Reactivity of Triosmium and Triruthenium Carbonyls with 2,2'-Diamino-1,1'-binaphthalene. Synthesis of C- and **N-Metalated Derivatives**

Javier A. Cabeza,*,[†] Iván da Silva,[†] Ignacio del Río,[†] Santiago García-Granda,[‡] Víctor Riera,[†] and M. Gabriela Sánchez-Vega^{†,§}

Departamento de Química Orgánica e Inorgánica, Instituto de Química Organometálica "Enrique Moles", Universidad de Oviedo-CSIC, E-33071 Oviedo, Spain, and Departamento de Química Física y Analítica, Universidad de Oviedo, E-33071 Oviedo, Ŝpain

Received October 30, 2002

The reaction of $[Os_3(MeCN)_2(CO)_{10}]$ with 2,2'-diamino-1,1'-binaphthalene (H₂binam) affords the coordinatively unsaturated trinuclear derivative $[Os_3(\mu-H)(\mu_3-\eta^2-Hbinam-N,C)(CO)_9]$ (1), which contains a C-metalated Hbinam ligand attached to an Os atom through an NH₂ group and to the remaining two Os atoms through the metalated C atom. The unsaturation of 1 is somewhat relieved by a weak interaction of a naphthalene C=C double bond with an Os atom. Curiously, treatment of [Ru₃(MeCN)₂(CO)₁₀] with H₂binam does not give the ruthenium analogue of **1**. The stepwise treatment of $[Ru_3(CO)_{12}]$ with LiHbinam and $[HOEt_2][BF_4]$ leads to $[Ru_3(\mu-H)(\mu-\eta^1-Hbinam-N)(CO)_{10}]$ (2), in which an N-metalated Hbinam acts as an edgebridging amido ligand. Complex 2 reacts with bis(diphenylphosphanyl)methane (dppm) to give $[Ru_3(\mu-H)_2(\mu_3-\eta^2-binam-C,N)(\mu-\eta^2-dppm-P,P)(CO)_7]$ (3). This complex contains a doubly C- and N-metalated binam ligand attached to a Ru atom through the metalated C atom and to the remaining two Ru atoms through the metalated NH fragment. Compounds 1 and 3 are the first examples of C-metalated derivatives of H₂binam.

Introduction

The coordination and organometallic chemistry of the atropisomeric ligands 2,2'-bis(diphenylphosphanyl)-1,1'binaphthalene (binap) and 1,1'-binaphthalene-2,2'-diol (H₂binol) and some of their organic derivatives has been extensively studied¹⁻⁵ because many of their enantiomerically pure metal complexes are catalyst precursors for very efficient asymmetric syntheses.² Although most of these complexes are mononuclear, some polynuclear clusters have also been prepared.³⁻⁵

In contrast with the rich transition metal complex chemistry known for binap and H₂binol, noted above, that of 2,2'-diamino-1,1-binaphthalene (H₂binam) and its organic derivatives has been far less investigated.⁶⁻¹⁰ In fact, for H₂binam and its N-unsubstituted derivatives, only mononuclear complexes of ruthenium,⁷ nickel,⁸ palladium,^{8,9} and platinum⁸ have been reported. Most transition metal derivatives of H₂binam have also been

^{*} To whom correspondence should be addressed. E-mail: jac@sauron. quimica.uniovi.es. Fax: +34-985103446. Internet: http://www12. uniovi.es/investigacion/jac/.

Departamento de Química Orgánica e Inorgánica.

[‡] Departamento de Química Física y Analítica.

[§] On leave from Departamento de Química, Universidad de Carabobo, Bárbula, Venezuela.

⁽¹⁾ A search at the Cambridge Structural Database has revealed the existence of 69 and 48 X-ray structures of transition-metal complexes containing ligands derived from binap and binol, respectively: CSD version 5.23, CCDC, updated Sept 2002. (2) For relevant reviews on the use of $binap^{2a-f}$ and $binol^{2f,g}$

complexes in organic synthesis, see: (a) Noyori, R. Chem. Soc. Rev. Jase, 18, 187. (b) Noyori, R.; Takaya, H. Acc. Chem. Res. 1990, 23, 345. (c) Otsuka, S.; Tani, K. Synthesis 1991, 665. (d) Akutagawa, S. Appl. Catal., A 1995, 128, 171. (e) Kumobayashi, H. Recl. Trav. Chim. Pays-Bas 1996, 115, 201. (f) Rosini, C.; Franzini, L.; Raffaelli, A.; Salvadori, P. Synthesis 1992, 503. (g) Shibasaki, M.; Sasai, H. Top. Stereochem. 1999, 22, 201.

⁽³⁾ For triosmium clusters derived from binap, see: (a) Deeming, A. J.; Stchedroff, M. *J. Chem. Soc., Dalton Trans.* **1998**, 3819. (b) Prestopino, F.; Persson, R.; Monari, M. *Inorg. Chem. Commun.* **1998**, 1. 302

⁽⁴⁾ For tri-^{4a} and tetraruthenium^{4b} clusters derived from binap, see: (a) Deeming, A. J.; Speel, D. M.; Stchedroff, M. *Organometallics* **1997**, *16*, 6004. (b) Braga, D.; Matteoli, U.; Sabatino, P.; Scrivanti, A. J. Chem. Soc., Dalton Trans. 1995, 419.

⁽⁵⁾ For a trirhodium cluster derived from binap, see: Yamagata, T.; Tani, K.; Tatsuno, Y.; Saito, Y. J. Chem. Soc., Chem. Commun. **1988**, 466.

