ABJM Baryon Stability at Finite 't Hooft Coupling

Yolanda Lozano

Universidad de Oviedo, October 2011

- Motivation: Study the stability of non-singlet baryon vertex-like configurations in $A B J M$
- How: Existence of a classical solution + stability analysis
- Probe brane approx: Valid at strong 't Hooft coupling
- Dissolve D0's \rightarrow Microscopical description: Valid at finite 't Hooft coupling
- Results:
- Non-singlet stable baryons at finite 't Hooft coupling
- Flat B_{2} required by Freed-Witten anomaly
- New higher curvature dielectric couplings
(Based on arXiv:II05.0939 [hep-th], JHEP, with M. Picos, K. Sfetsos, K. Siampos)

I.Introduction

$A d S_{4} / C F T_{3}$ relates the Type IIA superstring on $A d S_{4} \times C P^{3}$ to the $\mathcal{N}=6$ Chern-Simons matter theory with gauge group $U(N)_{k} \times U(N)_{-k}$ known as ABJM.

- Good description when $N^{1 / 5} \ll k$.
- Like $A d S_{5} / C F T_{4}$ it is a strong weak coupling duality, with 't Hooft coupling $\lambda=N / k$:
- The string background describes the 't Hooft limit of the theory: $N, k \rightarrow \infty$ with $\lambda=N / k$ fixed
- IIA weakly curved when $k \ll N$ (large 't Hooft coupling)
- 3 dimensions \rightarrow Applications in condensed matter

2. Particle-like branes in $A B J M$

$C P^{3}$ has $H^{q}\left(C P^{3}\right)=\mathbb{Z}$ for even $q \Rightarrow \mathrm{D} 2$, D4 and D6 particle-like branes wrapping topologically non-trivial cycles

Interpretation in the dual CFT:

- D6 wrapped on the $C P^{3}$: Analogous to the baryon vertex in $A d S_{5} \times S^{5} . F_{6}$ flux \Rightarrow Tadpole that has to be cancelled with N F-strings ending on it $\leftrightarrow N$ external quarks on the boundary of $A d S_{4}$

The baryon vertex in $A d S_{5} \times S^{5}$

Gauge invariant coupling of N external quarks
Through AdS/CFT external quarks are regarded as endpoints of F-strings in AdS

Baryon vertex in the gravity side: D5-brane wrapped on the 5 -sphere (Witten'98):

$$
S_{C S}=2 \pi T_{5} \int_{\mathbb{R} \times S^{5}} P\left[F_{5}\right] \wedge A=N T_{F 1} \int_{\mathbb{R}} d t A_{t}
$$

N charge cancelled by N F-strings ending on the 5-brane

Dual configuration on the CFT side: NWilson lines ending on an epsilon tensor \longleftrightarrow Bound state of N quarks.

However, within the gauge/gravity correspondence it is possible to construct bound states of l quarks with $l<N$ (non-singlets) (Brandhuber, Itzhaki, Sonnenschein, Yankielowitz'98; Imamura'98)
In $A d S_{4} \times C P^{3}$: A D6-brane wrapped on the $C P^{3}$:

$$
S_{C S}=2 \pi T_{6} \int_{\mathbb{R} \times C P^{3}} P\left[F_{6}\right] \wedge A=N T_{F 1} \int d t A_{t}
$$

Cancel this charge with the charge induced by the endpoints of N open F -strings stretching between the D6 and the boundary of AdS

Non-singlets?

2. Particle-like branes in ABJM

$C P^{3}$ has $H^{q}\left(C P^{3}\right)=\mathbb{Z}$ for even $q \Rightarrow \mathrm{D} 2$, D4 and D6 particle-like branes wrapping topologically non-trivial cycles

Interpretation in the dual CFT:

- D6 wrapped on the $C P^{3}$: Analogous to the baryon vertex in $A d S_{5} \times S^{5} . F_{6}$ flux \Rightarrow Tadpole that has to be cancelled with N F-strings ending on it $\leftrightarrow \mathrm{N}$ external quarks on the boundary of $A d S_{4}$
- D2 wrapped on a $C P^{1} \subset C P^{3}$:'t Hooft monopole. F_{2} flux \Rightarrow Tadpole that has to be cancelled with k F-strings

