]. However, the
mass parameter in that model is of NSNS type and there is no mass term for B. Thus it cannot describe the
fundamental string of the massive type IIA theory.
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Thus, it can describe, in principle, several objects in equilibrium.

5. In the massless limit Ω(y1, ~x3) = H(~x3) and the right choice of H it is just the D6-brane
solution.

6. We have a solution for any value of the constant α. However, only for α = ∓1 the solution
is supersymmetric. Actually, one finds that (for those values of α) the Killing spinor is

ε = Ω−1/8ε0 , (3.191)

where ε0 is a constant spinor which satisfies


1
2

(
1∓ iΓ01···6) ε0 = 0 ,

m1
2 [1∓ iΓy] ε0 = 0 .

(3.192)

If both equations are satisfied, then the following equation is satisfied

1
2

[
1± Γ02···6] ε = 0 , (3.193)

which is the condition satisfied by the solitonic 5-brane Killing spinor.

It is reasonable to identify these solution with the intersection of a D6- and D8-brane over
a solitonic 5-brane.

3.5. More on D7-branes

In this Section we want to identify the 10-dimensional background of the type IIB theory
that produces the masses of the 9-dimensional theory. The T dual background will be dealt
with in Section 3.6.

S duality is (believed to be) a fundamental non-perturbative symmetry of type IIB string
theory. This implies that the full spectrum of the theory has to be S duality-invariant and thus
all the states can be organized in SL(2,Z) multiplets. Thus, bound states of q fundamental
strings and p D-strings, known as pq-strings, transform as doublets under SL(2,Z). A general
solution describing all possible pq-strings was constructed in Ref. [103] and a dual general
solution describing all possible pq-5-branes was recently constructed in Ref. [82]. The D-3-
brane, being self-dual, is an SL(2,Z) singlet. The situation for D-9-branes and D-instantons
is unclear, although one expects to have D-9-brane solutions which only differ in the constant
value of the dilaton.

It is commonly accepted that there are bound states of p D-7-branes and q NS-NS 7-branes
(that we will call Q-7-branes) which transform as doublets. As we are going to see, this is not so
clear and we will argue that 7-brane states transform as triplets. We will relate the monodromy
matrices of massive 9-dimensional type II supergravity and these 7-brane triplets, showing again
in this way that the presence of a background of 7-branes is the origin of the masses.
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3.5.1. Point-Like (in Transverse Space) 7-Branes

The extreme D-7-brane solution in the string frame is
ds2 = H

−1/2
D7

[
dt2 − d~y 2

7

]
−H1/2

D7 d~x
2

2 ,

e−2(ϕ̂−ϕ0) = H2
D7 ,

Ĉ(8)
ty1···y7 = ±e−ϕ̂0H−1

D7 ,

(3.194)

where ~y7 =
(
y1
7, y

2
7, . . . , y

7
7

)
are the worldvolume coordinates and ~x2 =

(
x1

2, x
2
2

)
are the coor-

dinates of the 2-dimensional transverse space. Any function HD7 harmonic in the transverse
space provides a D-7-brane-type solution. A harmonic function HD7 with a single point-like
singularity

∂xi
2
∂xi

2
HD7 = 2πhD7δ

(2)(~x2) , (3.195)

describes a single D-7-brane placed at ~x2 = 0. The positive constant hD7 is proportional to the
D-7-brane charge and mass and later on we will determine the precise relation between them.
The two possible signs of the charge are taken care of by the ± in Ĉ(8). The standard solution
in R2 to the above equation is (the additive constant is arbitrary and momentarily we set to
zero)

HD7 = hD7 log |~x2| . (3.196)

The 8-form potential Ĉ(8) is nothing but the dual of the RR scalar Ĉ(0) that occurs in
the type IIB theory (i.e. their field strengths are each other’s Hodge dual Ĝ(1) = ?Ĝ(9)). This
dualization can only be done “on shell”, i.e. using at the same time Ĉ(0) and Ĉ(8) because
Ĉ(0) occurs explicitly in the type IIB action. This gives the standard form of Ĝ(9) suggested in
Refs. [54, 22]. If we ignore all other fields apart from λ̂ both dualizations are equivalent. Using
this relation we find

∂iĈ
(0) = ±e−ϕ̂0εij∂jHD7 , (3.197)

and we can rewrite the solution in terms of just the metric and the two real scalars Ĉ(0), e−ϕ̂

that we combine into the single complex scalar λ̂ = Ĉ(0) + ie−ϕ̂. For the single D-7-brane we
find

λ̂ =


ie−ϕ̂0hD7 logω ,

ie−ϕ̂0hD7 logω ,
ω = x1

2 + ix2
2 , (3.198)

for the upper and lower signs respectively.
The charge of a D-7-brane is just, with our normalizations (in the string frame)

p =
∮

γ

?Ĝ(9) =
∮

γ
Ĝ(1) =

∮
γ
dĈ(0) = <e

∮
γ
dλ̂ . (3.199)

The contour γ is any circle around the point in the transverse space. Using the residue
theorem we find for our case that the imaginary part of the integral is zero and

p = ∓2πe−ϕ̂0hD7 , (3.200)
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so the solution indeed describes an anti-D-7-brane (upper sign, λ̂ = λ̂(ω) a holomorphic function
of ω) or D-7-brane (lower sign, λ̂ = λ̂(ω) a holomorphic function of ω) for

hD7 =
eϕ̂0

2π
. (3.201)

We stress that the transformation that takes us from the D-7-brane to the anti-D-7-brane
with opposite RR charge is

λ̂(p) → λ̂(−p) = −λ̂(p) , (3.202)

and it is not an SL(2,R) transformation.
We have just associated the charge of the D-7-brane to the monodromy properties of the

anti-holomorphic function λ̂(ω): If we place at the origin a D-7-brane of unit charge, described
by

λ̂(p=1) = − 1
2πi

logω , (3.203)

and travel once along the path γ(ξ) , ξ ∈ [0, 1], around the origin

λ̂(p=1)[γ(1)] = λ̂(p=1)[γ(0)] + 1 =
(
M(p=1)λ̂(p=1)

)
[γ(0)] ,

M(p=1) =
(

1 1
0 1

)
= T ,

(3.204)

where M(p=1) is the SL(2,Z) monodromy matrix characterizing the 7-brane with charge p = 1.
One can then apply SL(2,Z) transformations Λ to generate other solutions as done in Ref. [43].
Clearly, the monodromy matrix transforms in the adjoint representation

M ′ = ΛMΛ−1 . (3.205)

