Reactivity of N-Heterocyclic Carbenes with [Ru₃(CO)₁₂] and [Os₃(CO)₁₂]. Influence of Ligand Volume and Electronic Effects

Javier A. Cabeza,*,† Ignacio del Río,‡ Daniel Miguel,§ Enrique Pérez-Carreño,* and M. Gabriela Sánchez-Vega†

Departamento de Química Orgánica e Inorgánica-IUQOEM, Universidad de Oviedo-CSIC, E-33071 Oviedo, Spain, Área de Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, E-47011 Valladolid, Spain, and Departamento de Química Física y Analítica, Universidad de Oviedo, E-33071 Oviedo, Spain

Received September 28, 2007

The room-temperature reactions of [Ru₃(CO)₁₂] and [Os₃(CO)₁₂] with a variety of N-heterocyclic carbenes (NHCs) have been studied. [Ru₃(CO)₁₂] reacts easily with N,N′-dimethylimidazol-2-ylidene (Me₂Im), more slowly with N-methyloxazol-2-ylidene (MeOx), and very slowly with N,N′-dimesitylimidazol-2-ylidene (Mes₂Im) to give the corresponding CO substitution products [Ru₃(NHC)(CO)₁₁], but it does not react with the very bulky N,N′-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (Dipph₂Im). DFT calculations have shown that [Ru₃(Dipph₂Im)(CO)₁₁] is a minimum in the corresponding potential energy surface; therefore, the absence of reaction between [Ru₃(CO)₁₂] and Dipph₂Im has a kinetic origin associated with the large volume of this NHC. [Os₃(CO)₁₂] reacts with Me₂Im to give [Os₃(Me₂Im)(CO)₁₁]. However, MeOx is not basic enough and Mes₂Im and Dipph₂Im are too bulky to react with [Os₃(CO)₁₂], which is less reactive than [Ru₃(CO)₁₂]. Therefore, the reactions of [Ru₃(CO)₁₂] and [Os₃(CO)₁₂] with NHCs are strongly influenced by the electronic properties and steric demands of the NHCs and also by the intrinsic reactivity of the metal–carbonyls.

Introduction

In 1977, as part of a study on the reactivity of tetraaminealkenes with group-8 metal–carbonyls, Lappert and Pye reported the first trinuclear carbonyl cluster containing an N-heterocyclic carbene (NHC) ligand (Scheme 1).¹ Since then, very few reports dealing with trinuclear carbonyl clusters and NHCs have been published. In 2002, we communicated the synthesis of some triruthenium clusters containing bifunctional NHC–thiolato ligands derived from levamisole hydrochloride,² and later we extended this chemistry to triruthenium clusters and methyl levamisulium salts (Scheme 2).³ The increasing attention that NHCs have attracted in the past decade,⁴,⁵ particularly because many of their metal complexes are excellent homogeneous catalysts for alkene metathesis, C–C bond-coupling reactions, and other important catalytic processes,⁶ and the lack of systematic studies on the reactivity of NHCs with transition metal–carbonyl clusters led us to investigate the reactivity of the simplest triruthenium and triosmium carbonyls, [M₃(CO)₁₂], with a variety of NHC ligands. Most of the NHCs we chose for this study are N,N′-disubstituted imidazol-2-ylidenes (R₂Im) because they are easily available, and their electronic and steric properties can be conveniently tuned by choosing the appropriate N-R groups.⁶

We now report that the reactivity of these NHCs with [M₃(CO)₁₂] (M = Ru, Os) strongly depends upon the nature of the N-R groups, since the more basic and less bulky the NHC ligand, the easier its reaction with the metal cluster. A small part of this work has been communicated in a preliminary form.⁷ While this work was underway, Cooke, Pomeroy, et al.⁸ reported the reactions of [Os₃(µ-H)(CO)₁₀] and [Os₃(MeCN)₂-(CO)₁₀] with [AgCl(Mes₂Im)] (Mes₂Im = N,N′-dimesitylimidazol-2-ylidene). In these reactions, the additional incorporation of the chlorine and/or the silver atoms of the reagent into the final clusters was also observed. Very recently, when we were writing up this article, Whittlesey et al.⁹ showed that the very bulky N,N′-di-tert-butylimidazol-2-ylidene (Bu′₂Im) reacts with [Ru₃(CO)₁₂] to give a CO substitution product in which the

* To whom correspondence should be addressed. E-mail: jac@fq.uniovi.es.
† Departamento de Química Orgánica e Inorgánica-IUQOEM, Universidad de Oviedo-CSIC, E-33071 Oviedo, Spain, Área de Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, E-47011 Valladolid, Spain.
‡ Área de Química Física y Analítica, Universidad de Oviedo.
§ Departamento de Química Física y Analítica, Universidad de Oviedo, Spain.
†† Departamento de Química Orgánica e Inorgánica-IUQOEM, Universidad de Oviedo-CSIC, E-33071 Oviedo, Spain, Área de Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, E-47011 Valladolid, Spain, and Departamento de Química Física y Analítica, Universidad de Oviedo, E-33071 Oviedo, Spain.