But k Wilson lines cannot end on an epsilon tensor

If one forms the symmetric product only the endpoint of the Wilson lines is observable and the product behaves like a 't Hooft operator creating one unit of magnetic flux at a point (ABJM) \rightarrow 't Hooft monopole

- D4 wrapped on a $C P^{2} \subset C P^{3}$: Di-baryon

It does not capture the background fluxes.
Same baryon charge and dimension than di-baryon:
Baryon charge $\mathrm{N}, m_{D 4} L=N \Rightarrow \Delta=\frac{m_{D 4} L}{2}=\frac{N}{2}$
\Rightarrow Dual configuration composed of N chirals
Di-baryon operator: $O^{D 4}=\epsilon_{i_{1} \ldots i_{N}} \epsilon^{j_{1} \ldots j_{N}} A_{j_{1}}^{i_{1}} \ldots A_{j_{N}}^{i_{N}}$
These configurations admit a natural generalization by allowing non-trivial worldvolume gauge fluxes:

3. Add a magnetic flux

(Gutiérrez,Y.L., Rodríguez-Gómez’10)
Candidates for holographic anyons in ABJM (Kawamoto, Lin'09) (anyonic phase associated to the FI attached to the baryons surrounding the DO's dissolved)

A non-trivial flux adds lower dim brane charges and modifies the way the branes capture the background fluxes.

For example, for $F=\mathcal{N} J$ the D4 captures the F_{2} flux and develops a tadpole \Rightarrow F-strings ending on it :

$$
S_{C S}=\frac{1}{2}(2 \pi)^{2} T_{4} \int_{\mathbb{R} \times C P^{2}} P\left[F_{2}\right] \wedge F \wedge A=\frac{k \mathcal{N}}{2} T_{F 1} \int d t A_{t}
$$

\rightarrow Baryon vertex-like configurations
The magnetic flux modifies the dynamics as well:

4. Gauge/gravity calculation of the energy

(Brandhuber, Itzhaki, Sonnenschein, Yankielowitz'98; Imamura'98; Maldacena'98)
Consider a uniform distribution of strings on a $C P^{\frac{p}{2}}$ shell with $p=2,4,6$
Non-SUSY but we can ignore the backreaction
In the probe brane approx, with $F=\mathcal{N} J, S=S_{D p}+S_{q F 1}$:

$$
\begin{aligned}
& S_{D p}=-Q_{p} \int d t \frac{2 \rho}{L}, \quad Q_{p}=\frac{T_{p}}{g_{s}} \operatorname{Vol}\left(C P^{\frac{p}{2}}\right)\left(L^{4}+(2 \pi \mathcal{N})^{2}\right)^{\frac{p}{4}} \\
& S_{q T_{F 1}}=-q T_{F 1} \int d t d r \sqrt{\frac{16 \rho^{4}}{L^{4}}+\rho^{\prime 2}}
\end{aligned}
$$

where we have taken $\tau=t$ and $\rho=\rho(r)$

$$
\sigma=r
$$

\leftrightarrow Radially symmetric distribution on a circle of radius l

$$
\begin{aligned}
\rho(0) & =\rho_{0} \\
\rho(l) & =\infty
\end{aligned}
$$

In fact, since the D4 wraps a non-spin manifold if must carry $F_{F W}=J$ due to the Freed-Witten anomaly (Freed,Witten'99)
\Rightarrow A flat half-integer B_{2} has to be switched on, such that

$$
\mathcal{F}=F_{F W}+\frac{1}{2 \pi} B_{2}=0
$$

Then $Q_{p}=\frac{T_{p}}{g_{s}} \operatorname{Vol}\left(C P^{\frac{p}{2}}\right)\left(L^{4}+(2 \pi)^{2}(\mathcal{N}-1)^{2}\right)^{\frac{p}{4}}$ for $p=2,6$
For the D6 there are new CS terms:
$\int_{\mathbb{R} \times C P^{3}} P\left[F_{2}\right] \wedge B_{2} \wedge B_{2} \wedge A, \quad \int_{\mathbb{R} \times C P^{3}} P\left[F_{2}\right] \wedge F \wedge B_{2} \wedge A$
that modify the number of F -strings. First is cancelled with

$$
S_{h . c .}^{D 6}=\frac{3}{2}(2 \pi)^{5} T_{6} \int C_{1} \wedge F \wedge \sqrt{\frac{\hat{A}(T)}{\hat{A}(N)}}
$$