Now, it is usually assumed that there are bound states of two kinds of 7-branes (pq-branes)
transforming as doublets under SL(2,Z). In particular, the charge vector of pq-7-branes trans-
forms covariantly under SL(2,Z), that is(

p′

q′

)
= Λ

(
p
q

)
. (3.206)

The charge vector of pq-strings transforms contravariantly [103], that is

(p′ q′) = (p q)Λ−1 , (3.207)

and so does the charge vector of pq-5-branes [82]. Using the above transformation law, one
can generate, starting from the (p = 1) ≡ (1, 0) other charge vectors using the SL(2,Z) matrix
Λ(p,q)

Λ(p,q) =
(
p b
q d

)
, Λ(p,q)

(
1
0

)
=
(
p
q

)
. (3.208)

With the same transformation we generate the supergravity solution describing the pq-7-
brane with those charges. The monodromy matrix that characterizes this solution is
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M(p,q) = Λ(p,q)M(1,0)Λ
−1
(p,q) =

 1− pq p2

−q2 1 + pq

 . (3.209)

Clearly not any pair (p, q) can be generated in this way from (1, 0). p and q cannot be even
at the same time, to start with. According to the standard lore of S duality p and q have to
be coprime in order to correspond to stable bound states, and thus this first objection does
not seem serious. Still, there is no proof that all pairs corresponding to stable states can be
generated in this way.

A second problem is that this is not (by far) the most general SL(2,Z) matrix. Thus, given a
certain monodromy matrix we cannot in general determine to which (p, q) state it corresponds.

But there is a more serious problem: We saw in Eq. (3.202) that the transformation that
takes us from the (1, 0) state to the (−1, 0) state is not an SL(2,Z) transformation. However, if
the rule Eq. (3.206) is true the transformation −I2×2 does the same job. But this transformation
leaves λ̂ exactly invariant!14

We conclude that bound states of p- and q-7-branes cannot transform according to Eq. (3.206),
and it is easy to see that they do not transform contravariantly either. Thus, they cannot trans-
form as doublets.

It is evident that D-7-branes are not singlets. Thus, the next possibility to be tested is
that 7-branes are triplets, i.e. they transform in the adjoint representation. This possibility
looks particularly promising if we stick to the characterization of 7-brane bound states through
monodromy matrices, which transform in the adjoint representation. Furthermore, there is no
SL(2,Z) transformation taking us from the monodromy matrix of the (p = 1) state, T , to the
monodromy matrix of the (p = −1) state, T−1.

To clarify completely this issue we are going to make a precise definition of the charges
involved and their relation with the monodromy matrix. First, we observe that the equations
of motion for the scalars can be written as (we suppress hats here):

∇µJ µ = 0 , Jµ = 2∂µMM−1 = 2

 1
2j

(ϕ)
µ jµ

j
(0)
µ −1

2j
(ϕ)
µ

 , (3.210)

where 

j
(ϕ)
µ = e2ϕ∂µ|λ|2 ,

j
(0)
µ = e2ϕ∂µC

(0) ,

jµ = −C(0)j
(ϕ)
µ + |λ|2j(0)µ .

(3.211)

The divergences of the first two currents are the dilaton and RR scalar equations of motion.
The divergence of the third current is zero on shell but it is not an equation of motion. These
three conserved currents can be associated to the three parameters of SL(2,R). In fact, the
Noether current associated to the global SL(2,R) transformation Λ = em where m is the mass
matrix defined in Eq. (3.56) is given by

j(m)
µ = Tr (Jµm) . (3.212)

14As we said before, the group acting on λ̂ is PSL(2, Z) ≡ SL(2, Z)/{±I2×2}.
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Using the current matrix we can define a conserved charge matrix

Q ≡
(

δ
2r βq

γp − δ
2r

)
≡ 1

2

∮
S1

J =
∮

S1

dMM−1 , (3.213)

where p, q, r are integer charges and δ, β, γ are the adequate normalization constants. r is the
charge associated to the dilatation current:

2αr =
∮
jT1 = 2

∮
j(ϕ) , (3.214)

p is the charge associated to shifts of the RR scalar

2γp =
∮
j

1
2
(T2+T3) = 2

∮
j(0) , (3.215)

and therefore the D-7-brane charge, and q is the charge associated to the remaining independent
transformation

2βq =
∮
j

1
2
(T2−T3) = 2

∮
j . (3.216)

Observe that both the current matrix and charge matrix transform in the adjoint represen-
tation under SL(2,R). Let the S1 be parametrized by ξ ∈ [0, 1]: We define

Q(ξ) ≡
∫ ξ

0
dMM−1 , ⇒ dQ(ξ) = dMM−1 . (3.217)

If Q(ξ) = Qξ, the differential equation can be integrated giving

M(ξ) = e
1
2
QξM0 e

1
2
QT ξ , (3.218)

so that the corresponding monodromy matrix reads

M(p,q,r) = e
1
2
Q . (3.219)

The restriction to M ∈ SL(2,Z) implies the quantization of the charges (p, q, r). In par-
ticular it implies that there are no allowed quantum states with p = q = 0, r 6= 0. This seems
to restrict the number of independent charge to just two: p and q. But it is not easy to talk
about the number of independent integers related by a Diophantic equation: Not any pair p, q
is allowed.

The general form Eq. (3.65) for an SL(2,Z) matrix is useful to illustrate our result. Let
us take the case n = 1. The other three integers ni are a Pythagorean triplet and can be
parametrized by three integers t, s, l with the only restriction that s and l are coprime and one
of them is an even number:

n1 = ±t(s2 − l2) , n2 = ±2tsl , n3 = ±t(s2 + l2) . (3.220)

This restricted case already produces a monodromy matrix much more general than the Mpq

in Eq. (3.209). Only two of the integers are independent and the three of them can be put in
one-to-one correspondence with the charges p and q.

In any case, the important lesson at this stage is that given the monodromy matrix of a
certain 7-brane configuration, the above relation immediately allows us to find the 7-brane
charges.

91



To finish this Section, let us stress that these solutions are just examples of the general class
of negative-charge 7-brane-type solutions that we write below in the Einstein frame:

ds2E = dt2 − d~y 2
7 −H7dωdω ,

H7 = |h|2=mλ̂ ,

∂ωλ̂ = ∂ωh = 0 .

(3.221)

The holomorphic function h is nothing but a holomorphic coordinate change. The solutions
with positive charge can be obtained by the transformation in Eq. (3.202).