Scheme 1. Synthesis of Lappert’s NHC–Ru3 Cluster

Scheme 2. NHC–Thiolate Clusters Derived from Levamisolium Salts

Table 1. Selected Interatomic Distances (Å) in Compounds 1, 2, 4, and 6

<table>
<thead>
<tr>
<th></th>
<th>1°</th>
<th>2°</th>
<th>4°</th>
<th>6°</th>
</tr>
</thead>
<tbody>
<tr>
<td>M(1)−M(2)</td>
<td>2.917(1)</td>
<td>2.845(2)</td>
<td>2.8858(3)</td>
<td>2.9333(9)</td>
</tr>
<tr>
<td>M(1)−M(3)</td>
<td>2.884(2)</td>
<td>2.850(2)</td>
<td>2.8803(3)</td>
<td>2.901(1)</td>
</tr>
<tr>
<td>M(2)−M(3)</td>
<td>2.887(2)</td>
<td>2.857(2)</td>
<td>2.8307(4)</td>
<td>2.908(1)</td>
</tr>
<tr>
<td>C(1)−M(1)</td>
<td>2.115(4)</td>
<td>2.071(8)</td>
<td>2.144(3)</td>
<td>2.116(9)</td>
</tr>
<tr>
<td>C(1)−N(1)</td>
<td>1.360(5)</td>
<td>1.30(1)</td>
<td>1.365(4)</td>
<td>1.35(1)</td>
</tr>
<tr>
<td>C(1)−N(2)</td>
<td>1.360(5)</td>
<td>1.365(4)</td>
<td>1.35(1)</td>
<td>1.38(1)</td>
</tr>
<tr>
<td>C(1)−O(1)</td>
<td>1.36(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*a M = Ru, **M = Os.

3Bu2Im ligand is coordinated through the abnormal10 C4 position instead of the normal C2 position.

Results and Discussion

Reaction of [Ru3(CO)12] with N,N’-Dimethylimidazol-2-ylidine (Me2Im). The cluster [Ru3(CO)12] reacted readily with Me2Im in THF at room temperature to give the trinuclear NHC derivative [Ru3(Me2Im)(CO)11] (1), which was isolated as an air-stable orange solid (Scheme 1).

The structure of compound 1 was determined by X-ray diffraction methods. Table 1 contains a selection of interatomic distances. Figure 1 shows that the NHC ligand occupies an equatorial position. The structure resembles those of some phosphane-monosubstituted derivatives of [Ru3(CO)12].11 The Ru(1)−C(1) distance, 2.115(4) Å, is slightly shorter than the Ru−C(NHC) distance found in the abnormal cluster [Ru3(Bu2Im)(CO)11], 2.151(2) Å, in which the NHC is attached to the cluster via the C4 carbon atom.9 The large volume of the Me2Im ligand pushes away the adjacent equatorial CO ligand. This is clearly reflected by the Ru(2)−Ru(1)−C(102) angle, 147.6(1)°, which is more acute than the remaining Ru−Ru−CO trans-to-Ru angles, which are in the range 152.9(1)−155.6(2)°. The plane defined by the atoms of the Me2Im ligand forms an angle of 41.65(6)° with the Ru3 plane. This also contributes to minimizing the steric interactions between the Me2Im methyl groups and the CO ligands that are attached to the Ru(1) and Ru(2) metal atoms.

The room-temperature 1H NMR spectrum of compound 1 is very simple, since it contains only two singlets, with integral ratio 1:3, assigned to the ring and methyl H atoms of the coordinated Me2Im ligand. Therefore, although compound 1 has no symmetry in the solid state, a rotation process about the Ru(1)−C(1) axis, which creates a mirror plane that cuts the Me2Im ligand into two equivalent halves, occurs in solution. No significant changes were observed in a spectrum run at −80 °C.