⁽⁶⁾ For structurally characterized (X-ray diffraction) examples of Cu,^{6a-d} Ag,^{6e,f} Au,^{6g} Ni,^{6h} Pd,⁶ⁱ Fe,^{6j} Ru,^{6k,l} Os,^{6m} Mn,^{6j} Mo,⁶ⁿ and Y^{6o} complexes containing the N-substituted ligands RHbinam and R₂binam, see: (a) Panther, T.; Baumann, U.; Behrens, U. Z. Anorg. Allg. Chem. 2001, 627, 238. (b) Wong, W. K.; Gao, J. X.; Wong, W. T.; Che, C. M. Polyhedron **1993**, *12*, 2063. (c) Wang, Y.; Stack, T. D. P. J. Am. Chem. Soc. **1996**, *118*, 13097. (d) Ho, C. W.; Cheng, W. C.; Cheng, M. C.; Peng, S. M.; Cheng, K. F.; Che, C. M. J. Chem. Soc., Dalton Trans. 1996, 405. (e) Hambin, J.; Childs, L. J.; Alcock, N. W.; Hannon, M. J.
 J. Chem. Soc., Dalton Trans. 2002, 164. (f) Wong, W. K.; Gao, J. X.;
 Wong, W. T.; Cheng, W. C.; Che, C. M. J. Organomet. Chem. 1994, 471, 277. (g) Cheung, T. C.; Lai, T. F.; Che, C. M. Polyhedron 1994, 471, 277. (g) Cheung, T. C.; Lai, T. F.; Che, C. M. Polyhedron 1994, 13, 2073. (h) Averseng, F.; Lacroix, P. G.; Malfant, I.; Dahan, F.; Nakatami, K. J. Mater. Chem. 2000, 10, 1013. (i) Zhou, X. G.; Huang, J. S.; Yu, X. Q.; Zhou, Z. Y.; Che, C. M. J. Chem. Soc., Dalton Trans. 2000, 1075. (j) Cheng, M. C.; Chan, M. C. W.; Peng, S. M.; Cheung, K. K.; Che, C. M. J. Chem. Soc., Dalton Trans. 1997, 3479. (k) Zhou, X. G.; Huang, J. S.; Ko, P. H.; Cheung, K. K.; Che, C. M. J. Chem. Soc., Dalton Trans. 1999, 3303. (l) Cai, L.; Han, Y.; Mahmoud, H.; Segal, B. M. J. Organomet. Chem. 1998, 568, 77. (m) Lin, J. H.; Che, C. M.; Lai, T. F.; Poon, C. K.; Cui, Y. X. J. Chem. Soc., Chem. Commun. 1991, 468. (n) Jamieson, J. Y.; Schrock, R. R.; Davis, W. M.; Bonitatebus, P. 468. (n) Jamieson, J. Y.; Schrock, R. R.; Davis, W. M.; Bonitatebus, P. 100, 101 Janneson, J. Y.; SCHTOCK, K. K.; Davis, W. M.; Bonitatebus, P. J.; Zhu, S. S.; Hoveyda, A. H. Organometallics 2000, 19, 925. (a) Ovitt, T. M.; Coates, G. W. J. Am. Chem. Soc. 1999, 121, 4072.
(7) (a) Mikami, K.; Aikawa, K.; Korenaga, T. Org. Lett. 2001, 3, 243.
(b) Mikami, K.; Korenaga, T.; Takeshi, O.; Ryoji, N. Angew. Chem., Int. Ed. 2000, 39, 3707.
(8) Mikami, K. Aikawa, K. C. M. K. 2002, 114.

 ⁽⁸⁾ Mikami, K.; Aikawa, K. Org. Lett. 2002, 4, 99.
 (9) (a) Mikami, K.; Aikawa, K.; Yusa, Y.; Hatano, M. Org. Lett. 2002,

 ⁽v) (a) Purkani, R., Aikawa, K., 1054, I.; Hatalio, M. Org. Lett. 2002,
 4, 91. (b) Mikami, K.; Aikawa, K.; Yusa, Y. Org. Lett. 2002, 4, 95.
 (10) See, for example: (a) Zhang, F. Y.; Pai, C. C.; Chan, A. S. C. J.
 Am. Chem. Soc. 1998, 120, 5808. (b) Reetz, M. T.; Bohres, E.; Goddard,
 R. Chem. Commun. 1998, 935.

used as efficient catalyst precursors for asymmetric synthesis. $^{6-10}$

As a continuation of our studies on the reactivity of triruthenium and triosmium carbonyls with amines, 11,12 we decided to study the reactivity of these cluster precursors with H₂binam. We now report not only the synthesis of the first trinuclear complexes derived from H₂binam but also the first examples of complexes in which this ligand is C-metalated.

Results and Discussion

The triosmium acetonitrile complex $[Os_3(MeCN)_2 (CO)_{10}]$ reacted with H_2 binam, in THF at reflux temperature, leading to the trinuclear derivative $[Os_3(\mu - H)(\mu_3 - \eta^2 - Hbinam - N, C)(CO)_9]$ (1; Scheme 1). No intermediates were detected when the reaction was monitored by IR spectroscopy and spot TLC. No reaction occurred at room temperature.

The solid-state structure of complex **1** (Figure 1) was determined by X-ray diffraction on a crystal obtained from a batch made from (R)-(+)-H₂binam, since only poor-quality crystals were obtained from racemic H₂-binam. A selection of interatomic distances is given in Table 1. The complex consists of a triangle of osmium atoms in which each metal atom is attached to three terminal carbonyl ligands. The metal triangle is capped by a C³-metalated Hbinam ligand which is attached to an Os atom through an NH₂ group and to the remaining two Os atoms through the metalated C atom. A bridging hydride spans the same edge of the metal triangle as the metalated C atom (Figure 1a). The dihedral angle

Figure 1. (a) Molecular structure of compound **1** (50% probability level, aromatic H atoms omitted for clarity). (b) View of compound **1** approximately along the planes of the naphthalene rings, showing the disposition of the Hbinam ligand with respect to the metal triangle (carbonyl groups and H atoms omitted for clarity).

 Table 1. Selected Interatomic Distances (Å) in

 Complex 1

Os(1) - Os(2)	2.809(2)	Os(1) - Os(3)	2.850(2)
Os(2) - Os(3)	2.767(2)	Os(1)-C(2)	2.34(3)
Os(1) - C(3)	2.70(3)	Os(2)-C(2)	2.17(3)
Os(2) - C(3)	3.04(3)	Os(3) - N(1)	2.21(2)
C(1) - N(1)	1.45(4)	C(1) - C(2)	1.40(4)
C(2) - C(3)	1.35(4)		

between the planes of both naphthalene fragments is 66.3(5)°. This ligand arrangement affords an electron count of 46, resulting in a coordinatively unsaturated species. This unsaturation is somewhat relieved by a weak π interaction of the naphthalene C(2)–C(3) double bond with the Os(1) atom that results in the fact that the metal triangle is not perpendicular to the plane of the naphthalene fragment to which it is attached but forms a dihedral angle of 70.0(4)° (Figure 1b). In fact, the Os(2)-C(2) distance, 2.17(3) Å, is shorter than the Os(1)-C(2) distance, 2.34(3) Å, as expected for distances involved in σ and π interactions with a C=C fragment, respectively. The C(2)-C(3) distance, 1.35(4) Å, is typical of an uncoordinated C=C double bond. However, the Os(1)-C(3) distance, 2.70(3) Å, although too long for a normal Os-C bond, reflects some bonding interaction.