Q-7-Branes

We can now generate the S duals of the D-7-brane. The rules found above allow us to identify
their charges. However, we need a formulation in terms of 8-form potentials to understand
physically whether r represents an independent 7-brane charge or not. We will present such a
formulation elsewhere.

First, we will construct the Q-7-brane.
Any SL(2,Z) transformation can be written as a product of S and T transformations

S = η =
(

0 1
−1 0

)
, T =

(
1 1
0 1

)
, (3.222)

raised to positive or negative powers. Under these transformations, the charges p, q, r transform
as follows: 

r
S→ −r ,

q
S→ −γ/βp ,

p
S→ −β/γq ,



r
T→ r + 2γ/δp ,

q
T→ q − δ/βr − γ/βp ,

p
T→ p .

(3.223)

We see that, as expected, from a configuration with only p charge (a D-7-brane) an S
transformation generates a configuration with only q charge. We call the object described by
this kind of solution a “Q-7-brane” and, taking the D-7-brane solution in Eq. (3.203) we can
immediately find its form:

Q7
(7, 0, 2)


dŝ2IIB =

(
H2

D7 +A2
)1/2

[
H
−1/2
D7

(
ηijdy

idyj − dy2
)
−H1/2

D7 dωdω
]
,

λ̂ = −1/(−A+ iHD7) ,

(3.224)

where

HD7 = 1
4π logωω , A = 1

4π i logω/ω . (3.225)

The T transformation generates out of the D-7-brane a configuration with a different con-
stant value for Ĉ(0). Although this is the only difference with the original D-7-brane solution,
this constant value induces q-charge through the Witten effect. The presence of both p and q
charges induces r-charge which here seems not to be independent.
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3.5.2. 7-Branes with a Compact Transverse Dimension

We want to transform 7-branes under T duality and therefore we need to consider the
corresponding solutions with a compact transverse dimension.

If one of the transverse coordinates, say x1
2 ≡ y is compact y ∼ y + 2π` then the function

HD7 that solves Eq. (3.195) in R×S1 takes a different form (we set to zero the additive constant
for simplicity):

HD7 =
hD7

2`
|x2

2|+ hD7 log
√

1− 2e−|x2
2| cos y/`+ e−2|x2

2| . (3.226)

Usually, only the zero-mode in the Fourier expansion of this function is considered when
performing T duality transformations because the only T duality rules known (Buscher’s [30])
apply only to solutions independent of the compact coordinate (at least the metric has to be).
This is a strong limitation which only recently started to be appreciated [56]. Nevertheless, the
behavior of this zero-mode seems to be well understood and we will focus on it. In our case,
then, we will take, for a single D-7-brane (hD7 = 1/(2πe−ϕ̂0)) and for ` = 1/2π (y ∼ y + 1)

HD7 =
hD7

2`
|x2

2| . (3.227)

Restricting ourselves to the region x2
2 > 0 for simplicity we find for the complex scalar λ̂ the

expression 
λ̂(p=−1)0 = 1

2ω .

λ̂(p=+1)0 = −1
2ω .

ω = y + ix2
2 (3.228)

Somewhat surprisingly, the solution does depend on the compact coordinate y. The metric
does not, but, after an SL(2,R) transformation, the string metric will depend on y while the
Einstein metric will not.

Again, it is convenient to rewrite λ̂ as follows:

λ̂(p=1)0 = 1
2e

−ϕ̂0

(
z
−z̄

)
, z = y + ix2

2 . (3.229)

Let us now start by analyzing the monodromy of the positive charge solution zeromode
(the holomorphic one). The above function is regular everywhere: The D-7-brane has been
smeared out. The only non-trivial cycle to study is the one along y, and one finds that the
zeromode is shifted by 1/2. This is not an SL(2,Z) transformation. To understand this result it
is convenient to map the cylinder into the Riemann sphere with two punctures by means of the
conformal transformation 1/w = e2πiz. w is the coordinate in the patch around infinity. Going
around the origin in the w plane is the same as going around the cylinder’s S1 parametrized by
y in the negative sense. The complex scalar zeromode becomes

λ̂(p=1)0 = −1
2

1
2πi

logw , (3.230)

which obviously corresponds to a D-7-brane with charge −1/2 placed at infinity in the Riemann
sphere, i.e. at infinity in the cylinder (we are considering only the positive x2

2 part of the
cylinder). Something analogous happens at minus infinity. Then, the presence of a D-7-brane
on a cylinder induces the presence of other D-7-branes at infinity. The D-7-branes at infinity
have to have integer charge and thus we can only place a D-7-brane of charge (p = 2) to
have a consistent picture. The situation is depicted in Figure 3.2 The monodromies along the
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compact coordinate measure the 7-brane charges at infinity and are, therefore SL(2,Z) matrices
as discussed in the previous section (now with ξ = y). These are precisely the monodromy
matrices that appear in our massive 9-dimensional type II supergravity theory.

Figure 3.2: If we place a 7-brane on a cylinder, one has to take into account that automatically 7-branes are

created at the boundaries. This can be easily seen by conformally transforming the cylinder into a punctured

sphere. Consistency of the monodromy implies that the total sum of the charges in the sphere is nil.

In the supergravity theory, the monodromy matrices are determined by the mass matrix
m and, comparing with the results of the previous Section, this is identical to the pq-7-brane
charge matrix m:

m = 1
2

 m1 m2 +m3

m2 −m3 −m1

 = Q =
(

δ
2r βq

γp − δ
2r

)
. (3.231)

This is the sought for relation between the background of 7-branes and the mass parameters
of the massive 9-dimensional type II supergravity theory.

3.6. KK-7A- and KK-8A-branes and T Duality

In this Section we are going to check explicitly the dualities between extended objects
underlying the generalized T duality between the type IIA and type IIB theories. We will find
some of the objects whose existence we conjectured in the Introduction. We will essentially
prove the connections shown in Figure 3.3.

