Métodos Matemáticos de la Física Teórica
 Representations of Finite Groups

I) Given a finite group G and a d-dimensional (unitary) representation Γ, we define the character of the representation by $\chi_{\Gamma}(\mathrm{g})=\operatorname{Tr}(\Gamma(\mathrm{g}))$.

- The character of the unit element is the dimension of the representation: $\chi(\mathrm{e})=d$.
- Equivalent representations have identical characters, i.e. if $\Gamma^{\prime} \sim$ Γ then for all $\mathrm{g} \in \mathrm{G}$ we have $\chi_{\Gamma^{\prime}}(\mathrm{g})=\chi_{\Gamma}(\mathrm{g})$.
- Conjugate element in G have identical character, i.e. if $\mathrm{g}^{\prime} \sim \mathrm{g}$ then $\chi_{\Gamma}\left(\mathrm{g}^{\prime}\right)=\chi_{\Gamma}(\mathrm{g})$.
- For 1-dimensional representations there is no distinction between the characters and the representations, meaning that the characters of 1 -dimensional representations must represent the multiplications in the Cayley table.
II) The number of inequivalent irreps is equal to the number of conjugacy classes.
- Let's assume that there are r irreps, then we can index the different irreps by Γ_{p} where p runs from 0 to $r-1$; the associated characters are then written as $\chi_{p}(\mathrm{~g})$ and the dimension of the irrep d_{p} is $\chi_{p}(\mathrm{e})=d_{p}$.
- By convention Γ_{0} is the trivial representation: for all $g \in G$ we have $\chi_{0}(g)=1$.
- If G is Abelian, then there are ord (G) irreps.
III) We can gather the characters into an ordered table where we plot the character for a given conjugacy class in a given irrep; due to the above results, we'll find a square table such as

Γ_{p}	$\chi(\{\mathrm{e}\})$	$\chi\left(\left\{\mathrm{g}_{1}\right\}\right)$	\ldots	$\chi\left(\left\{\mathrm{g}_{\text {last }}\right\}\right)$
0	1	1	\ldots	1
\vdots	\vdots	\vdots	\vdots	\vdots
r	d_{r}	\ldots	\ldots	\ldots

The above table is called the character system of the group G.
A necessary condition for two finite groups to be isomorphic is for their character systems to be equal; this is, however, not a sufficient condition.
IV) $\sum_{p=0}^{r-1} d_{p}^{2}=\operatorname{ord}(\mathrm{G})$

- If G is Abelian, there are ord (G) irreps, which due to the above result implies that all irreps of an finite Abelian group are 1dimensional.
V) The fundamental ingredient is the orthonormality of unitary irreps which for finite groups reads

$$
\begin{equation*}
\sum_{g \in \mathrm{G}} \overline{\Gamma_{p}(g)^{i}{ }_{j}} \Gamma_{q}(g)^{a}{ }_{b}=\frac{\operatorname{ord}(\mathrm{G})}{d_{p}} \delta_{p q} \delta^{i a} \delta_{j b} . \tag{1}
\end{equation*}
$$

VI) For the characters the above implies

$$
\begin{equation*}
\sum_{g \in \mathrm{G}} \overline{\chi_{p}(g)} \chi_{q}(g)=\operatorname{ord}(\mathrm{G}) \delta_{p q} . \tag{2}
\end{equation*}
$$

VII) The Clebsch-Gordon series reads $\Gamma_{p} \otimes \Gamma_{q} \sim \oplus_{i=1}^{r} N_{p q}{ }^{i} \Gamma_{i}$, where

$$
\begin{equation*}
\operatorname{ord}(\mathrm{G}) N_{p q}{ }^{i}=\sum_{g \in \mathrm{G}} \chi_{p}(g) \chi_{q}(g) \overline{\chi_{i}(g)}, \tag{3}
\end{equation*}
$$

and also

$$
\begin{equation*}
d_{p} d_{q}=\sum_{i=1}^{r} N_{p q}{ }^{i} d_{i} . \tag{4}
\end{equation*}
$$

Example: Consider \mathbb{Z}_{2}. Since this group is Abelian and of order 2, we see that there are only 2 irreps which are furthermore 1-dimensional. The character system then is

Γ	$\chi(\mathrm{e})$	$\chi(\mathrm{b})$
0	1	1
1	1	-1

Checking the orthonormality of the character system is straightforward.
Example: Let us consider our favorite example, namely D_{3} : then we know that $\operatorname{ord}\left(\mathrm{D}_{3}\right)=6$ and that there are 3 conjugacy classes, namely $\{\mathrm{e}\}$, $\left\{a, a^{2}\right\}$ and $\left\{b, a b, a^{2} b\right\}$. From point IV we see that the dimensions of the 3 irreps are such that $d_{0}^{2}+d_{1}^{2}+d_{2}^{2}=6$. But we already know that the trivial representation is always possible and that $d_{0}=1$, which means that $d_{1}^{2}+d_{2}^{2}=5$. The only solution to this equation then is that $d_{1}=1$ and $d_{2}=2$ (let's also introduce the convention that we order the irreps by increasing
dimensionality!). At this point we have determined part of the character system, namely

Γ	$\chi(\{\mathrm{e}\})$	$\chi(\{\mathrm{a}\})$	$\chi(\{\mathrm{b}\})$
0	1	1	1
1	1		
2	2		

