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- Motivation: Study the stability of non-singlet baryon    
  vertex-like configurations in ABJM

- How:  Existence of a classical solution + stability analysis 

- Results: 
- Non-singlet stable baryons at  finite ’t Hooft coupling 
- Flat 

(Based on arXiv:1105.0939 [hep-th], JHEP, with M. Picos, K. 
Sfetsos, K. Siampos)

B2 required by Freed-Witten anomaly 
- New higher curvature dielectric couplings

- Probe brane approx:  Valid at strong ’t Hooft coupling

- Dissolve D0’s → Microscopical description:  Valid at
finite ’t Hooft coupling



1.Introduction

AdS4/CFT3 relates the Type IIA superstring on

to the Chern-Simons matter theory with gauge group
U(N)k × U(N)−k known as ABJM.

Good description when 

- IIA weakly curved when k << N

- The string background describes the ’t Hooft limit of
the theory: with fixedN, k → ∞ λ = N/k

Like AdS5/CFT4 it is a strong weak coupling duality, with
’t Hooft coupling :

(large ’t Hooft coupling)

.

3 dimensions → Applications in condensed matter

N1/5 << k

λ = N/k

AdS4 × CP 3

N = 6



CP 3 has ⇒ D2, D4 and D6
particle-like branes wrapping topologically non-trivial cycles

Interpretation in the dual CFT:

- D6 wrapped on the :  Analogous to the baryon vertex
in AdS5 × S5 . 
with N F-strings ending on it ↔ N external quarks on the
boundary of AdS4

CP 3

flux ⇒ Tadpole that has to be cancelledF6

2. Particle-like branes in ABJM

for even qH
q(CP

3) = Z



The baryon vertex in AdS5 × S5

Gauge invariant coupling of N external quarks
Through AdS/CFT external quarks are regarded as endpoints
of F-strings in AdS

Baryon vertex in the gravity side: D5-brane wrapped on the
5-sphere (Witten’98):

SCS = 2π T5

�

R×S5

P [F5] ∧A = N TF1

�

R
dtAt

N charge cancelled by N F-strings ending on the 5-brane

N
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x

x

x
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Vertex

... Quarks

AdS-Boundary



Dual configuration on the CFT side: N Wilson lines ending 
on an epsilon tensor Bound state of N quarks.←→

However, within the gauge/gravity correspondence it is 
possible to construct bound states of quarks with 
(non-singlets)

SCS = 2π T6

�

R×CP 3

P [F6] ∧A = N TF1

�
dtAt

Cancel this charge with the charge induced by the 
endpoints of N open F-strings stretching between the D6
and the boundary of AdS

In AdS4 × CP 3 : A D6-brane wrapped on the :

(Brandhuber, Itzhaki, Sonnenschein, Yankielowitz’98;
Imamura’98)

l l < N

CP 3

Non-singlets?



CP 3 has ⇒ D2, D4 and D6
particle-like branes wrapping topologically non-trivial cycles

Interpretation in the dual CFT:

- D6 wrapped on the :  Analogous to the baryon vertex
in AdS5 × S5 . 
with N F-strings ending on it ↔ N external quarks on the
boundary of AdS4

CP 3

flux ⇒ Tadpole that has to be cancelled

- D2 wrapped on a CP 1 ⊂ CP 3 : ’t Hooft monopole.
fluxF2 ⇒ Tadpole that has to be cancelled with  

F-strings

F6

k Wilson lines cannot end on an epsilon tensorBut

k

2. Particle-like branes in ABJM

for even qH
q(CP

3) = Z



If one forms the symmetric product only the endpoint of the
Wilson lines is observable and the product behaves like a
’t Hooft operator creating one unit of magnetic flux at a
point (ABJM)      ’t Hooft monopole→

- D4 wrapped on a CP 2 ⊂ CP 3: Di-baryon
It does not capture the background fluxes.
Same baryon charge and dimension than di-baryon:

Baryon charge N, mD4L = N ⇒ ∆ =
mD4L

2
=

N

2
⇒ Dual configuration composed of N chirals

O
D4 = �i1...iN �

j1...jNA
i1
j1
. . . A

iN
jN

Di-baryon operator:

These configurations admit a natural generalization by 
allowing non-trivial worldvolume gauge fluxes:



 

flux and 
F-strings ending on it :

F2

SCS =
1

2
(2π)2T4

�

R×CP 2

P [F2] ∧ F ∧A =
kN
2

TF1

�
dtAt

Candidates for holographic anyons in ABJM (Kawamoto, Lin’09)

(anyonic phase associated to the F1 attached to the baryons
 surrounding the D0’s dissolved)

A non-trivial flux adds lower dim brane charges and modifies 
the way the branes capture the background fluxes. 