In solution, compound **1** was characterized by IR and NMR spectroscopy. Its IR spectrum confirmed the absence of bridging CO ligands. Its ¹H and DEPT ¹³C NMR spectra indicated the C-metalation of a naphthalene fragment, since they show the resonances of 11 CH groups. The chemical shifts of the proton and carbon atoms of these CH groups (8.2–6.8 ppm for ¹H and 132–

⁽¹¹⁾ For a review on the reactivity of triruthenium carbonyl clusters derived from 2-aminopyridines, see: Cabeza, J. A. *Eur. J. Inorg. Chem.* **2002**, 1559.

⁽¹²⁾ For relevant articles in the field, see: (a) Cabeza, J. A.; del Río, I.; García-Granda, S.; Riera, V.; Suárez, M. Organometallics 2002, 21, 2540. (b) Cabeza, J. A.; del Río, I.; García-Granda, S.; Riera, V.; Suárez, M. Organometallics 2002, 21, 5055. (c) Cabeza, J. A.; Nöth, H.; Rosales-Hoz, M. J.; Sánchez-Cabrera, G. Eur. J. Inorg. Chem. 2000, 2327. (d) Cabeza, J. A.; Martínez-García, M. A.; Riera, V.; García-Granda, S.; Ardura, D. J. Organomet. Chem. 1996, 525, 133. (e) Cabeza, J. A.; Martínez-García, M. A.; Riera, V.; García-Granda, S.; van der Maelen, J. F. J. Organomet. Chem. 1996, 514, 197. (f) Cabeza, J. A.; Fernández-Colinas, J. M.; Riera, V.; Pellinghelli M. A.; Tiripicchio, A. J. Chem. Soc., Dalton Trans. 1991, 371. (g) Andreu, P. L.; Cabeza, J. A.; Riera, V.; Jeannin, Y.; Miguel, D. J. Chem. Soc., Dalton Trans. 1990, 2201.

118 ppm for ¹³C) are within the ranges expected for uncoordinated CH groups of aromatic ligands. Thus, they provide no evidence for the coordination of a naphthalene C=C double bond to osmium. The ¹H NMR spectrum also shows the resonances of a hydride (-14.95 ppm) and two distinct NH₂ groups, one with diastereotopic protons (6.10 and 5.12 ppm, doublets, J = 11.5Hz), corresponding to that coordinated to osmium, and other with equivalent protons (3.89 ppm, singlet), which is assigned to the uncoordinated NH₂ group.

The reactions of compound 1 with carbon monoxide and triphenylphosphane were studied. If the compound is indeed unsaturated, then these reactions were expected to take place under mild conditions. Both reactions occurred readily within a few minutes, taking place at room temperature (bubbling CO) or upon mild heating (THF reflux, PPh₃); unfortunately, both gave mixtures of several products that were not characterized.

The C-metalation of aromatic primary and secondary amines, ArNH₂ and ArNHR, has been previously observed in very few bi-13 and trinuclear complexes, 12c, 14, 15 Hdan-C, C, N(CO)₉] (H₂dan = 1,8-diaminonaphthalene),^{12c} $[Os_3(\mu-H)_2(\mu_3-\eta^2-pfa-C,N)(CO)_9]$ (H₂pfa = 4-fluoroaniline),¹⁴ [Os₃(μ -H)₂(μ ₃- η ²-ind-*C*,*N*)(CO)₉] (H₂ind = indoline),¹⁵ and $[Os_3(\mu-H)_2(\mu_3-\eta^2-thquin-C,N)(CO)_9]$ (H₂thquin = tetradihydroquinoline), 15 which are coordinatively saturated 48-electron species.

Rosenberg's group has prepared a family of unsaturated 46-electron triosmium complexes, somewhat related to compound 1, derived from benzoheterocycles containing pyridinic nitrogens, corresponding to the formulation $[Os_3(\mu-H)(\mu_3-\eta^2-L-N,C)(CO)_9]$ (HL = quinoline, 5,6-benzoquinoline, quinoxaline, 2-methylbenzotriazole, 2-R-benzothiazole, 2-R-benzimidazole, 2-R-benzoxazole, and some C-substituted or partially hydrogenated derivatives).¹⁶ The μ_3 - η^2 -N-heterocyclic ligands of all these compounds are perpendicular to the trimetallic plane, interacting with an Os atom through the N atom (2electron donor) while spanning an Os-Os edge through the C-metalated benzo group (1-electron donor). When treated with amines and phosphanes, these unsaturated compounds are generally transformed into electron-precise derivatives containing μ - η^2 -heterocyclic ligands.^{16a,17} Interestingly, electron-precise derivatives containing a σ,π -vinyl interaction (3-electron donor), in addition to the N coordination, are formed when the unsaturated triosmium 5,6-benzoquinoline complex is treated with phosphanes^{16a} and when the benzo ring of the unsaturated quinoline complex is dearomatized by nucleophilic addition followed by acid quenching.^{16,18} For comparison purposes, the longest $Os-C_{vinyl}$ distances in these complexes are in the range 2.3–2.5 Å,^{16,18} being >0.2 Å shorter than the Os(1)-C(3) distance of compound **1**.

A reviewer of this work suggested that, according to a work of Arce et al.,¹⁹ compound **1** could be considered as a 48-electron saturated species if the bridging naphthyl fragment acts as a 3-electron donor through only the C(2) atom. In Arce's report, a phenyl group that spans two metal atoms through only one C atom (η^1) is assigned as a 3-electron-donor ligand.¹⁹ Apart from that work, all the remaining examples in which aryl groups behave as 3-electron donor bridging ligands display such groups coordinated in $\sigma - \pi, \mu - \eta^2$ -vinyl type mode.^{16,18,20} In our case, a weak $\sigma - \pi, \mu - \eta^2$ -vinyl type interaction of the naphthyl fragment is observed in the solid state.