It is convenient to start with the 11-dimensional Kaluza-Klein monopole which we refer to
as KK-7M-brane. This is a 7-dimensional, purely gravitational object, but one of the spacelike
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Figure 3.3: This figure is a magnified and more detailed piece of Figure B.1 in which a general picture of all the

known extended objects of M/string theory and their duality relations is given. Only well-established relations

are shown, and so no duality connections between the conjectured KK-8B-brane and other objects are drawn. In

the triplets (m, n, p) m stands for the number of standard spacelike dimensions of the object, n for the number

of special isometric directions (z) and p for the number of standard transverse dimensions. The double arrows

indicate on which directions T duality acts.

worldvolume directions, with coordinate z is compactified on a circle. Its metric is given by
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KK7M
(6, 1, 3)

 dˆ̂s2 = ηijdy
idyj −H−1

(
dz2 +Amdx

m
)2 −Hd~x 2

3 ,

2∂[mAn] = εmnp∂pH ,

(3.232)

where ~x3 = (xm) = (x1, x2, x3) and i = 0, 1, . . . , 6. The standard solution corresponds to the
choice

H = 1 +
h

|~x3|
. (3.233)

We can reduce this solution in three different ways. First, we can reduce in the isometry
direction, z. It is well-known that the resulting object is the D-6-brane. Reducing on one of
the standard spacelike worldvolume directions (double dimensional reduction) trivially gives the
KK-6A-brane, which is nothing but the 10-dimensional KK monopole.

Finally, we can reduce it on a transverse coordinate, x3. We obtain

KK7A
(6, 1, 2)



dŝ2IIA =
(

H
H2+A2

)−1/2 [
ηijdy

idyj − H
H2+A2dz

2 −Hdωdω
]
,

eφ̂ =
(

H
H2+A2

)−3/4
,

Ĉ(1)
z = A

H2+A2 ,

∂ωA = i∂ωH ,

(3.234)

where ω = x1 + ix2 and A = A3 and the last equation is simply 2∂[mAn] = εmnp∂pH with the
assumption that H does not depend on x3 and in the A1 = A2 = 0 gauge. In complex notation
the last equation then reads ∂ω (A3 − iH) = 0, which has as a particular solution

H = h
2 logωω , A = h

2 i logω/ω . (3.235)

This kind of solutions has been previously considered in Refs. [21, 23, 81]. To relate it with
type IIB solutions, we further reduce it in the isometry direction z. The resulting solution is a
9-dimensional “Q-6-brane”:

Q69

(6, 0, 2)



ds2II =
(
H2 +A2

)1/2 [
H−1/2ηijdy

idyj −H1/2dωdω
]
,

eφ =
(

H
H2+A2

)−1
,

C(0) = A
H2+A2 ,

∂ωA = i∂ωH .

(3.236)

This is a solution of our massive 9-dimensional type II theory with mi=0. We are going to
show it through duality arguments.

Notice that we have obtained two different solutions by reducing first on z and then on x3

and in the inverse order. The difference is a rotation in internal space z, x3 and, by T duality
to an S duality transformation in the type IIB side, as we are going to see.
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We can now uplift this solution using the type IIB rules and adding the coordinate y. We
obtain the Q-7-brane solution Eq. (3.224):

Q7
(7, 0, 2)


dŝ2IIB =

(
H2 +A2

)1/2 [
H−1/2

(
ηijdy

idyj − dy2
)
−H1/2dωdω

]
,

λ̂ = −1/(−A+ iH) .
(3.237)

This solution is the S dual of the standard D-7-brane solution. In fact, performing the
SL(2,Z) transformation S and substituting the explicit expressions for H and A we get

D7
(7, 0, 2)


dŝ2IIB = H−1/2

(
ηijdy

idyj − dy2
)
−H1/2dωdω ,

λ̂ = −h
i logω ,

(3.238)

which is the (positive charge) D-7-brane solution of Eq. (3.203) if we set h = 1/2π.
We could have reduced the KK-7A-brane on another transverse direction x2. Equivalently,

we could have simultaneously reduced the KK-7M-brane on x2 and x3. We immediately face a
problem: if H is a harmonic function that only depends on x1, then A1 = 0 but A2 and/or A3

depend on x3 and/or x2.
The situation is identical to that of the reduction of the Q-7-brane on a transverse coordi-

nate. There, it was impossible to eliminate the dependence on that coordinate and generalized
dimensional reduction was necessary. Here, only through generalized dimensional reduction of
11-dimensional supergravity one can find the 9-dimensional solution and the T dual. The T dual
must have a special isometric direction and 7 standard spacelike worldvolume coordinates. Such
a configuration is what we call a KK-8B-brane. The generalized dimensional reduction of 11-
dimensional supergravity must give the same 9-dimensional theory as the reduction of type IIB
in presence of KK-8B-branes.

We could have reduced the KK-7A-brane on a standard worldvolume direction yi, getting

KK79

(6, 1, 1)


ds2II = H

[
H−1/2ηijdy

idyj −H1/2dx2
]
−H−3/2dz2 ,

eφ = H1/8 ,

k = H1/4 .

(3.239)

This not a solution of our 9-dimensional massive type IIB theory. It would be a solution of
another massive 9-dimensional type II theory with “Killing vectors” in its Lagrangian. Only
after the elimination by reduction of the special isometric direction will we get a solution to
some massive supergravity. Anyway, if we uplift this configuration to ten dimensions using the
standard type IIB rules we get

Unknown
(6, 2, 1)

dŝ2IIB = H
[
H−1/2ηijdy

idyj −H1/2dx2
]
−H−1/2dy2 −H−3/2dz2 . (3.240)

This purely gravitational configuration is similar to the KK-9M-brane but with 2 isometric
directions instead of just one. Its presence as a 10-dimensional type IIB background will give
an 8-dimensional fully covariant massive type II theory.

Objects of this kind can be useful in considering massive theories in lower dimensions, which
are out of the scope of this paper and so we will not discuss them any further.
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We have already checked the left hand side of Figure 3.3. It is convenient now to start from
the KK-9M-brane, recently constructed and studied in Ref. [27]15. This purely gravitational
field configuration is not a solution of the standard 11-dimensional supergravity, but it is a
solution of the massive 11-dimensional supergravity constructed in Ref. [25] which we have just
generalized in a manifestly SL(2,R)-covariant way. Its defining property is that it has a special
isometric direction (z) and reduction in this direction gives the D-8-brane.

Choosing ε = −1, the metric of the KK-9M-brane is

KK9M
(8, 1, 1)

 dˆ̂s2 = H1/3ηijdy
idyj −H−5/3dz2 −H4/3dx2 ,

H = c+Qx ,

(3.241)

where now i = 0, 1, . . . , 8.
If we reduce the KK-9M-brane in the isometry direction (z) we get the D-8-brane

D8
(8, 0, 1)


dŝ2IIA = H−1/2ηijdy

idyj −H1/2dx2 ,

eφ̂ = H−5/4 ,

(3.242)

which is a solution of Romans’ massive type IIA supergravity [98].
Reducing further in one of the spacelike worldvolume directions (y8) we get the 9-dimensional

D-7-brane

D79

(7, 0, 2)


ds2II = H−1/2ηijdy

idyj −H1/2dx2 ,

eφ = H−9/8 ,

k = H−1/4 .