No simple di- or trisubstituted trinuclear products were observed in reactions of [Ru3(CO)12] with a 2-fold excess of Me2Im at room or higher temperature. Although NHCs have often been compared with phosphane ligands,4,5 it is noteworthy that the latter do not react with [Ru3(CO)12] at room temperature and that trisubstituted derivatives of the type [Ru3(PR3)3(CO)9] are the usual products at higher temperatures, even without excess phosphane. This is because phosphine substitution enhances the rate of CO dissociation at the neighboring metal atoms.12 This in turn is due to the fact that the phosphine ligand is a better π-acceptor ligand than the NHC ligand.

Reaction of [Ru3(CO)12] with N-Methyloxazol-2-ylidine (MeOx). The trinuclear NHC cluster [Ru3(MeOx)(CO)11] (2) was isolated as an air-stable orange solid after treating [Ru3(CO)12] with MeOx in THF at room temperature (Scheme 4). This reaction was slower than that of MeIm.

The CO-stretching region of its IR spectrum is very similar to that of compound 1. Its X-ray molecular structure (Figure 2, Table 1) is also comparable in many aspects to that of compound 1. However, there are some structural features that merit discussion: the Ru(1)−C(1) distance, 2.071(8) Å, is 0.04 Å shorter than that of compound 1 and the Ru(2)−Ru(1)−C(102) angle of 147.6(1)° with the Ru3 plane.

(10) For a review on abnormally coordinated NHCs, see: Arnold, P.; Pearson, S. Coord. Chem. Rev. 2007, 251, 596.
and consists of hexanuclear $\text{[Ru}_6(\mu_3-\text{CO})_2(\mu-\text{CO})_2(\text{CO})_{14}]^{2-}$ dianions and N,N'-bis(2,6-diisopropylphenyl)imidazolium cations.16 A literature search revealed that the structure of the $\text{[Ru}_6(\mu_3-\text{CO})_2(\mu-\text{CO})_2(\text{CO})_{14}]^{2-}$ dianion, as a $[\text{PMePh}_3]^+$ salt, had been previously published.17

The original synthesis of $\text{[Ru}_6(\mu_3-\text{CO})_2(\mu-\text{CO})_2(\text{CO})_{14}]^{2-}$ involves the treatment of a THF solution $\text{[Ru}_3(\text{CO})_{12}]$ with a concentrated aqueous solution of KOH.18 In our case, the addition of a drop of water to a THF solution of $\text{[Ru}_3(\text{CO})_{12}]$ and DiPphIm resulted in the immediate formation of compound 3 in quantitative yield. However, we always obtained some compound 3 as reaction product working under the "dry" conditions stated at the beginning of the Experimental Section; the yield depending on the reaction scale; the greater the scale, the lower the yield. Therefore, we propose that the formation of compound 3 in our "dry" reaction is associated with the ability of the very basic DiPphIm carbene to react with adventitious moisture, most probably extracted from the glassware.19 Thus, deprotonation of water by the DiPphIm carbene would give the corresponding imidazolium cation and the hydroxide anion required for the formation of $\text{[Ru}_6(\mu_3-\text{CO})_2(\mu-\text{CO})_2(\text{CO})_{14}]^{2-}$.

In order to know whether or not the large DiPphIm ligand can be accommodated on the coordination shell of a trinuclear carbonyl cluster, the hypothetical species $\text{[Ru}_3(\text{DiPphIm})-(\text{CO})_{11}]$ was theoretically studied by density functional theory (DFT) at the B3LYP/LANL2DZ/6-31G(d,p) level. A structure optimization process led to an energy minimum that corresponded to the structure shown in Figure 3. In this structure, the Ru$^-$C(1) distance, 2.189 Å, is 0.074 Å longer than that of compound 1 and the Ru$^2-$Ru(1)-(C102) angle, 129.2°, is 18.4° more acute than that of 1. The angle between the Ru2 and the DiPphIm five-membered ring plane is 32.1°. Additionally, the axial CO ligands are not quite perpendicular to the Ru3 plane. These particular features seem to minimize the steric hindrance exerted by the DiPphIm ligand over the CO ligands attached to the Ru1 and Ru2 metal atoms.

As the electronic properties of DiPphIm are comparable with those of N,N'-dialkylimidazol-2-ylidenes6 and as Me$_2$Im does react with $\text{[Ru}_3(\text{CO})_{12}]$, the absence of reaction between DiPphIm and $\text{[Ru}_3(\text{CO})_{12}]$ should have a kinetic origin that has to be associated with the large volume of DiPphIm. Their 2,6-diisopropylphenyl groups seem to impede the approach of the carbene C atom to the metal atoms of $\text{[Ru}_3(\text{CO})_{12}]$ and hence the replacement of one of the cluster CO ligands.