To summarize the issue of the unsaturation of compound 1, there is a substantial amount of empirical evidence that supports a considerable degree of unsaturation: its fast reactions with donors, its green color (as other unsaturated triosmium clusters¹⁶), and its X-ray structure. The last piece of evidence clearly indicates that the metalated carbon atom of the naphthalene ring is the only carbon atom that interacts strongly with the osmium atoms. For a neat 46-electron species, one would expect that the naphthalene fragment would be perpendicular to the metal triangle, as in Rosenberg's compounds,¹⁶ but this is not the case, as shown clearly in Figure 1b. Our explanation for this fact is that the leaning is caused by a weak π -interaction of the naphthalene C(2)-C(3) double bond with Os(1). The driving force for such an interaction would be that it partially relieves the unsaturation of the complex. Therefore, in our opinion, compound 1 is not a 46- nor a 48-electron species but has an electron count greater than 46 but smaller than 48, thus being an unsaturated species (electron count smaller than 48 for a trinuclear cluster).

The ruthenium acetonitrile complex [Ru₃(MeCN)₂- $(CO)_{10}$ did not react in the same way as its osmium analogue when it was treated with H₂binam. No reaction occurred in THF at room temperature. Upon heating to reflux temperature, [Ru₃(MeCN)₂(CO)₁₀] decomposed into $[Ru_3(CO)_{12}]$ instead of reacting with H_2 binam. Upon prolonged heating (refluxing THF, >2 h), [Ru₃- $(CO)_{12}$] reacted with H₂binam to give a brownish yellow solution. When this solution was evaporated to dryness, the solid residue, probably of polymeric nature, could not be redissolved and was not investigated further. It has been reported that the reactions of $[Ru_3(CO)_{12}]$ with 1,2-diaminobenzene^{12e,21} and 1,8-diaminonaphthalene^{12f,21} also afford polymeric products under similar reaction conditions.

^{(13) (}a) Cameron, T. M.; Abboud, K. A.; Boncella, J. M. Chem. Commun. 2001, 1224. (b) Dobbs, D. A.; Bergman, R. G. Organometallics **1994**, 13, 4594,

⁽¹⁴⁾ Azam, K. A.; Deeming, A. J.; Rothwell, I. P.; Hursthouse, M. B.; Backer-Dirks, J. D. J. *J. Chem. Soc., Dalton Trans.* **1981**, 2039.
(15) Kabir, S. E.; Kolwaite, D. S.; Rosenberg, E.; Scott, L. G.;

McPhillips, T.; Duque, R.; Hardcastle, K. I. Organometallics 1996, 15, 1979

^{(16) (}a) Smith, R.; Rosenberg, E.; Hardcastle, K. I.; Vázquez, V.; Roh, J. Organometallics 1999, 18, 3519 and references therein. (b) Abedin, M. J.; Bergman, B.; Holmquist, R.; Smith, R.; Rosenberg, E.; Ciurash, J.; Hardcastle, K. I.; Roe, J.; Vázquez, V.; Roe, C.; Kabir, S. E.; Roy, B.; Azam, K. A. *Coord. Chem. Rev.* **1999**, *190–192*, 975 and references therein.

^{(17) (}a) Rosenberg, E.; Bergman, B.; Bar-Din, A.; Smith, R.; Gobetto, R.; Milone, L.; Viale, A.; Dastrú, W. Polyhedron 1998, 17, 2975. (b) Rosenberg, E.; Abedin, M. J.; Rokhsana, D.; Viale, A.; Dastrú, W.; Gobetto, R.; Milone, L.; Hardcastle, K. Inorg. Chim. Acta 2002, 334, 343

⁽¹⁸⁾ Bergman, B.; Holmquist, R. H.; Smith, R.; Rosenberg, E.; Ciurash, J.; Hardcastle, K. I.; Visi, M. J. Am. Chem. Soc. 1998, 120, 12818.

⁽¹⁹⁾ Arce, A. J.; Arrojo, P.; Deeming, A. J.; de Sanctis, Y. J. Chem. Soc., Chem. Commun. 1991, 1491.

⁽²⁰⁾ For additional examples of $\sigma - \pi, \mu - \eta^2$ -aryl ligands, see: (a) Cabeza, J. A.; Martínez-García, M. A.; Riera, V.; Ardura, D.; García-Granda, S. *Eur. J. Inorg. Chem.* **2000**, 499. (b) Hoferkamp, L. A.; Rheinwald, G.; Stoeckli-Evans, H.; Süss-Fink, G. Organometallics **1996**, *15*, 704. (c) Bruce, M. I.; Humphrey, P. A.; Shawkataly, O. B.; Snow, M. R.; Tiekink, E. R. T.; Cullen, W. R. Organometallics **1990**, *9*, 2910. (d) Singh, K.; McWhinnie, W. R.; Chen, H. L.; Sun, M.; Hamor, T. A. J. Chem. Soc., Dalton Trans. 1996, 1545. (e) Farrugia, L. J.; Miles,
 A. D.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. 1984, 2415.
 (21) Cabeza, J. A.; Riera, V.; Pellinghelli, M. A.; Tiripicchio, A. J.

Organomet. Chem. 1989, 376, C23.