(3.243)

Uplifting to 10 dimensional using the type IIA rules we get the D-7-brane is also the solu-
tion we obtained by compactifying in a transverse dimension the D-7-brane. This establishes
T duality between the D-8- and the D-7-brane [19].

If we reduce first the KK-9M-brane on a standard worldvolume direction we get the following
field configuration

KK8A
(7, 1, 1)


dŝ2IIA = H

[
H−1/2ηijdy

idyj −H1/2dx2
]
−H−3/2dz2 ,

eφ̂ = H1/4 ,

(3.244)

which we call KK-8A-brane. This is not a solution of any standard 10-dimensional supergravity.
Instead, it is a solution of the massive type IIA supergravity that one finds by reduction of the
massive 11-dimensional supergravity of Ref. [25] in a direction different from the isometric one.
This theory is related by a rotation in internal space with Romans’ massive supergravity [98].

Reducing further in the isometry direction (z), we get the 9-dimensional Q-7-brane

Q79

(7, 0, 1)


ds2II = H

[
H−1/2ηijdy

idyj −H1/2dx2
]
,

eφ = H5/8 ,

k = H−3/4 .

(3.245)

15In that reference it is called “M-9-brane”. We prefer the name KK-9M-brane because it stresses the fact that
it has a special isometric direction as the usual KK monopole.
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We observe again that we have obtained two different 9-dimensional results which must be
related by a rotation in the 2-dimensional internal space and, therefore, by an S duality trans-
formation in the T dual type IIB theory. Thus, not surprisingly, if we uplift the 9-dimensional
Q-7-brane to ten dimensions using the standard type IIB rules we get

Q7bare

(7, 0, 2)


dŝ2 b

IIB = H
[
H−1/2

(
ηijdy

idyj − dy2
)
−H1/2dωdω

]
,

λ̂b = +iH−1 .

(3.246)

This is nothing but the bare field configuration of the Q-7-brane Eq. (3.237). Using the
generalized rules for uplifting, the dependence on the internal coordinate is fully recovered.
This establishes T duality between the Q-7-brane and the KK-8A-brane under the generalized
Buscher T duality rules of Appendix B.3.
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Appendix A

Conventions et. al.

Our spactime conventions are such that the signature is (+,− . . .−), except for chapter
(2) where we use the oposite signature. In any dimension curved indices are denoted by greek
letters, and tangent space indices will be denoted by lowercase latin letters. When dealing with
dimensional reduction, higher dimensional indices, and objects, will carry hats, whereas lower
dimensional indices and objects will carry nothing.

Vielbeins are introduced by
gµν = ηab eµ

a eν
b , (A.1)

and we define the covariant derivative acting on a general object by

∇µOν
κ

a
b = ∂µOν

κ
a
b − Γµν

λOλ
κ

a
b + Γµλ

κOν
λ

a
b − ωµa

cOν
κ

c
b − ωµ

b
cOν

κ
a
c . (A.2)

The Levi-Cività- and the spin-connection are defined by

Γµν
κ = 1

2g
κσ [∂µgνσ + ∂νgµσ − ∂σgµν ] , (A.3)

ωµ
ab = eνb∂µeν

a − eν
a eρbΓµρ

ν . (A.4)

The various curvatures are then defined as

Rµνκ
ρ = 2∂[µΓν]κ

ρ + 2Γ[µ|σ
ρΓν]κ

σ ,

Rµν = Rµρν
ρ ,

R = Rµ
µ . (A.5)

The, d-dimensional, totally anti-symmetric Levi-Cività symbol is defined in the tangent-
space as

ε0 1...d ≡ 1 → ε0 1...d = (−1)d−1 , (A.6)

and on curved space as
εµ1...µd =

√
|g| ea1

µ1 . . . ead

µd εa1...ad . (A.7)

All p-forms ω(p), are defined to be of the form

ω(p) = 1
p!ωµ1...µp dx

µ1 ∧ . . . ∧ dxµp . (A.8)

With these definitions we can define the Hodge dual of a p-form, ω(p) say, as a (d−p)-form ?ω(p)

with components
(?ωp)ν1...νd−p

= 1

p!
√
|g|
εν1...νd−pµ1...µp ω

µ1...µp , (A.9)
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Using the Hodge duality twice, one can show that

?
(
?ω(p)

)
= (−)p(d−p)+d−1ω(p) (A.10)

When not using form notation, we will be using a notation for which indices are not shown
explicitly. In this notation we assume that all indices are completely antisymmetrized in the
obvious order, e.g.

H = 3∂B , (A.11)

is shorthand for
Hµνρ = 3∂[µBνρ] . (A.12)

Note that all indices are antisymmetrized with unit weight.
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Appendix B

KK Decompositions and T-Duality

B.1. 9-Dimensional Einstein Fields Vs. 10-Dimensional Type IIA
String Fields

In the main body of the paper we went directly from 11 to 9 dimensions and thus we
need to repeat the reduction from 11 to 10 dimensions [115, 15] to be able to relate 9- with
10-dimensional fields.

As usual, we assume now that all fields are independent of the spacelike coordinate z = x10

and we rewrite the fields and action in a ten-dimensional form. The dimensional reduction
of 11-dimensional supergravity Eq. (3.113) gives rise to the fields of the ten-dimensional N =
2A, d = 10 supergravity theory {

ĝµ̂ν̂ , B̂µ̂ν̂ , φ̂, Ĉ
(3)

µ̂ν̂ρ̂, Ĉ
(1)

µ̂,
}
. (B.1)

The metric, the two-form and the dilaton are NS-NS fields and the three-form and the vector
are RR fields. We are going to use for RR forms the conventions proposed in Refs. [54, 22, 25].

The fields of the 11-dimensional theory can be expressed in terms of the 10-dimensional ones
as follows:

ˆ̂gµ̂ν̂ = e−
2
3
φ̂ĝµ̂ν̂ − e

4
3
φ̂Ĉ(1)

µ̂Ĉ
(1)

ν̂ ,
ˆ̂
C µ̂ν̂ρ̂ = Ĉ(3)

µ̂ν̂ρ̂ ,

ˆ̂gµ̂z = −e
4
3
φ̂Ĉ(1)

µ̂ ,
ˆ̂
C µ̂ν̂z = B̂µ̂ν̂ ,

ˆ̂gzz = −e
4
3
φ̂ .