(Aharony, Hashimoto, Hirano, Ouyang'09)

In the presence of a magnetic flux, $B_{2} \neq 0$ is key in order to have an integer number of FI's attached to the vertex:

D-brane	q
D2	k
D4	$k \frac{\mathcal{N}}{2}$
D6	$N+k \frac{\mathcal{N}(\mathcal{N}-2)}{8}$

4. Gauge/gravity calculation of the energy

Consider a uniform distribution of strings on a $C P^{\frac{p}{2}}$ shell with $p=2,4,6$
Non-SUSY but we can ignore the backreaction
In the probe brane approx, with $F=\mathcal{N} J, S=S_{D p}+S_{q F 1}$:

$$
\begin{aligned}
& S_{D p}=-Q_{p} \int d t \frac{2 \rho}{L}, \quad Q_{p}=\frac{T_{p}}{g_{s}} \operatorname{Vol}\left(C P^{\frac{p}{2}}\right)\left(L^{4}+(2 \pi \mathcal{N})^{2}\right)^{\frac{p}{4}} \\
& S_{q T_{F 1}}=-q T_{F 1} \int d t d r \sqrt{\frac{16 \rho^{4}}{L^{4}}+\rho^{\prime 2}}
\end{aligned}
$$

Bulk equation of motion: $\frac{\rho^{4}}{\sqrt{\frac{16 \rho^{4}}{L^{4}}+\rho^{\prime 2}}}=c$
Boundary equation of motion: $\frac{\rho_{0}^{\prime}}{\sqrt{\frac{16 \rho_{0}^{4}}{L^{4}}+\rho_{0}^{\prime 2}}}=\frac{2 Q_{p}}{L q T_{F_{1}}}$

Define $\sqrt{1-\beta^{2}}=\frac{2 Q_{p}}{L q T_{F 1}}$ with $\beta \in[0,1]$
The two equations can be combined into:

$$
\frac{\rho^{4}}{\sqrt{\frac{16 \rho^{4}}{L^{4}}+\rho^{\prime 2}}}=\frac{1}{4} \beta \rho_{0}^{2} L^{2}
$$

Integrating: Size of the configuration:

$$
\ell=\frac{L^{2}}{4 \rho_{0}} \int_{1}^{\infty} d z \frac{\beta}{z^{2} \sqrt{z^{4}-\beta^{2}}}
$$

Same form for the baryon vertex in $A d S_{5} \times S^{5}$
Same dependence on L^{2} in $A d S_{5} \times S^{5}$: Prediction of AdS/CFT for the strong coupling behavior of the CS theory

On-shell energy:

$$
E=E_{D p}+E_{q F 1}=q T_{F_{1}} \rho_{0}\left(\sqrt{1-\beta^{2}}+\int_{1}^{\infty} d z \frac{z^{2}}{\sqrt{z^{4}-\beta^{2}}}\right)
$$

Binding energy:

$$
E_{\mathrm{bin}}=q T_{F_{1}} \rho_{0}\left(\sqrt{1-\beta^{2}}+\int_{1}^{\infty} d z\left[\frac{z^{2}}{\sqrt{z^{4}-\beta^{2}}}-1\right]-1\right)
$$

where we have substracted the energy of the constituents (when the brane is located in $\rho_{0}=0$ the strings become radial and correspond to free quarks)

- $E_{\text {bin }}$ negative and decreases monotonically with β
- $E_{\mathrm{bin}}=0$ for $\beta=0$ (q free radial strings stretching from ρ_{0} to ∞ plus a Dp-brane at ρ_{0}) (only for non-zero magnetic flux)

As a function of ℓ :

$$
E_{\mathrm{bin}}=-f(\beta) \frac{\left(g_{s} N\right)^{2 / 5}}{\ell} \quad \text { with } \quad f(\beta) \geq 0
$$

\Rightarrow - The configuration is stable

- $E_{\text {bin }} \sim 1 / \ell$ dictated by conformal invariance
- As a function of the 't Hooft coupling, $\lambda=N / k$, $E_{\text {bin }} \sim \sqrt{\lambda}$, as in $A d S_{5} \Rightarrow$ Non-trivial prediction for the non-perturbative regime of the CS theory
(Mariño, Putrov'09)
$\frac{2 Q_{p}}{L q T_{F 1}} \leq 1 \Rightarrow$ Bound on the magnetic flux