Scheme 2. Synthesis of Compounds 2 and 3

In an additional attempt to make a triruthenium derivative of H_2 binam, $[Ru_3(CO)_{12}]$ was treated with the lithium salt LiHbinam. A smooth reaction was observed in THF at room temperature (2 h) that led to a very air-sensitive, dark red, anionic derivative, which was not isolated. Most probably, this anionic complex is [Ru₃- $(\mu - \eta^1 - \text{Hbinam} - N)(\mu - \text{CO})_3(\text{CO})_7]^-$, by comparison of its IR spectrum with those of $[Ru_3(\mu-\eta^2-Opy-N,O)(\mu-CO)_3 (CO)_7$]⁻ (HOpy = 2-pyridone),²² [Ru₃(μ - η ¹-N=CPh₂-N)- $(\mu$ -CO)₃(CO)₇]⁻,²³ and [Ru₃(μ - η ²-dmpz-N,N)(μ -CO)₃(CO)₇]⁻ (Hdmpz = 3,5-dimethylpyrazole),²⁴ which contain 3-electron-donor ligands. Protonation of this dark red solution led to the neutral hydrido derivative $[Ru_3(\mu-H)(\mu-\eta^{1-1})]$ Hbinam- $M(CO)_{10}$] (2; Scheme 2), which was isolated as an orange solid. Kaesz was the first to observe that the attack of $[Ru_3(CO)_{12}]$ by anionic nucleophiles X⁻ (amido groups, halides, etc.) may result in the formation of anionic derivatives $[Ru_3(\mu-X)(CO)_{10}]^-$, which can be subsequently protonated to give $[Ru_3(\mu-H)(\mu-X)(CO)_{10}]^{.25}$ We have previously reported that the compounds [Ru₃- $(\mu-H)(\mu-\eta^{1}-N=CPh_{2}-M)(CO)_{10}]^{23}$ and $[Ru_{3}(\mu-H)(\mu-\eta^{2}-dmp_{2}-M)(\mu-\eta^{2}$ $N, M(CO)_{10}$ ²⁴ cannot be made by reaction of [Ru₃(CO)₁₂] with the corresponding neutral ligand precursors but can be conveniently prepared by anionic routes analogous to that used for the synthesis of compound 2. Curiously, it has been reported that the thermal reaction of aniline with $[Ru_3(CO)_{12}]$ gives the amido-bridged derivative $[Ru_3(\mu-H)(\mu-\eta^1-NHPh-N)(CO)_{10}]$ among other products.²⁶

The composition of compound **2** was confirmed by its microanalysis and FAB mass spectrum. Its DEPT ¹³C and ¹H NMR spectra showed peaks corresponding to 12 CH groups, thus ruling out the possibility of a C-metalation. In addition, the ¹³C{¹H} NMR spectrum also

displayed 8 quaternary C and 10 *C*O resonances. The resonances of the hydride, N*H*, and N*H*₂ groups were observed as singlets at -12.66, 6.42, and 3.76 ppm, respectively. All these data strongly support the structure depicted for compound **2** in Scheme 2, which is comparable to that of other analogous,²⁷ X-ray diffraction characterized^{27c-e} [Ru₃(μ -H)(μ - η ¹-NHR-*N*)(CO)₁₀] complexes. It should be noted that the R group of the bridging amido fragment of all these complexes is in an exo disposition with respect to the metal triangle, probably to minimize steric interactions.

The C-metalation of the Hbinam ligand of compound **2** was attempted. However, no reaction was observed when it was heated in toluene at reflux temperature for 1 h or irradiated with UV light for 2 h. It seems that the reaction conditions used are too mild to overcome the activation energy of the ligand rearrangement that would facilitate the *C*-metalation process, since in **2**, as commented above, the naphthalene fragment attached to the bridging N atom adopts an exo disposition with respect to the metal triangle. Therefore, we decided to make some phosphane derivatives of **2**, expecting that they might undergo C-metalation processes of the Hbinam ligand under conditions milder than those required by **2**.

The asymmetry of the Hbinam ligand of **2**, in addition to the fact that both ruthenium atoms attached to the bridging nitrogen atom are likewise eager to undergo carbonyl substitution processes, accounts for the observation that the reactions of this complex with triphenylphosphane led to inseparable mixtures of compounds, regardless of the ratio of the reactants (1:1 to 1:3) and the reaction conditions (60–110 °C).

However, treatment of compound **2** with 1 equiv of bis(diphenylphosphanyl)methane (dppm), in THF at reflux temperature, allowed the isolation of [Ru₃(μ -H)₂-(μ_3 - η^2 -binam-*C*,*N*)(μ - η^2 -dppm-*P*,*P*)(CO)₇] (**3**; Scheme 2).

Complex **3** was characterized by an X-ray diffraction study (Figure 2). A selection of interatomic distances is given in Table 2. The metal triangle is capped by a doubly C- and N-metalated binam ligand in such a way that the C³ carbon atom C(2) is σ -bonded to a metal atom and the NH fragment spans the edge defined by the two remaining metal atoms. In this case, the plane containing the coordinated naphthalene fragment is perpendicular to the trimetallic plane (dihedral angle 87.34(7)°). The dihedral angle between the planes of both naphthalene fragments is 83.0(1)°. A dppm ligand spans the same metallic edge as the NH fragment through both phosphorus atoms. The ligand shell is

⁽²²⁾ Lugan, N.; Laurent, F.; Lavigne, G.; Newcomb, T. P.; Liimata, E. W. Organometallics **1992**, *11*, 1351.

⁽²³⁾ Andreu, P. L.; Cabeza, J. A.; del Río, I.; Riera, V.; Bois, C. Organometallics **1996**, *15*, 3004.

⁽²⁴⁾ Cabeza, J. A.; Franco, R. J.; Riera, V.; García-Granda, S.; van der Maelen, J. F. *Organometallics* **1995**, *14*, 3342.

⁽²⁵⁾ See, for example: (a) Szostak, S.; Strouse, C. E.; Kaesz, H. D. J. Organomet. Chem. 1980, 191, 243. (b) Mayr, A.; Lin, Y. C.; Boag, N. M.; Kaesz, H. D. Inorg. Chem. 1982, 21, 1704. (c) Kampe, C. E.; Boag, N. M.; Knobler, C. B.; Kaesz, H. D. Inorg. Chem. 1984, 23, 1390. (d) Mayr, A.; Lin, Y. C.; Boag, N. M.; Kampe, C. E.; Knobler, C. B.; Kaesz, H. D. Inorg. Chem. 1984, 23, 4640. (e) Lavigne, G.; Kaesz, H. D. J. Am. Chem. Soc. 1984, 106, 4647. (f) Boag, N. M.; Sieber, W. J.; Kampe, C. E.; Knobler, C. B.; Kaesz, H. D. J. Organomet. Chem. 1988, 355, 385.

⁽²⁶⁾ Sappa, E.; Milone, L. J. Organomet. Chem. 1973, 61, 383.