F = NJ the D4 captures the 
develops a tadpole ⇒

Baryon vertex-like configurations→

The magnetic flux modifies the dynamics as well:

For example, for

3. Add a magnetic flux

(Gutiérrez, Y.L., Rodríguez-Gómez’10)



In the probe brane approx, with S = SDp + SqF1,

Consider a uniform distribution of strings on a shell
with 
Non-SUSY but we can ignore the backreaction

p = 2, 4, 6

CP
p
2

F = NJ

,

SDp = −Qp

�
dt

2ρ

L
, Qp =

Tp

gs
Vol(CP

p
2 ) (L4 + (2πN )2)

p
4

4. Gauge/gravity calculation of the energy

 :

(Brandhuber, Itzhaki, Sonnenschein, Yankielowitz’98; Imamura’98;
Maldacena’98)

τ = t

σ = r

SqTF1 = −q TF1

�
dt dr

�
16ρ4

L4
+ ρ�2

ρ = ρ(r)where we have taken and 



Vertex

... Quarks

AdS-Boundary

ρ(0) = ρ0

ρ(l) = ∞

symmetric distribution on a circle of radius Radially↔ l



In fact, since the D4 wraps a non-spin manifold if must carry
FFW = J due to the Freed-Witten anomaly (Freed, Witten’99)

⇒ A flat half-integer has to be switched on, such that

Qp =
Tp

gs
Vol(CP

p
2 ) (L4 + (2π)2(N − 1)2)

p
4 for p = 2, 6

B2

For the D6 there are new CS terms:
�

R×CP 3

P [F2] ∧B2 ∧B2 ∧A

�

R×CP 3

P [F2] ∧ F ∧B2 ∧A

that modify the number of F-strings. First is cancelled with

SD6
h.c. =

3

2
(2π)5 T6

�
C1 ∧ F ∧

�
Â(T )

Â(N)

(Aharony, Hashimoto,
Hirano, Ouyang’09)

,

F = FFW +
1

2π
B2 = 0

Then



In the presence of a magnetic flux, B2 �= 0 is key in order to
have an integer number of F1’s attached to the vertex:

q

k

k
N
2

N + k
N (N − 2)

8

D-brane

D2

D4

D6



In the probe brane approx, with S = SDp + SqF1

Bulk equation of motion:
ρ4�

16ρ4

L4 + ρ�2
= c

Boundary equation of motion: ρ�0�
16ρ4

0
L4 + ρ�20

=
2Qp

Lq TF1

,

Consider a uniform distribution of strings on a shell
with 
Non-SUSY but we can ignore the backreaction

p = 2, 4, 6

CP
p
2

F = NJ

SDp = −Qp

�
dt

2ρ

L
, Qp =

Tp

gs
Vol(CP

p
2 ) (L4 + (2πN )2)

p
4

4. Gauge/gravity calculation of the energy

 :

SqTF1 = −q TF1

�
dt dr

�
16ρ4

L4
+ ρ�2



Define
�
1− β2 =

2Qp

Lq TF1
with β ∈ [0, 1]

The two equations can be combined into:

Integrating:     Size of the configuration:

ρ4�
16ρ4

L4 + ρ�2
=

1

4
β ρ20 L

2

� =
L2

4ρ0

� ∞

1
dz

β

z2
�

z4 − β2

Same dependence on L2 in AdS5 × S5 : Prediction of AdS/CFT
for the strong coupling behavior of the CS theory

Same form for the baryon vertex in AdS5 × S5



On-shell energy:

E = EDp + EqF1 = qTF1ρ0
��

1− β2 +

� ∞

1
dz

z2�
z4 − β2

�

Binding energy:

where we have substracted the energy of the constituents
(when the brane is located in ρ0 = 0 the strings become
radial and correspond to free quarks)

Ebin = q TF1 ρ0
��

1− β2 +

� ∞

1
dz

� z2�
z4 − β2

− 1
�
− 1

�

- Ebin negative and decreases monotonically with 
- Ebin = 0 for 

β

β = 0 (q free radial strings stretching from
ρ0 to ∞ plus a Dp-brane at ρ0 ) (only for non-zero
magnetic flux)