Binding energy per string

q : Number of strings

D-brane	q
D2	k
D4	$k \frac{\mathcal{N}}{2}$
D6	$N+k \frac{\mathcal{N}(\mathcal{N}-2)}{8}$

5. Reduce the number of fundamental strings

In $A d S_{5} \times S^{5}$: Baryon vertex classical solutions with number of quarks $5 N / 8 \leq l \leq N$ (non-singlet)
(Brandhuber, Itzhaki, Sonnenschein, Yankielowitz'98; Imamura'98)
Stable against fluctuations for $0.813 N \leq l \leq N$ (Sfetsos, Siampos'08)

In $A d S_{4} \times C P^{3}$:

5.I.The classical solution

The boundary equation of motion changes:

$$
\begin{array}{r}
\frac{\rho_{0}^{\prime}}{\sqrt{\frac{16 \rho_{0}^{4}}{L^{4}}+\rho_{0}^{\prime 2}}}=\frac{2 Q_{p}}{L l T_{F 1}}+\frac{q-l}{l} \leq 1 \\
\Rightarrow \frac{q}{2}\left(1+\sqrt{1-\beta^{2}}\right) \leq l \leq q \\
\frac{2 Q_{p}}{L q T_{F 1}} \leq 1 \Rightarrow \text { Bound on the magnetic flux }
\end{array}
$$

(l, \mathcal{N}) parameter space bounded by the values for which the baryon vertex reduces to free quarks

5.2. Stability analysis

Important in establishing the physical parameter space (Avramis, Sfetsos, Siampos'06-08)

Ansatz for the fluctuations (for the strings):

$$
\delta x^{\mu}(t, \rho)=\delta x^{\mu}(\rho) e^{-i \omega t} \quad \text { for } \quad x^{\mu}=r, \theta
$$

Expand the Nambu-Goto action to quadratic order and study the zero mode problem \leftrightarrow Critical curve in the parametric space separating the stable and unstable regions

Stability reduced to an eigenvalue problem of the general Sturm-Liouville type

Instabilities emerge from longitudinal fluctuations of the strings

Bound for the number of F-strings coming from stability:

$$
l \geq \frac{q}{1+\gamma_{c}}\left(1+\sqrt{1-\beta^{2}}\right) \quad \gamma_{c}=0.538
$$

More restrictive than the bound imposed by the existence of a classical solution:

$$
l \geq \frac{q}{2}\left(1+\sqrt{1-\beta^{2}}\right)
$$

\Rightarrow Non-singlet states exist for $\lambda \gg 1$
Can we reach the finite 't Hooft coupling region?
Microscopical description in terms of fuzzy $C P^{\frac{p}{2}}$ built up out of n dielectric D0-branes valid when $N \ll n^{\frac{4}{p}} k$

6.The microscopical description

A non-trivial magnetic flux induces D0-brane charge on the Dp
\Rightarrow Complementary description in terms of multiple D0 expanded into fuzzy $C P^{\frac{p}{2}}$ by Myers dielectric effect

- Macroscopical description valid in the sugra limit:

$$
L \gg 1 \Leftrightarrow N \gg k
$$

- Micro when

$$
\frac{\operatorname{Vol}\left(C P^{\frac{p}{2}}\right)}{n} \ll l_{s}^{p} \Leftrightarrow N \ll n^{\frac{4}{p}} k
$$

\Rightarrow It allows to explore the region of finite λ
Complementary for finite n
Should agree in the large n limit

6.1. Fuzzy CP

- $C P^{\frac{p}{2}}$: coset manifold $\frac{S U\left(\frac{p}{2}+1\right)}{U\left(\frac{p}{2}\right)}$. Submanifold of $\mathbb{R}^{\frac{p^{2}}{4}+p}$ determined by the constraints:

$$
\sum_{i=1}^{\frac{p^{2}}{4}+p}\left(x^{i}\right)^{2}=1, \quad \sum_{j, k=1}^{\frac{p^{2}}{4}+p} d^{i j k} x^{j} x^{k}=\frac{\frac{p}{2}-1}{\sqrt{\frac{p}{4}\left(\frac{p}{2}+1\right)}} x^{i}
$$