⁽²⁷⁾ For examples of amido-bridged complexes of the type [Ru₃(μ-H)(μ-η¹-NHR-Λ)(CO)₁₀], see: (a) Reference 24. (b) Bois, C.; Cabeza, J. A.; Franco, R. J.; Riera, V.; Saborit, E. J. Organomet. Chem. 1998, 564, 201. (c) Lausarot, P. M.; Vaglio, G. A.; Valle, M.; Tiripicchio, A.; Tiripicchio-Camellini, M. J. Chem. Soc., Chem. Commun. 1983, 1391. (d) Bhaduri, S.; Khwaja, H.; Sapre, N.; Basu, A.; Jones, P. G.; Carpenter, G. J. Chem. Soc., Dalton Trans. 1990, 1313. (e) Jenke, T.; Bodensieck, U.; Stoeckli-Evans, H.; Süss-Fink, G. J. Organomet. Chem. 1991, 414, C28.

Figure 2. Molecular structure of compound **3** (50% probability level, aromatic H atoms omitted for clarity).

Table 2. Selected Interatomic Distances (Å) in
Complex 3

Ru(1)-Ru(2)	2.7840(5)	Ru(1)-Ru(3)	2.7752(5)
Ru(2)-Ru(3)	2.9694(5)	Ru(1) - P(1)	2.351(1)
Ru(1) - N(1)	2.139(4)	Ru(2) - P(2)	2.347(1)
Ru(2)-N(1)	2.136(4)	Ru(3)-C(2)	2.113(5)
P(1)-C(21)	1.843(5)	P(2)-C(21)	1.843(5)
C(1)-N(1)	1.433(6)	C(1)-C(2)	1.438(6)

completed by two hydride ligands and seven carbonyl groups. Thus, the complex is a coordinatively saturated 48-electron species.

The solution IR and NMR spectra of **3** confirm that in solution the complex maintains the same molecular structure as in the solid state. The IR spectrum shows only terminal CO ligands. The asymmetry of the complex is reflected by the observation of two doublet resonances in the ³¹P{¹H} NMR spectrum (5.7 and -7.3ppm, $J_{P-P} = 110.5$ Hz), corresponding to the phosphorus atoms of the dppm ligand. In addition to the resonances of the CH and CH₂ protons, the ¹H NMR spectrum also shows two singlet resonances, assignable to the NH (4.83 ppm) and NH₂ (2.75 ppm) protons, and two more complicated resonances (-11.65 and -13.64 ppm, both ddd), assignable to the hydride protons (they couple to each other and to both phosphorus atoms).

In the process that leads to complex **3** from **2** and dppm, the coordination of the dppm ligand should occur in an early reaction stage, prior to the C-metalation step, because complex **2** alone does not undergo C-metalation under thermal or photochemical conditions (vide supra). In Scheme 3, we propose that complex **2** reacts first with dppm to give an intermediate (**A**) which is prone to isomerize under the reaction conditions into a species having the naphthalene fragment in an endo disposition with respect to the metal triangle (**B**). We propose that this isomerization process should involve the migration of the bridging amido group from a metal–metal edge to another, rather than the inversion of the configuration of the nitrogen atom. In fact, such

Scheme 3. Initial Steps of the Reaction Pathway that Leads to Complex 3 from Complex 2 and dppm^a

^a Carbonyl ligands are omitted for clarity.

a migration process should be more influenced by the presence of certain ligands on the metal core than the inversion of the nitrogen atom. Therefore, if compound 2 does not undergo a nitrogen inversion under particular thermal conditions, neither should a phosphane derivative of **2**. We also propose that the intermediate **A** has a pendant monocoordinated dppm ligand, because if the bidentate coordination of the dppm ligand occurs before the migration of the bridging amido fragment, the P atoms of the dppm ligand should be attached to the same Ru atoms as the amido fragment,23,28 and this, after the migration of the amido ligand, would end in a final complex in which the amido fragment and the dppm ligand would not span the same Ru-Ru edge. Before ending in complex 3, intermediate B should undergo easy C-H bond activation, phosphorus coordination, and CO elimination processes, the order of which remains unknown.

In ruthenium chemistry, we are not aware of previous examples of C-metalated aromatic amines. However, some triosmium complexes structurally related to compound **3**, containing doubly C- and N-metalated aromatic amines, have been reported.^{12c,14,15}

Concluding Remarks

This work describes the synthesis of the first trinuclear cluster derivatives of H_2 binam and the first C-metalated complexes of this ligand. Complex **3** also is an unprecedented example of a C-ruthenated aromatic amine.

The synthesis and characterization of the unsaturated compound **1** have shown that, in ligand-bridged trio-

⁽²⁸⁾ Andreu, P. L.; Cabeza, J. A.; Cuyás, J. L.; Riera, V. J. Organomet. Chem. 1992, 427, 363.

smium compounds, the existence of a pyridinic nitrogen within the bridging ligand (all the previous examples are of this type¹⁵⁻¹⁸) is not a must for the formation of the electron-deficient bonding mode, since it can also be formed with aromatic amines.

Experimental Section

General Data. Solvents were dried over sodium diphenyl ketyl (THF, Et₂O, hydrocarbons) or CaH₂ (dichloromethane) and distilled under nitrogen prior to use. The reactions were carried out under nitrogen, using Schlenk-vacuum-line techniques, and were routinely monitored by solution IR spectroscopy (carbonyl stretching region) and spot TLC (silica gel). Racemic H₂binam²⁹ and [Os₃(MeCN)₂(CO)₁₀]³⁰ were prepared as described previously; the remaining reagents, including (R)-(+)-H₂binam (ee >99%, Fluka), were purchased from commercial suppliers. IR spectra were recorded in solution on a Perkin-Elmer Paragon 1000 FT spectrophotometer. NMR spectra were run at room temperature on a Bruker DPX-300 instrument, using 85% H₃PO₄ (external, δ 0) or the dichloromethane solvent resonance (internal, δ 5.35 for ¹H and 53.5 for ¹³C) as standards. Microanalyses were obtained from the University of Oviedo Analytical Service. Positive FAB-MS were obtained from the University of Santiago de Compostela Mass Spectrometric Service; data given refer to the most abundant molecular ion isotopomer.