Reactivity of $\text{[Ru}_3(\text{CO})_{12}]$ with N,N'-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene (DiPphIm). This carbene was chosen because it is a very bulky NHCS6 and we wanted to compare the reactivity of $\text{[Ru}_3(\text{CO})_{12}]$ with NHCs with different steric demands.

The treatment of $\text{[Ru}_3(\text{CO})_{12}]$ with DiPphIm in THF at room temperature resulted in a very slow reaction. After 4 h, a chromatographic workup allowed the isolation of the hexanuclear dianionic cluster $\text{[DiPphImH}_2]\text{[Ru}_3(\mu_3-\text{CO})_2(\mu-\text{CO})_2(\text{CO})_{14}]$ (3) in 36% yield (Scheme 5). This is the only product that could be isolated and characterized. No trinuclear derivatives analogous to compounds 1 and 2 were observed in the reaction solution when the reaction was monitored by IR spectroscopy, which showed that complex 3 was slowly formed prior to the chromatographic workup. Other attempts to make a cluster complex of formula $\text{[Ru}_3(\text{DiPphIm})\text{(CO)}_{11}]$, using higher temperature or $\text{[Ru}_3(\text{MeCN})_2\text{(CO)}_{10}]$ as Ru$_3$ cluster precursor, were also unsuccessful.5

The analytical, IR, and 1H NMR spectroscopic data of compound 3 were of little help to establish the nature of this product. Its crystal structure was determined by X-ray diffraction and consists of hexanuclear $\text{[Ru}_6(\mu_3-\text{CO})_2(\mu-\text{CO})_2(\text{CO})_{14}]^{2-}$

(16) A figure showing the dianions and cations of compound 3 is given as Supporting Information.

angle between the Ru₃ and the Mes₂Im five-membered ring plane, 35.68(1)°, lie between those of compounds 1 and [Ru₃(Dipph₂Im)(CO)₁₁]. These data are in accordance with the fact that Mes₂Im is much bigger than Me₂Im but smaller than Dipph₂Im.⁶ The ¹H NMR spectrum of 4 shows equivalence of both imidazolic CH atoms and both mesityl groups, indicating that, as also occurs with compound 1, this cluster is nonrigid in solution. Compound 5 was characterized by microanalysis and spectroscopic techniques. The CO stretching region of its IR spectrum is comparable to that of compound 3. Its ¹H NMR spectrum only shows the signals expected for the [Mes₂ImH]⁺ cation. In addition, the highest molecular weight peaks of its FAB mass spectra correspond to those of [[Ru₃(µ₃-CO)(µ-CO)₁₂(CO)]₁₄]⁻ + H⁺ and [Mes₂ImH]⁺, respectively. Therefore, compound 5 is a salt that contains N,N'-dimesitylimidazolium cations and the same dianion as compound 3.

The result of this reaction can be rationalized taking into account that Dipph₂Im does not react with [Ru₃(CO)₁₂] and that Mes₂Im is a bulky NHC but smaller than Dipph₂Im, while both have similar electronic properties.⁶ The electronic and steric properties of Mes₂Im permit the reaction of this NHC with [Ru₃(CO)₁₂], but its large volume makes this reaction slow enough to allow its competitive reaction with the small amount of water present in solution or in the glassware, thus giving a mixture of compounds 4 and 5.

Reactions of [Os₃(CO)₁₂] with NHCs. As no previous reaction of [Os₃(CO)₁₂] with an NHC has been published, we became interested in knowing whether or not [Os₃(CO)₁₂] would react with NHCs in a similar way as [Ru₃(CO)₁₂]. The carbene Me₂Im reacted with [Os₃(CO)₁₂] in THF at room temperature to give [Os₃(Me₂Im)(CO)₁₁] (6) as a yellow solid (Scheme 7).

The molecular structure of the osmium compound 6 was determined by X-ray diffraction (Figure 5, Table 1). It is very similar to that of the related ruthenium cluster 1. Moreover, both compounds crystallize in the same crystallographic space group with similar cell parameters. The Os(1)−C(1) distance, 2.116(9) Å, is slightly shorter than that of [Os₃(µ-Cl)(µ-H)(Mes₂Im)(CO)₁₀], 2.121(6) Å,⁸ and longer than those of [Os₃(Dox₂)₂(CO)₁₀] (Dox = 1,3-dioxacyclopentan-2-ylidene), 1.88(6) and 1.91(5) Å,¹⁵ and [Os₃(CEtNMe₂)₂(CO)₁₁], 2.09(1) Å.²⁰ These distances correlate well with the volume of the corresponding carbene ligands.