$\rightarrow p$ dimensional manifold
Fubini-Study metric of the $C_{2} P^{\frac{p}{2}}$ given by

$$
d s_{C P^{\frac{p}{2}}}^{2}=\frac{p}{4\left(\frac{p}{2}+1\right)} \sum_{i=1}^{\frac{p^{2}}{4}+p}\left(d x^{i}\right)^{2}
$$

- Matrix level definition \leftrightarrow Fuzzy $C P^{\frac{p}{2}}$:
$X^{i}=\frac{1}{\sqrt{C_{n}}} T^{i}, T^{i}:$ generators of $S U\left(\frac{p}{2}+1\right)$ in the $(m, 0)$ irrep

Substituting in Myers action for D0-branes:

$$
\begin{gathered}
S_{D B I}=-\int \operatorname{STr}\left\{e^{-\phi} \sqrt{\left|\operatorname{det}\left(P\left[E_{\mu \nu}+E_{\mu i}\left(Q^{-1}-\delta\right)_{j}^{i} E^{j k} E_{k \nu}\right]\right) \operatorname{det} Q\right|}\right\} \\
\quad Q_{j}^{i}=\delta_{j}^{i}+\frac{i}{2 \pi}\left[X^{i}, X^{k}\right] E_{k j} \\
\Rightarrow \quad S_{n D 0}^{D B I}=-\frac{n}{g_{s}}\left(1+\frac{L^{4}}{16 \pi^{2} m\left(m+\frac{p}{2}+1\right)}\right)^{\frac{p}{4}} \int d t \frac{2 \rho}{L} \\
n=\operatorname{dim}(m, 0), n=\frac{\mathcal{N}^{\frac{p}{2}}}{2^{\frac{p}{2}}\left(\frac{p}{2}\right)!}+\ldots \Rightarrow m \sim \frac{\mathcal{N}}{2} \text { for large } n
\end{gathered}
$$

and $S_{n D 0}^{D B I}$ exactly reproduces the macroscopical result:

$$
S_{D p}=-Q_{p} \int d t \frac{2 \rho}{L}, \quad Q_{p}=\frac{T_{p}}{g_{s}} \operatorname{Vol}\left(C P^{\frac{p}{2}}\right)\left(L^{4}+(2 \pi \mathcal{N})^{2}\right)^{\frac{p}{4}}
$$

6.2. The F-strings from the Dp to the boundary of AdS

CS action for coincident branes:

$$
S_{C S}=\int \operatorname{STr}\left\{P\left(e^{\frac{i}{2 \pi}\left(i_{X} i_{X}\right)} \sum_{q} C_{q} e^{B_{2}}\right) e^{2 \pi F}\right\}
$$

Dependence of the background potentials on the non-Abelian scalars:

$$
C_{q}(t, X)=C_{q}(t)+X^{k} \partial_{k} C_{q}(t)+\frac{1}{2} X^{l} X^{k} \partial_{l} \partial_{k} C_{q}(t)+\ldots
$$

For example:

$$
\begin{gathered}
S_{C S_{2}}=-\frac{i}{(2 \pi)^{2}} \int \operatorname{STr}\left\{\left(i_{X} i_{X}\right)^{3} F_{6} \wedge A\right\}= \\
=N(m(m+4))^{-3 / 2} \frac{(m+3)!}{m!} \int d t A_{t} \rightarrow N \int d t A_{t} \text { for } m \gg 1
\end{gathered}
$$

$S_{C S_{1}}=i \int S \operatorname{Tr}\left\{\left(i_{X} i_{X}\right) F_{2} \wedge A\right\}$ gives the FI charge prop. to k

6.3.The flat half-integer NS-NS 2-form

Introduced macroscopically to cancel the flux of the FreedWitten vector field, such that $\mathcal{F}=F_{F W}+\frac{1}{2 \pi} B_{2}=0$

Microscopically: We should find an obstacle to the expansion of the D0 into a fuzzy $C P^{2}$ when $B_{2}=0$.

However, $F_{F W}$ does not couple in the action for D0

How precisely $B_{2} \neq 0$ allows the construction of the $C P^{2}$?