We can start filling in the blanc spots by using eq. (2): consider the 1 dimensional irrep Γ_{1}, then taking into account the amount of elements contained in a given conjugacy class we must have $\chi_{1}(\mathrm{e})+2 \chi_{1}(\mathrm{a})+3 \chi_{1}(\mathrm{~b})=0$ or $2 \chi_{1}(\mathrm{a})+3 \chi_{1}(\mathrm{~b})=-1$. But since we are dealing with a 1 -dimensional representation, ${ }^{1}$ the character itself is a representation and so we must have that for instance $\chi_{1}\left(a^{2}\right)=\chi_{1}(a)^{2}$. But since "a" sits in the same conjugacy class as "a" we must have $\chi_{1}\left(\mathrm{a}^{2}\right)=\chi_{1}(\mathrm{a})$, which when combined with the other equation implies that $\chi_{1}(\mathrm{a})=1$. Applying the same reasoning to $\chi_{1}(\mathrm{~b})$ we see that $\chi_{1}(\mathrm{~b})= \pm 1$, and by orthogonality of the characters we see that we must have $\chi_{1}(b)=-1$.

If we impose the orthonormality conditions for Γ_{2} we see that we must satisfy

$$
\begin{aligned}
& 0=2+2 \chi_{2}(\mathrm{a})+3 \chi_{2}(\mathrm{~b}) \\
& 0=2+2 \chi_{2}(\mathrm{a})-3 \chi_{2}(\mathrm{~b}) \\
& 6=4+2 \chi_{2}(\mathrm{a})^{2}+3 \chi_{2}(\mathrm{~b})^{2},
\end{aligned}
$$

whose solution is given by $\chi_{2}(\mathrm{a})=-1$ and $\chi_{2}(\mathrm{~b})=0$. In short, the complete character system is

Γ	$\chi(\{\mathrm{e}\})$	$\chi(\{\mathrm{a}\})$	$\chi(\{\mathrm{b}\})$
0	1	1	1
1	1	1	-1
2	2	-1	0

In this case we can also create the full 2-dimensional representation by putting

$$
\Gamma_{2}(\mathrm{a})=\frac{1}{2}\left(\begin{array}{cc}
-1 & \sqrt{3} \\
-\sqrt{3} & -1
\end{array}\right) \quad, \quad \Gamma_{2}(\mathrm{~b})=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

The non-trivial Clebsch-Gordon series are easily calculated to be

$$
\Gamma_{1} \otimes \Gamma_{1}=\Gamma_{0}, \quad \Gamma_{1} \otimes \Gamma_{2}=\Gamma_{2}, \quad \Gamma_{2} \otimes \Gamma_{2}=\Gamma_{2} \oplus \Gamma_{1} \oplus \Gamma_{0}
$$

[^0]Excercise: Find the character system of D_{4} and find the Clebsch-Gordon series of the highest dimensional representation with itself.

Excercise: In class we introduced the Quaternion Group \mathbb{H} as a finite group of order 8 and the following Cayley table

\mathbb{H}	e	i	j	k	$\overline{\mathrm{e}}$	$\bar{\imath}$	$\bar{\jmath}$	$\overline{\mathrm{k}}$
e	e	i	j	k	$\overline{\mathrm{e}}$	$\bar{\imath}$	$\bar{\jmath}$	k
i	i	$\overline{\mathrm{e}}$	k	$\bar{\jmath}$	$\bar{\imath}$	e	$\overline{\mathrm{k}}$	j
j	j	$\overline{\mathrm{k}}$	$\overline{\mathrm{e}}$	i	$\bar{\jmath}$	k	e	$\bar{\imath}$
k	k	j	$\bar{\imath}$	$\overline{\mathrm{e}}$	k	$\bar{\jmath}$	i	e
$\overline{\mathrm{e}}$	$\overline{\mathrm{e}}$	$\bar{\imath}$	$\bar{\jmath}$	k	e	i	j	k
$\bar{\imath}$	$\bar{\imath}$	e	k	j	i	$\overline{\mathrm{e}}$	k	$\bar{\jmath}$
$\bar{\jmath}$	$\bar{\jmath}$	k	e	$\bar{\imath}$	j	$\overline{\mathrm{k}}$	$\overline{\mathrm{e}}$	i
k	k	$\bar{\jmath}$	i	e	k	j	$\bar{\imath}$	$\overline{\mathrm{e}}$

And we also calculated the conjugacy classes to be $\{\mathrm{e}\},\{\overline{\mathrm{e}}\},\{\mathrm{i}, \bar{\imath}\},\{\mathrm{i}, \bar{\imath}\}$ and $\{\mathrm{k}, \overline{\mathrm{k}}\}$.
a) Construct \mathbb{H} 's character system.
b) Compare \mathbb{H} 's and D_{4} 's character systems. Should they be equal: Can you show that $\mathbb{H} \simeq \mathrm{D}_{4}$ by explicitly constructing the isomorphism?
c) What irrep of \mathbb{H} can be used to faithfully represent Hamilton's quaternions $(1, i, j, k)$?

[^0]: ${ }^{1}$ This in effect is the way how to deduce the 1-dimensional representations: since for 1-dimensional representations there is no difference between the representation and the corresponding character the character must satisfy the Cayley table, which is enough to determine the 1-dimensional representations and therefore also the corresponding characters. The higherdimensional irreps are then deduced by using the orthogonality of the character system.