(B.2)

For the Elfbeins we have

(
ˆ̂eˆ̂µ

ˆ̂a
)

=

 e−
1
3
φ̂êµ̂

â e
2
3
φ̂Ĉ(1)

µ̂

0 e
2
3
φ̂

 ,

(
ˆ̂eˆ̂a

ˆ̂µ
)

=

 e
1
3
φ̂êâ

µ̂ −e
1
3
φ̂Ĉ(1)

â

0 e−
2
3
φ̂

 .

(B.3)

Conversely, the 10-dimensional fields can be expressed in terms of the 11-dimensional ones by:
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ĝµ̂ν̂ =
(
−ˆ̂gzz

) 1
2
(
ˆ̂gµ̂ν̂ − ˆ̂gµ̂z

ˆ̂gν̂z/
ˆ̂gzz

)
, Ĉ(3)

µ̂ν̂ρ̂ = ˆ̂
C µ̂ν̂ρ̂ ,

Ĉ(1)
µ̂ = ˆ̂gµ̂z/

ˆ̂gzz , B̂µ̂ν̂ = ˆ̂
C µ̂ν̂z ,

φ̂ = 3
4 log

(
−ˆ̂gzz

)
.

(B.4)

After some standard calculations that we omit we find the bosonic part of theN = 2A, d = 10
supergravity action in ten dimensions in the string frame:

Ŝ =
∫
d10x

√
|ĝ|
{
e−2φ̂

[
R̂− 4

(
∂φ̂
)2

+ 1
2·3!Ĥ

2

]

−
[

1
4

(
Ĝ(2)

)2
+ 1

2·4!

(
Ĝ(4)

)2
]
− 1

144
1√
|ĝ|
ε̂∂Ĉ(3)∂Ĉ(3)B̂

}
.

(B.5)

where the fields strengths are defined as follows:



Ĥ = 3∂B̂ ,

Ĝ(2) = 2∂Ĉ(1) ,

Ĝ(4) = 4
(
∂Ĉ(3) − 3∂B̂Ĉ(1)

)
,

(B.6)

and they are invariant under the gauge transformations


δB̂ = ∂Λ̂ ,

δĈ(1) = ∂Λ̂(0) ,

δĈ(3) = 3∂Λ̂(2) + 3B̂∂Λ̂(0) .

(B.7)

Now, using these results together with the relation between 9- and 11-dimensional fields
obtained in Section 3.3.1 we get

M = eφ̂|ĝxx|−1/2

 e−2φ̂|ĝxx|+ (Ĉ(1)
x)2 Ĉ(1)

x

Ĉ(1)
x 1

 ,

K = eφ̂/3|ĝxx|1/2 ,

A(1) µ = B̂µx ,

(B.8)
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~A(1) µ =

 Ĉ(1)
µ − Ĉ(1)

xĝµx/ĝxx

−ĝµx/ĝxx

 ,

~A(2) µν =

 Ĉ(3)
µνx − 2B̂[µ|x|Ĉ

(1)
ν] + 2Ĉ(1)

xB̂[µ|x|ĝν]x/ĝxx

B̂µν + 2B̂[µ|x|ĝν]x/ĝxx

 ,

A(3) µνρ = Ĉ(3)
µνρ − 3

2 ĝ[µ|x|Ĉ
(3)

νρ]x/ĝxx − 3
2 Ĉ

(1)
xĝ[µ|x|B̂νρ/ĝxx

−3
2 Ĉ

(1)
[µB̂νρ] ,

gE µν = e−4φ̂/7|ĝxx|1/7
[
ĝµν − ĝµxĝνx/ĝxx

]
.

(B.9)

B.2. 9-Dimensional Einstein Fields Vs. 10-Dimensional Type IIB
String Fields

Using the results of Section 3.2.2 we find

M = Λ−1(y)M̂(x̂)(Λ−1)T (y) = M̂b = eϕ̂
b

 |λ̂b|2 Ĉb (0)

Ĉb (0) 1

 ,

K = eϕ̂/3|̂yy|−2/3 = eϕ̂
b/3|̂byy|−2/3 ,

A(1) µ = ̂µy/̂yy = ̂bµy/̂
b
yy ,

~A(1) µ = −Λ−1(y)

 Ĉ(2)
µy

B̂µy

 =

 Ĉb (2)
µy

B̂b
µy

 ,

~A(2) µν = Λ−1(y)

 Ĉ(2)
µν

B̂µν

 =

 Ĉb (2)
µν

B̂b
µν

 ,

A(3) µνρ = −Ĉ(4)
µνρy − 3

2 B̂[µνĈ
(2)

ρ]y − 3
2 B̂[µ|y|Ĉ

(2)
νρ] ,

gE µν = e−4ϕ̂/7|̂yy|1/7
[
̂µν − ̂µy ̂νy/̂yy

]
.

(B.10)

B.3. Generalized Buscher T-Duality Rules

Now we just have to compare the results of Appendix B.2 and Appendix B.1 to identify the
10-dimensional fields of the type IIA and IIB theories. This identification produces for us the
searched for generalization of Buscher’s T duality rules [30]. These rules generalize the standard
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type II T duality rules of Ref. [15] in the same way as those of Ref. [19]: The rules have exactly
the same form as the massless ones if we replace the type IIB fields by the bare type IIB fields.

The only deficiency of these rules is with respect to the S duals of D-7-branes: It is necessary
to dualize their 8-form potentials which transform independently of λ̂b.

Thus, indicating by a superscript b the bare type IIB fields the T duality rules take the
form1:

From IIA to IIB:

̂bµν = ĝµν −
(
ĝµxĝνx − B̂µxB̂νx

)
/ĝxx , ̂bµy = B̂µx/ĝxx ,

B̂b
µν = B̂µν + 2ĝ[µ|xB̂ν]x/ĝxx , B̂b

µy = ĝµx/ĝxx ,

ϕ̂b = φ̂− 1
2 log |ĝxx| , ̂byy = 1/ĝxx ,

Ĉb (2n)
µ1...µ2n = Ĉ(2n+1)

µ1...µ2nx + 2nB̂[µ1|x|Ĉ
(2n−1)

µ2...µ2n]

−2n(2n− 1)B̂[µ1|x|ĝµ2|x|Ĉ
(2n−1)

µ3...µ2n]x/ĝxx ,

Ĉb (2n)
µ1...µ2n−1y = −Ĉ(2n−1)

µ1...µ2n−1

+(2n− 1)ĝ[µ1|x|Ĉ
(2n−1)

µ2...µ2n−1]x/ĝxx .