Macroscopically B_{2} modifies the Bl action such that $\mathcal{N} \rightarrow \mathcal{N}-1$ (for the D2 and D6)
\Rightarrow Microscopically we should include $\frac{1}{m}$ corrections
To this order we find for $B_{2}=0$:
$\mathcal{N}=2 m+\frac{p}{2}+1 \Rightarrow \mathcal{N} \in 2 \mathbb{Z}$ for $p=2,6$
Whereas for $B_{2} \neq 0$:
$\mathcal{N}_{D 2, D 6}=2 m+\frac{p}{2}+1$ and $\mathcal{N} \rightarrow \mathcal{N}-1$
$\mathcal{N}_{D 4}=2 m+\frac{p}{2} \quad \Rightarrow \quad \mathcal{N} \in 2 \mathbb{Z} \quad$ for all p
$\Rightarrow B_{2} \neq 0$ to have \mathcal{N} properly quantized

Confirmed by the CS action (include as well

$$
\left.S_{C S_{3}}=-\frac{1}{2 \pi} \int \operatorname{STr}\left\{\left(i_{X} i_{X}\right)^{2} F_{2} \wedge B_{2} \wedge A\right\}\right)
$$

Higher curvature couplings are needed in order to cancel the contribution of

$$
\begin{aligned}
S_{C S_{4}} & =-\frac{i}{2} \frac{1}{(2 \pi)^{2}} \int \operatorname{STr}\left\{\left(i_{X} i_{X}\right)^{3} F_{2} \wedge B_{2} \wedge B_{2} \wedge A\right\} \\
S_{\text {h.c. }} & =-\frac{1}{2(2 \pi)^{2}} \int_{\mathbb{R}} P\left[\left(i_{X} i_{X}\right)^{2} C_{1} \wedge \sqrt{\frac{\hat{A}(T)}{\hat{A}(N)}}\right]= \\
& =-\frac{i}{(2 \pi)^{2}} \int_{\mathbb{R}}\left[\left(i_{X} i_{X}\right)^{3}\left(F_{2} \wedge \sqrt{\frac{\hat{A}(T)}{\hat{A}(N)}}\right)\right] A
\end{aligned}
$$

In general:

$S_{h . c .}=T_{p} \int d^{p+1} \xi \operatorname{STr}\left[P\left(e^{\frac{i}{2 \pi}\left(i_{X} i_{X}\right)} \sum_{q} C_{q} e^{B_{2}} \sqrt{\frac{\hat{A}(T)}{\hat{A}(N)}}\right) e^{2 \pi F}\right]_{p+1}$
\Rightarrow New dielectric couplings of RR-fields to derivatives of B_{2} and the metric through T-duality
(Becker, Guo, Robbins'l0) (Garousi'l0)
Similar stability analysis

7. Conclusions

Stability of baryon vertex like configurations in $A d S_{4} \times C P^{3}$:

- Condition for existence of a classical solution:

$$
l \geq \frac{q}{2}\left(1+\sqrt{1-\beta^{2}}\right)
$$

- Stable when $l \geq \frac{q}{1+\gamma_{c}}\left(1+\sqrt{1-\beta^{2}}\right) \quad \gamma_{c}=0.538$
\Rightarrow More restrictive
- Probe brane approx \Rightarrow Valid in the SUGRA limit $\lambda \gg 1$
- For non-zero magnetic flux: D0-brane charge dissolved \Rightarrow

Alternative description in terms of D0-branes expanded into fuzzy $C P^{\frac{p}{2}}$ by Myers dielectric effect

Microscopical description valid for finite 't Hooft coupling

- Expansion caused by a purely gravitational dielectric effect
- CS terms indicate the need to introduce F-strings
- Non-singlet classical stable solutions for finite λ
- Prediction of new dielectric higher curvature couplings, with further implications through T and S duality

(Becker, Guo, Robbins'l0) (Garousi'l0)

8. Open questions

- New dielectric higher curvature couplings confirmed from string amplitudes?
- Can we extrapolate the micro results to $\mathcal{N} \rightarrow 0$?
-What happens in theories with less susy, like $\operatorname{AdS} S_{5} \times T^{1,1}$?
- Include the backreaction \longleftrightarrow Look for supersymmetric spike solutions (partial studies in Kawamoto, Lin'09)

Marginal bound states?
Non-singlet states?

- Explore the finite temperature case Thanks!