As a function of � :

Ebin = −f(β)
(gsN)2/5

�
f(β) ≥ 0with

⇒ - The configuration is stable
- Ebin ∼ 1/� dictated by conformal invariance

- As a function of the ’t Hooft coupling, λ = N/k ,
Ebin ∼

√
λ , as in Non-trivial prediction for the

non-perturbative regime of the CS theory 
AdS5 ⇒

(Mariño, Putrov’09)



q

k

k
N
2

N + k
N (N − 2)

8

D-brane

D2

D4

D6Binding energy per string
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5. Reduce the number of fundamental strings

In 
  

AdS5 × S5

of quarks 5N/8 ≤ l ≤ N

Stable against fluctuations for

In AdS4 × CP 3 :

(non-singlet)

0.813N ≤ l ≤ N
(Sfetsos, Siampos’08)

(Brandhuber, Itzhaki, Sonnenschein, Yankielowitz’98;
 Imamura’98)

: Baryon vertex classical solutions with number



2Qp

Lq TF1
≤ 1 ⇒ Bound on the magnetic flux

parameter space bounded by the values for which the 
baryon vertex reduces to free quarks
(l,N )

5.1. The classical solution

The boundary equation of motion changes:

ρ�0�
16ρ4

0
L4 + ρ�20

=
2Qp

L l TF1
+

q − l

l
≤ 1

⇒ q

2
(1 +

�
1− β2) ≤ l ≤ q



5.2. Stability analysis

Important in establishing the physical parameter space
(Avramis, Sfetsos, Siampos’06-08)

Ansatz for the fluctuations (for the strings):

δxµ(t, ρ) = δxµ(ρ)e−iωt for xµ = r, θ

Instabilities emerge from longitudinal fluctuations of the
strings

Expand the Nambu-Goto action to quadratic order and study
the zero mode problem ↔ Critical curve in the parametric
space separating the stable and unstable regions

Stability reduced to an eigenvalue problem of the general
Sturm-Liouville type



Bound for the number of F-strings coming from stability:

l ≥ q

1 + γc
(1 +

�
1− β2)

More restrictive than the bound imposed by the existence
of a classical solution:

l ≥ q

2
(1 +

�
1− β2)

γc = 0.538

⇒ Non-singlet states exist for λ >> 1

Can we reach the finite ’t Hooft coupling region?

Microscopical description in terms of fuzzy CP
p
2 built up out

of n dielectric D0-branes valid when N << n
4
p k



6. The microscopical description

A non-trivial magnetic flux induces D0-brane charge on the Dp
Complementary description in terms of multiple D0
expanded into fuzzy by Myers dielectric effectCP

p
2

- Macroscopical description valid in the sugra limit: 

- Micro when 
Vol(CP

p
2 )

n
<< lps ⇔ N << n

4
p k

L >> 1 ⇔ N >> k

Complementary for finite n
Should agree in the large n limit

⇒ It allows to explore the region of finite 

⇒

λ



- Matrix level definition ↔ Fuzzy :

- : coset manifold SU(p2 + 1)

U(p2 )
. Submanifold of R

p2

4 +p

determined by the constraints:
p2

4 +p�

i=1

(xi)2 = 1 ,

p2

4 +p�

j,k=1

dijkxjxk =
p
2 − 1

�p
4 (

p
2 + 1)

xi

dimensional manifold

Fubini-Study metric of the CP
p
2 given by

ds2
CP

p
2
=

p

4(p2 + 1)

p2

4 +p�

i=1

(dxi)2

CP
p
2

→ p

CP
p
2

6.1. Fuzzy CP

T i : generators of SU(
p

2
+ 1) in the (m, 0) irrep ,Xi =

1√
Cn

T i



Substituting in Myers action for D0-branes:

for large n

SDBI
nD0 exactly reproduces the macroscopical result:

SDp = −Qp

�
dt

2ρ

L
, Qp =

Tp

gs
Vol(CP

p
2 ) (L4 + (2πN )2)

p
4

and

n = dim(m, 0) , n =
N p

2

2
p
2 (p2 )!