(B.11)

From IIB to IIA:

ĝµν = ̂bµν −
(
̂bµy ̂

b
νy − B̂b

µyB̂b
νy

)
/̂byy , ĝµx = B̂b

µy/̂
b
yy ,

B̂µν = B̂b
µν + 2̂b[µ|y|B̂b

ν]y/̂
b
yy , B̂µx = ̂bµy/̂

b
yy ,

φ̂ = ϕ̂b − 1
2 log |̂byy| , ĝxx = 1/̂byy ,

Ĉ(2n+1)
µ1...µ2n+1 = −Ĉb (2n+2)

µ1...µ2n+1y

+(2n+ 1)B̂b
[µ1|y|Ĉ

b (2n)
µ2...µ2n+1]

−2n(2n+ 1)B̂b
[µ1|y|̂

b
µ2|yĈ

b (2n)
µ3...µ2n+1]y/̂

b
yy ,

Ĉ(2n+1)
µ1...µ2nx = Ĉb (2n)

µ1...µ2n

+2n̂b[µ1|y|Ĉ
b (2n)

µ2...µ2n]y/̂
b
yy .

(B.12)

The relation between the bare fields and the real fields is given in Section 3.2.2.

1These rules apply to RR n-forms for any n. For the values of n that do not appear in the main body of this
paper, one simply has to use the general expression for the RR field strengths and gauge transformations given
in Ref. [25] inspired by those of Refs. [54, 22].
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Figure B.1: Duality relations between classical solutions of 10- and 11-dimensional supergravity theories de-

scribing string/M-theory solitons: p-branes, M-branes, D-branes, gravitational waves, Kaluza-Klein monopoles

and other KK-type solutions. Lines with two arrows denote T duality relations. Dashed lines denote S duality

relations. Lines with a single arrow denote relations of dimensional reduction, either vertical (direct dimensional

reduction) or diagonal (double dimensional reduction).
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E. Álvarez, L. Álvarez-Gaumé, I. Bakas: “T Duality and Space-Time Supersymmetry”,
Nucl. Phys. B457(1995), 3 (hep-th/9510028); “Supersymmetry and Dualities”, Contribu-
tion to the proceedings of the Trieste Conference on S Duality and Mirror Symmetry, 5-9
June 1995, Nucl. Phys. (Proc. Suppl.) B46(1996), 16, E. Gava, K. Narain, C. Vafa Eds
(hep-th/9510028).

[8] I. Bakas: “0(2, 2) Transformations and the String Geroch Group”, Nucl. Phys. B428(1994),
374 (hep-th/9402016).
J. Maharana: “Hidden Symmetries of Two-Dimensional String Effective Action”,
Phys. Rev. Lett. 75(1995), 205 (hep-th/9502001).
A.A. Kehagias: “Infinite-Dimensional Algebras in Dimensionally Reduced String Theory”,
Phys. Lett. B360(1995), 19 (hep-th/9506205).

[9] I. Bars: “S-Theory”, Phys. Rev. D55(1997), 2373 (hep-th/9607112)

111



[10] I. Bars: “Black Hole Entropy Reveals a 12th ”Dimension””, Phys. Rev. D55(1971), 3633
(hep-th/9610074).

[11] K. Bautier, S. Deser, M. Henneaux, D. Seminara: “No Cosmological D = 11 Supergravity”,
Phys. Lett. 406(1997), 49 (hep-th/9704131).

[12] K. Behrndt: “About a Class of Exact String Backgrounds”, Nucl. Phys. B455(1995), 188
(hep-th/9506106).
R. Kallosh, A. Linde: “Exact Supersymmetric Massive and Massless White Holes”,
Phys. Rev. D52(1995), 7137 (hep-th/9507022); “Supersymmetric Balance of Forces and
Condensation of BPS States”, Phys. Rev. D53(1996), 5734 (hep-th/9511115).

[13] E. Bergshoeff, E. Sezgin, P.K. Townsend: “Supermembranes and eleven-dimensional su-
pergravity”, Phys. Lett. B189(1987), 75.

[14] E. Bergshoeff, R. Kallosh, T. Ort́ın: “Duality Versus Supersymmetry and Compactifica-
tion”, Phys. Rev. D51(1995), 3009 (hep-th/9410230).

[15] E. Bergshoeff, C. Hull, T. Ort́ın: “Duality in the type-II superstring effective action”, Nucl.
Phys. B451(1995), 547 (hep-th/9504081).

[16] E. Bergshoeff, B. Janssen, T. Ort́ın: “Solution-Generating Transformations and the String
Effective Action”, Class. Quantum Grav. 13(1996), 321 (hep-th/9506156).

[17] E. Bergshoeff, H.-J. Boonstra, T. Ort́ın: “S Duality and Dyonic p-Brane Solutions in
Type II String Theory”, Phys. Rev. D53(1996), 7206 (hep-th/9508091).

[18] E. Bergshoeff: “Duality Symmetries and the Type II String Effective Action”, Presented at
ICTP Trieste Conference on Physical and Mathematical Implications of Mirror Symmetry
in String Theory, Trieste, Italy, Jun 5-9, 1995. Nucl. Phys. B (Proc. Suppl.) 46(1996), 39
(hep-th/9509145).

[19] E. Bergshoeff, M. de Roo, M.B. Green, G. Papadopoulos, P.K. Townsend: “Duality of type
II 7-branes and 8-branes”, Nucl. Phys. B470(1996), 113 (hep-th/9601150).

[20] E. Bergshoeff, M. de Roo: “D-branes and T-duality”, preprint UG-1/96,
(hep-th/9603123).

[21] E. Bergshoeff, M. de Roo, E. Eyras, B. Janssen, J.P. van der Schaar: “Multiple Intersections
of D-branes and M-branes”, Nucl. Phys. B494(1997), 119 (hep-th/9612095).

[22] E. Bergshoeff, P.M. Cowdall, P.K. Townsend: “Massive IIA Supergravity from the Topo-
logically Massive D-2-Brane”, Phys. Lett. B410(1997), 13 (hep-th/9706094).

[23] E. Bergshoeff, M. de Roo, E. Eyras, B. Janssen, J.P. van der Schaar: “Intersections In-
volving Waves and Monopoles in Eleven Dimensions”, Class. Quant. Grav. 14(1997), 2757
(hep-th/9704120).