[Os₃(μ-H)(μ₃-η²-Hbinam-N,C)(CO)₉] (1). A solution of H₂binam (33 mg, 0.115 mmol) and [Os₃(MeCN)₂(CO)₁₀] (90 mg, 0.096 mmol) in THF (40 mL) was heated at reflux temperature for 2 h. The color changed from yellow to brown. The solvent was removed under reduced pressure, and the resulting residue was dissolved in a minimal amount of dichloromethane. The solution was separated by column chromatography (silica gel, 2×15 cm, packed in hexane). Hexanedichloromethane (4:1) eluted two minor yellow bands. Hexanedichloromethane (3:2) eluted the major band, which afforded compound 1 as a greenish brown solid after solvent removal (41 mg, 39%). Anal. Calcd for $C_{29}H_{16}N_2O_9Os_3$ ($M_r = 1106.68$): C, 31.46; H, 1.45; N, 2.53. Found: C, 31.43; H, 1.60; N, 2.43. MS (m/z): 1108 [M⁺]. IR (CH₂Cl₂): v_{CO} 2077 (m), 2045 (s), 2022 (s), 1986 (m), 1966 (m, sh), 1939 (w, sh) cm⁻¹. ¹H NMR (CD₂-Cl₂): δ 8.2–6.8 (m, 11 H, CH), 6.10 (d, J = 11.5 Hz, 1 H, NH₂), 5.12 (d, J = 11.5 Hz, 1 H, NH₂), 3.89 (s, 2 H, NH₂), -14.95 (s, 1 H, μ -H).¹³C{¹H} NMR (DEPT, CD₂Cl₂): δ 185.1, 184.5, 182.1, 181.5, 180.5, 178.4 (×2), 176.9, 176.5 (9 COs); 158.1, 143.0, 133.6, 132.2, 128.3, 128.2, 121.3, 110.3, 95.1 (9 Cs); 131.7, 130.8 (x 2), 130.1, 128.8, 128.5, 127.1, 126.9, 124.0, 123.2, 118.9 (11 CHs).

 $[\mathbf{Ru}_3(\mu-\mathbf{H})(\mu-\eta^1-\mathbf{Hbinam}-\mathbf{N})(\mathbf{CO})_{10}]$ (2). A hexane solution of BuLi (0.90 mL, 1.6 M, 1.440 mmol) was dropwise injected onto a stirred cold (-78 °C) solution of H₂binam (405 mg, 1.423 mmol) in THF (60 mL). The color changed from colorless to vellow. The solution was slowly warmed to room temperature before solid [Ru₃(CO)₁₂] was added (900 mg, 1.408 mmol). The color changed from orange to dark red. After the mixture was stirred for 2 h at room temperature, a solution of [HOEt₂][BF₄] in diethyl ether (1.50 mL, 1 M, 1.500 mmol) was dropwise injected. The color changed from red to orange-yellow. The solvent was removed under reduced pressure, and the resulting residue was dissolved in a minimal amount of dichloromethane. The solution was separated by column chromatography (silica gel, 2 \times 15 cm, packed in hexane). Hexane eluted a small amount of [Ru₃(CO)₁₂]. Hexane-dichloromethane (4:1) eluted the major band, which afforded compound 2 as an orange solid after solvent removal (879 mg, 72%). Anal. Calcd for $C_{30}H_{16}N_2O_{10}Ru_3$ ($M_r = 867.32$): C, 41.52; H, 1.85; N, 3.22.

 Table 3. Crystal, Measurement, and Refinement

 Data for 1.0.5CH₂Cl₂ and 3

	$1 \cdot 0.5 CH_2 Cl_2$	3	
formula	C ₂₉ H ₁₆ N ₂ O ₉ Os ₃ · 0.5CH ₂ Cl ₂	$C_{52}H_{38}N_2O_7P_2Ru_3\\$	
fw	1149.50	1167.99	
cryst syst	monoclinic	triclinic	
space group	P21 (No. 3)	P1 (No. 2)	
a, Å	8.415(5)	13.9445(5)	
b, Å	12.852(6)	14.2229(5)	
<i>c</i> , Å	15.277(8)	15.2432(5)	
α, deg	90	86.964(2)	
β , deg	100.04(6)	77.534(2)	
γ , deg	90	63.183(2)	
V, Å ³	1627(1)	2631.0(2)	
Ζ	2	2	
F(000)	1050	1164	
$D_{\rm calcd}$, g cm ⁻³	2.347	1.474	
radiation (λ , Å)	Μο Κα (0.710 73)	Cu Kα (1.541 80)	
μ , mm ⁻¹	11.821	7.863	
cryst size, mm	0.23 imes 0.13 imes 0.13	$0.17\times0.10\times0.10$	
temp, K	293(2)	200(2)	
θ limits, deg	2.46 to 26.00	2.97 to 68.64	
h, k, l range	-10 to $+10$,	0-16,	
	-15 to $+15$,	-14 to $+17$,	
	-18 to $+18$	-17 to +18	
no. of collected rflns	6918	34186	
no. of unique rflns (R_{int})	6368 (0.081)	9665 (0.059)	
no. of rflns with $I > 2\sigma(I)$	3638	8487	
refinement method	full-matrix least-squares on F^2		
abs cor	RefDelt	(XABS2)	
max/min transmissn	0.215/0.073	0.453/0.227	
no. of restraints/params	1/210	2/613	
GOF on F^2	1.011	1.157	
final RI (on F, $I > 2\sigma(I)$)	0.0604	0.0493	
nnai wR2 (on F ² , all data)	0.1659	0.1674	
Flack param	-0.04(3)		
max/min residuals, e $Å^{-3}$	1.610/-1.745	1.018 / - 1.419	

Found: C, 41.43; H, 1.90; N, 3.15. MS (m/z): 869 [M⁺]. IR (CH₂-Cl₂): ν_{CO} 2099 (m), 2061 (s), 2048 (s), 2015 (s), 1998 (m, sh), 1984 (w, sh) cm⁻¹. ¹H NMR (CD₂Cl₂): δ 8.2–6.8 (m, 12 H, CH), 6.42 (s, 1 H, NH), 3.76 (s, 2 H, NH₂), -12.66 (s, 1 H, μ -H). ¹³C{¹H} NMR (DEPT, CD₂Cl₂): δ 206.8, 204.8, 200.2 (×2), 195.2, 193.8, 193.6, 193.5, 186.8 (×2) (10 COs); 161.1, 143.7, 133.9, 132.0, 131.2, 129.0, 120.5 118.5 (8 Cs); 131.8, 129.7, 128.7 (×2), 128.5, 127.8, 125.7, 125.4, 124.7, 123.1, 122.9, 118.5 (12 CHs).