Interestingly, except for Me₂Im, no reaction was observed between [Os₃(CO)₁₂] and the NHCs used in the above-described reactions with [Ru₃(CO)₁₂], even at temperatures as high as 70 (20) Adams, R. D.; Chen, G. J. Cluster Sci. 1991, 2, 29.
When their reaction with [Ru₃(CO)₁₂] is slow or does not proceed, the bulky NHCs react slowly with adventitious water to give small amounts of imidazolidin cations and OH⁻ anions. The latter are responsible for the observation of the hexanuclear dianion [Ru₆(µ₃-C)(µ-CO)₂(CO)₁₄]²⁻ when [Ru₃(CO)₁₂] is treated with Dipph₂Im and Mes₂Im (compounds 3 and 5, respectively).

[RU₃(CO)₁₂] also reacts with the oxazole-derived NHC MeOx, which is less basic and smaller than Me₂Im, to give compound 2.

While Mes₂Im and Dipph₂Im are too big to substitute a CO of [Os₃(CO)₁₂] at room temperature, the smaller MeOx is not basic enough for this process. Only Me₂Im has an appropriate combination of steric and electronic properties to react with [Os₃(CO)₁₂] under similar conditions. This has allowed the isolation of compound 6. In [Os₃(CO)₁₂] chemistry, this is the first example of a CO substitution reaction that proceeds at room temperature without UV light, catalysis, or previous transformation of [Os₃(CO)₁₂] into other derivatives.

Experimental Section

General Data. The imidazolidin salts [Me₂ImH][₂⁵][MeOxH]-OTf,²² [Mes²ImH]Cl,²³ and the NHC Dipph₂Im²³ were prepared by published methods. The remaining reagents were purchased from commercial suppliers. Glassware was oven-dried at 100 °C overnight and allowed to cool to room temperature under a nitrogen atmosphere. Solvents were dried over sodium diphenyl ketyl (hydrocarbons, diethyl ether, THF) or CaH₂ (dichloromethane) and distilled under nitrogen prior to use. Free carbenes, imidazolidin salts, and KO'Bu were stored and handled under nitrogen in an M-Braun drybox. The reactions were carried out under nitrogen, using Schlenk-vacuum line techniques, and were routinely monitored by solution IR spectroscopy (carbonyl stretching region) and spot TLC. IR spectra were recorded in solution on a Perkin-Elmer Paragon 1000 FT spectrophotometer. ¹H NMR spectra were run on a Bruker DPX-300 instrument, using the dichloromethane solvent resonance as internal standard (δ = 5.30). Microanalyses were obtained from the University of Oviedo Analytical Service. FAB-MS were obtained from the University of Santiago de Compostela Mass Spectrometric Service; data given refer to the most abundant molecular ion isopomer.

[RU₃(Me₂Im)(CO)₁₁](1). THF (50 mL) was added to a Schlenk tube containing KO'Bu (176 mg, 1.564 mmol) and [Me₂ImH] (350 mg, 1.564 mmol). The mixture was stirred for 30 min. Finely ground [Ru₃(CO)₁₂] (1.000 g, 1.564 mmol) was added, and the resulting solution was stirred for 1 h. The color changed from orange to garnet. The solvent was removed in vacuo, and the residue was extracted into dichloromethane (50 mL). The filtered solution was concentrated to ca. 3 mL, and this solution was transferred onto a silica gel chromatographic column (20 x 3 cm) packed in hexane. Hexane-dichloromethane (4:1) eluted two bands. The first one, yellow, contained some unreacted [Ru₃(CO)₁₂]. The second band, red-orange, contained compound 1 (578 mg, 55%). Anal. Calcd for C₆₀H₅₆N₄O₁₂Ru₃: C, 27.16; H, 1.14; N, 3.96. Found: C, 27.20; H, 1.17; N 3.90. (+)-FAB MS: m/z 709 [M]⁺. IR (CH₂Cl₂): δ(CO) 2093 (m), 2038 (s), 2019 (s), 1975 (w), 1949 (w). ¹H NMR (CDCl₃, 293 K); δ 7.02 (s, 1 H, CH); 3.80 (s, 3 H, Me).