[24] E. Bergshoeff, B. Janssen, T. Ort́ın: “Kaluza-Klein Monopoles and Sigma-Models”,
Phys. Lett. B410(1997), 131 (hep-th/9706117).

[25] E. Bergshoeff, Y. Lozano, T. Ort́ın: “Massive Branes”, Nucl. Phys. B518(1998), 363
(hep-th/9712115).

112



[26] E. Bergshoeff, E. Eyras, Y. Lozano: “The Massive Kaluza-Klein Monopole”,
hep-th/9802199

[27] E. Bergshoeff, J.P. van der Schaar: “On the M-9-Brane”, Class. Quant. Grav. 16(1999),
23 (hep-th/9806069).

[28] J.C. Breckenridge, R.C. Myers, A.W. Peet, C. Vafa: “D-Branes and Spinning Black Holes”,
Phys. Lett. B391(1997), 93 (hep-th/9602065).

[29] C.P. Burgess, R.C. Myers, F. Quevedo: “Duality and Four-Dimensional Black Holes”,
Nucl. Phys. B442(1995), 97 (hep-th/9411195).

[30] T. Buscher: “Quantum Corrections and Extended Supersymmetry in New Sigma Models”,
Phys. Lett. 159B(1985), 127; “A Symmetry of the String Background Field Equations”,
ibid 194B(1987), 59; “Path Integral derivation of Quantum Duality in Non-Linear Sigma
Models”, ibid 201B(1988), 466.

[31] E. Cremmer, J. Scherk, S. Ferrara: “SU(4) Invariant Supergravity Theory”, Phys. Lett.
74B(1978), 64.

[32] E. Cremmer, B. Julia, J. Scherk: “Supergravity Theory in 11 Dimensions”, Phys. Lett.
76B(1978), 409.

[33] A. Dabholkar, G.W. Gibbons, J. Harvey, F. Ruiz-Ruiz: “Superstrings and Solitons”,
Nucl. Phys. B340(1990), 33.

[34] J. Dai, R.G. Leigh, J. Polchinski: “New Connections Between String Theories”,
Mod. Phys. Lett. A4(1989), 2073.

[35] G. Dall’Agata, K. Lechner, M. Tonin: “D = 10, N = IIB Supergravity: Lorentz-invariant
actions and duality”, J. High Energy Phys. 07 (1998) 017 (hep-th/9806140).

[36] S. Deser: “Uniqueness of D=11 Supergravity”, preprint ULB-TH-97-07A
(hep-th/9712064).

[37] S. Deser: “D=11 Supergravity Revisited”, preprint BRX-TH-435 (hep-th/9805205).

[38] M. Dine, P. Huet, N. Seiberg: “Large and Small Radius in String Theory”, Nucl. Phys.
B322(1989), 301.

[39] M.R. Douglas: “Branes within Branes”, published in ‘Cargese 1997, Strings, branes and
dualities’, 267-275 (hep-th/9512077).

[40] R. Emparan: “Massless Black-Hole Pairs in String Theory”, Phys. Lett. B387(1996), 721
(hep-th/9607102); “Composite Black Holes in External Fields”, Nucl. Phys. B490(1997),
365 (hep-th/9610170).

[41] E.A. Eyras, Y. Lozano: “Exotic branes and nonperturbative seven branes”, preprint UG-
15/99, SPIN-99/18 (hep-th/9908094).

[42] J.A.H. Futterman, F.A. Handler, R.A. Matzner: “Scattering from Black Holes”, Cambridge
University Press (1988).

[43] M.R. Gaberdiel, T. Hauer, B. Zwiebach: “Open string - string junction transitions”,
Nucl. Phys. B525(1998), 117 (hep-th/9801205).

113



[44] D. Garfinkle, G. Horowitz, A. Strominger: “Charged Black Holes in String Theory”,
Phys. Rev. D43(1991), 3140; Erratum, ibid. D45 (1992) 3888.

[45] R. Geroch: “A Method for Generating new Solutions of Einstein’s Equations II”,
J. Math. Phys. 13(1972), 394.

[46] F. Giani, M. Pernici: “N = 2 Supergravity in Ten Dimensions”, Phys. Rev. D30(1984),
325.

[47] G.W. Gibbons: “Antigravitating Black Hole Solitons with Scalar Hair in N = 4 Supergrav-
ity”, Nucl. Phys. B207(1982), 337.
G.W. Gibbons, K. Maeda: “Black Holes and Membranes in Higher Dimensional Theories
with Dilaton Fields”, Nucl. Phys. B298(1988), 741.

[48] G.W. Gibbons, M.B. Green, M.J. Perry: “Instantons and seven-branes in type IIB super-
string theory”, Phys. Lett. B370(1996), 37 (hep-th/9511080).

[49] G.W. Gibbons, R. Kallosh, B. Kol: “Moduli, Scalar Charges and the First Law of Black
Hole Thermodynamics”, Phys. Rev. Lett. 77(1996), 4992 (hep-th/9607108i).

[50] R. Gilmore: “Lie Groups, Lie Algebras and Some of Their Applications”, John Wiley &
Sons, New York (1974).

[51] A. Giveon, M. Porrati, E. Rabinovici: “Target Space Duality in String Theory”, Phys. Rep.
244(1994), 77 (hep-th/9401139).

[52] F. Gliozzi, J. Scherk, D. Olive: “Supersymmetry, supergravity theories and the dual spinor
model”, Nucl. Phys. B122(1977), 253.

[53] M.B. Green, J.H. Schwarz, E. Witten: “Superstring theory, Vols. I&II ”, Cambridge Uni-
versity Press (1987).

[54] M.B. Green, C.M. Hull, P.K. Townsend: “D-p-brane Wess-Zumino Actions, T-Duality and
the Cosmological Constant”, Phys. Lett. B382(1996), 65 (hep-th/9604119).

[55] B.R. Greene, A. Shapere, C. Vafa, S-T. Yau: “Stringy cosmic strings and non-compact
Calabi-Yau manifolds”, Nucl. Phys. B337(1990), 1.

[56] R. Gregory, J.A. Harvey, G. Moore: “Unwinding Strings and T-duality of Kaluza-Klein
and H-Monopoles”, Adv. Theor. Math. Phys. 1(1997), 283 (hep-th/9708086).

[57] A. Hanany, E. Witten: “Type IIB superstrings, BPS monopoles and three-dimensional
gauge dynamics”, Nucl. Phys. B492(1997), 152 (hep-th/9611230).

[58] W. Heisenberg: “Der Teil und das Ganze: Gespräche im Umkreis der Atomphysik”,
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