 $[Ru_3(\mu-H)_2(\mu_3-\eta^2-binam-C,N)(\mu-\eta^2-dppm-P,P)(CO)_7]$ (3). A solution of dppm (49 mg, 0.128 mmol) and compound 2 (100 mg, 0.115 mmol) in THF (40 mL) was heated at reflux temperature for 30 min. The color changed from orange to red. The solvent was removed under reduced pressure, and the resulting residue was dissolved in a minimal amount of dichloromethane. The solution was separated by column chromatography (silica gel, 2×15 cm, packed in hexane). Hexane-dichloromethane (4:1) eluted an orange band containing some starting material **2**. Hexane-dichloromethane (1:1) eluted the major band, which afforded compound 3 as a red solid after solvent removal (72 mg, 54%). Anal. Calcd for $C_{52}H_{38}N_2O_7P_2Ru_3$ ($M_r = 1167.99$): C, 53.40; H, 3.27; N, 2.39. Found: C, 53.60; H, 3.61; N, 2.50. MS (m/z): 1169 [M⁺]. IR (CH₂Cl₂): v_{CO} 2077 (w), 2057 (m), 2039 (s), 1995 (vs), 1971 (w, sh), 1939 (w, sh) cm⁻¹. ¹H NMR (CD₂Cl₂): δ 8.2–6.2 (m, 31 H, CH), 4.83 (s, 1 H, NH), 3.84 (m, 1 H, CH₂), 2.75 (s, 2 H, NH₂), 2.55 (m, 1 H, CH₂), -11.65 (ddd, J = 17.2, 8.8, 1.5 Hz, 1 H, μ -H), -13.64 (ddd, J = 51.1, 5.0, 1.5 Hz, 1 H, μ -H). ³¹P{¹H} NMR (CD₂Cl₂): δ 5.7 (d, J = 110.5 Hz, 1 P), -7.3 (d, J = 110.5Hz, 1 P).

X-ray Structures of Compounds 1.0.5CH₂Cl₂ and 3. Suitable crystals were obtained by slow evaporation of a CH₂-Cl₂ solution of the enantiomer of 1 derived from (*R*)-(+)-H₂binam and by slow diffusion of pentanes into a CH₂Cl₂ solution of complex 3. A selection of crystal and refinement data for both structures is given in Table 3. Diffraction data for 1.0.5CH₂Cl₂ were collected on a Nonius CAD-4 diffractometer, with the ω -2 θ scan technique and a variable scan rate, using

⁽²⁹⁾ Brown, K. J.; Berry, M. S.; Murdoch, J. R. *J. Org. Chem.* **1985**, *50*, 4345.

⁽³⁰⁾ Nicholls, M. J.; Vargas, M. D. Inorg. Synth. 1990, 28, 232.

graphite-monochromated Mo Ka radiation. Lorentz and polarization corrections were applied. Diffraction data for 3 were collected on a Nonius Kappa-CCD diffractometer equipped with a 95 mm CCD camera on a k-goniostat, using graphitemonochromated Cu Ka radiation. In both cases, data were reduced to F_0^2 values. The structures were solved by Patterson interpretation using the program DIRDIF-96.³¹ Absorption corrections were performed using XABS2.32 Isotropic and fullmatrix anisotropic least-squares refinements were carried out using SHELXL-97.33 For 1.0.5CH₂Cl₂, the osmium and chlorine atoms were refined anisotropically. The remaining non-H atoms were refined isotropically because many of them were persistently nonpositive definite. The hydrogen atom positions of both NH₂ groups were geometrically calculated, and their coordinates and thermal parameters were fixed. The hydride atom position was calculated using the program XHYDEX,³⁴ and its coordinates and thermal parameters were fixed. All the remaining hydrogen atom positions were calculated and refined riding in their parent atoms. For 3, all non-H atoms

were refined anisotropically. The NH and NH₂ hydrogen atoms and the hydride atoms were located in the corresponding Fourier maps and were freely refined, except for the N–H distances of the NH₂ group, which were fixed. All the other hydrogen atom positions were geometrically calculated and refined riding on their parent atoms. Geometrical calculations were performed with PARST.³⁵ The molecular plots were made with the EUCLID program package.³⁶ The WINGX program system³⁷ was used throughout both structure determinations.

Acknowledgment. This work has been supported by the MECD (Grant PB98-1555 to J.A.C.), MCYT (Grant BQU2000-2019 to S.G.-G.), and Principado de Asturias (Grant PR-01-GE-7 to V.R.). M.G.S.-V. thanks the Universities of Oviedo and Carabobo for granting her a research stay in Oviedo.

Supporting Information Available: Tables of bond distances and angles, atomic coordinates, and anisotropic thermal parameters for compounds 1.0.5CH₂Cl₂ and 3. This material is available free of charge via the Internet at http://pubs.acs.org.

OM020903W

(36) Spek, A. L. The EUCLID Package. In *Computational Crystallography*; Sayre, D., Ed.; Clarendon Press: Oxford, U.K., 1982; p 528.
(37) Farrugia, L. J. *J. Appl. Crystallogr.* 1999, *32*, 837.

⁽³¹⁾ Beurskens, P. T.; Beurskens, G.; Bosman, W. P.; de Gelder, R.; García-Granda, S.; Gould, R. O.; Israël, R.; Smits, J. M. M. The DIRDIF-96 Program System; Crystallography Laboratory, University of Nijmegen, Nijmegen, The Netherlands, 1996.

⁽³²⁾ Parkin, Š.; Moezzi, B.; Hope, H. J. Appl. Crystallogr. 1995, 28, 53.

⁽³³⁾ Sheldrick, G. M. SHELXL97, version 97-2; University of Göttingen, Göttingen, Germany, 1997.

⁽³⁴⁾ Orpen, A. G. J. Chem. Soc., Dalton Trans. 1980, 2509.

⁽³⁵⁾ Nardelli, M. Comput. Chem. 1983, 7, 95.