+ . . . ⇒ m ∼ N
2

SDBI = −
�

STr
�
e−φ

�
|det

�
P [Eµν + Eµi(Q−1 − δ)ijE

jkEkν ]
�
detQ|

�

Qi
j = δij +

i

2π
[Xi, Xk]Ekj

⇒ SDBI
nD0 = − n

gs

�
1 +

L4

16π2m(m+ p
2 + 1)

� p
4

�
dt

2ρ

L



CS action for coincident branes:

SCS =

�
STr

�
P
�
e

i
2π (iX iX)

�

q

Cq eB2

�
e2πF

�

Dependence of the background potentials on the non-Abelian
scalars:

Cq(t,X) = Cq(t) +Xk∂kCq(t) +
1

2
X lXk∂l∂kCq(t) + . . .

For example:

SCS2 = − i

(2π)2

�
STr{(iX iX)3F6 ∧A} =

= N
�
m(m+ 4)

�−3/2 (m+ 3)!

m!

�
dtAt → N

�
dtAt for m >> 1

6.2. The F-strings from the Dp to the boundary of AdS



SCS1 = i

�
STr{(iX iX)F2 ∧A} gives the F1 charge prop. to k

Introduced macroscopically to cancel the flux of the Freed-

F = FFW +
1

2π
B2 = 0Witten vector field, such that

Microscopically:  We should find an obstacle to the expansion
fuzzy CP 2 when B2 = 0 .

However, FFW does not couple in the action for D0

How precisely B2 �= 0 allows the construction of the CP 2 ?

of the D0 into a

6.3. The flat half-integer NS-NS 2-form



Macroscopically       modifies the BI action such thatB2

N → N − 1 (for the D2 and D6)

⇒ Microscopically we should include 1

m
corrections

To this order we find for B2 = 0

N = 2m+
p

2
+ 1 for p=2,6⇒ N ∈ 2Z

Whereas for B2 �= 0

ND2,D6 = 2m+
p

2
+ 1

ND4 = 2m+
p

2

and N → N − 1

⇒ N ∈ 2Z for all p

⇒ B2 �= 0 to have N properly quantized

:

:



SCS3 = − 1

2π

�
STr

�
(iX iX)2F2 ∧B2 ∧A

�
Confirmed by the CS action (include as well

)

SCS4 = − i

2

1

(2π)2

�
STr

�
(iX iX)3F2 ∧B2 ∧B2 ∧A

�

Higher curvature couplings are needed in order to cancel
the contribution of

Sh.c. = − 1

2(2π)2

�

R
P [(iX iX)2C1 ∧

�
Â(T )

Â(N)
] =

= − i

(2π)2

�

R
[(iX iX)3(F2 ∧

�
Â(T )

Â(N)
)]A



In general:

Sh.c. = Tp

�
dp+1ξ STr

�
P

�
e

i
2π (iX iX)

�

q

Cq e
B2

�
Â(T )

Â(N)

�
e2πF

�

p+1

⇒ New dielectric couplings of RR-fields to derivatives of
B2 and the metric through T-duality 

(Garousi’10)(Becker, Guo, Robbins’10)

Similar stability analysis



7. Conclusions

Stability of baryon vertex like configurations in :

- Condition for existence of a classical solution:

l ≥ q

2
(1 +

�
1− β2)

- Stable when l ≥ q

1 + γc
(1 +

�
1− β2) γc = 0.538

More restrictive

- Probe brane approx ⇒ Valid in the SUGRA limit λ >> 1

- For non-zero magnetic flux: D0-brane charge dissolved ⇒

Alternative description in terms of D0-branes expanded
fuzzy by Myers dielectric effectinto

⇒

AdS4 × CP 3

CP
p
2



Microscopical description valid for finite ’t Hooft coupling

- Expansion caused by a purely gravitational dielectric effect

- Non-singlet classical stable solutions for finite λ

- Prediction of new dielectric higher curvature couplings, with
further implications through T and S duality 

(Garousi’10)(Becker, Guo, Robbins’10)

- CS terms indicate the need to introduce F-strings



8. Open questions

- New dielectric higher curvature couplings confirmed from
  string amplitudes?  

N → 0 ?- Can we extrapolate the micro results to

- What happens in theories with less susy, like AdS5 × T 1,1 ?

- Include the backreaction ←→ Look for supersymmetric

- Explore the finite temperature case

spike solutions (partial studies in Kawamoto, Lin’09) 

Marginal bound states?

Non-singlet states?

Thanks!