[Ru₃(MeOx)(CO)₁₁] (2). A solution of K[[Me₃Si]N] in toluene (0.6 mL, 0.5 M, 0.300 mmol) was added to a mixture of [MeOxH]OTf (70 mg, 0.313 mmol) and [Ru₃(CO)₁₂] (200 mg, 0.313 mmol). The solution was stirred for 1 h. The color changed from red to yellow. The reaction was worked up by extraction with dichloromethane, and the crude product was purified by column chromatography. The product was obtained as a yellow solid (250 mg, 51%). Anal. Calcd for C₆₀H₅₆N₄O₁₂Ru₃: C, 27.16; H, 1.14; N, 3.96. Found: C, 27.20; H, 1.17; N 3.90. (+)-FAB MS: m/z 709 [M]⁺. IR (CH₂Cl₂): δ(CO) 2093 (m), 2038 (s), 2019 (s), 1975 (w), 1949 (w). ¹H NMR (CDCl₃, 293 K); δ 7.02 (s, 1 H, CH); 3.80 (s, 3 H, Me).

hexane. Hexane–dichloromethane (2:1) eluted two yellow bands. The first one contained some unreacted [Os$_3$(CO)$_{12}$]. The second band contained compound 6 (160 mg, 74%). Anal. Calc. for C$_{2}$H$_{3}$N$_2$O$_3$: C, 59.5; H, 0.82; N, 7.85. Found: C, 59.5; H, 0.77; N, 7.80. (+)-FAB MS: m/z 976 [M$^+$]. IR (CHCl$_3$): $\nu _{CO}$ 2102 (w), 2068 (s), 2048 (s), 2011 (vs), 1979 (w), 1941 (w).

Computational Details. The optimized structure of [Ru(DippH)$_2$Im(CO)$_{11}$] was calculated by hybrid DFT, within the GAUSSIAN-03 program suite, using the Becke’s three-parameter hybrid exchange–correlation functional and the B3LYP nonlocal gradient correction. The LanL2DZ basis set, with relativistic effective core potentials, was used for the Ru atoms. The basis set used for the remaining atoms was the standard 6-31G, with addition of (d,p)-polarization. The structure shown in Figure 3 was confirmed as an energy minimum by calculation of analytical frequencies. The input model molecule was based on the X-ray structure of compound 4, conveniently modified by manually adding or removing the appropriate atoms.

X-Ray Diffraction Analyses. Diffraction data for 1 and 6 were measured at room temperature on a Bruker AXS SMART 1000 diffractometer, using graphite-monochromated Mo Kα radiation. Raw frame data were integrated with SAINT. Absorption corrections were applied with SADABS, and the structures were solved by direct methods and refined by full matrix least-squares against F2 with SHELXL. Diffraction data for 2, 3, and 4 were collected on a Nonius Kappa-CCD diffractometer using graphite-monochromated Cu Kα radiation. Absorption corrections were performed using XABS. Structures were solved by Patterson interpretation using the program DIRDIFF. Isotropic and full matrix anisotropic least-squares refinements were carried out using SHELXL. All non-H atoms of all structures were refined anisotropically. Hydrogen atoms were set in calculated positions and refined as riding atoms. In compound 2, we found that, due to disorder or twinning, the molecule was situated in the crystal in two independent positions with different site occupancies. For the main molecule, the Ru atoms were refined with a site occupancy factor of 0.9, whereas

the remaining atoms of this molecule were refined with a site occupancy factor of 1. The three main residual peaks in the final model were assigned as the Ru atoms of the minor molecule and were refined with a site occupancy factor of 0.1. This treatment resulted in good final discrepancy indexes. This crystallographic problem has previously been observed on a few occasions. Molecular plots were made with the PLATON program package. The WINGX program system was used throughout the structure determinations. A selection of crystal, measurement, and refinement data is given in Table 2. CCDC deposition numbers: 265383 (1), 662383 (2), 662384 (3), 662385 (4), and 662386 (6).

Acknowledgment. This work was supported by the European Union (FEDER grants), Ministerio de Educación y Ciencia (projects CTQ2007-60865 and MAT2006-1997), and Principado de Asturias (project IB05-014). M.G.S.-V. is also grateful to the University of Carabobo (Venezuela) for providing her a fellowship to do her Ph.D. thesis in Oviedo.

Supporting Information Available: Atomic coordinates for the DFT-optimized structure of [Ru3(Dipph2Im)(CO)11], a figure showing the X-ray structure of compound 3, and crystallographic data in CIF format for the compounds studied by X-ray diffraction. This material is available free of charge via the Internet at http://pubs.acs.org.