| Refinement                              |                                                             |
|-----------------------------------------|-------------------------------------------------------------|
| Refinement on $F^2$                     | $(\Delta/\sigma)_{\rm max}$ = 0.001                         |
| Final $R(F) = 0.0269$ for               | $\Delta \rho_{\rm max} = 0.194 \ {\rm e} \ {\rm \AA}^{-3}$  |
| $F > 4\sigma(F)$ data                   | $\Delta \rho_{\rm min} = -0.150 \ {\rm e} \ {\rm \AA}^{-3}$ |
| $wR(F^2) = 0.0616$ for all data         | Atomic scattering factors                                   |
| S = 1.057                               | from International Tables                                   |
| 3565 reflections                        | for Crystallography (1992,                                  |
| 150 parameters                          | Vol. C, Tables 4.2.6.8 and                                  |
| Calculated weights                      | 6.1.1.4)                                                    |
| $w = 1/[\sigma^2(F_o^2) + (0.0202P)^2]$ | Absolute configuration ac-                                  |
| +0.8121 <i>P</i> ]                      | cording to Flack (1983)                                     |
| where $P = (F_o^2 + 2F_c^2)/3$          |                                                             |

Data collection: DIF4 (Stoe & Cie, 1988). Cell refinement: DIF4. Data reduction: REDU4 (Stoe & Cie, 1988). Program(s) used to solve structure: SHELXS-92 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL-92 (Sheldrick, 1992). Molecular graphics: SHELXTL-Plus (Sheldrick, 1991). Software used to prepare material for publication: SHELXL-92.

### Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(\dot{A}^2)$

$$U_{\text{eq}} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j$$

|     | x            | у            | z            | $U_{eq}$    |
|-----|--------------|--------------|--------------|-------------|
| S1  | 0.07958 (3)  | 0.50720 (4)  | 0.98797 (2)  | 0.0327 (2)  |
| S2  | 0.11554 (3)  | 0.63303 (3)  | 0.92854 (2)  | 0.0319 (2)  |
| S3  | 0.10418 (3)  | 0.60140 (3)  | 0.82065 (2)  | 0.0276 (2)  |
| Na1 | 0.10709 (5)  | 0.38329 (5)  | 0.83890 (3)  | 0.0247 (3)  |
| N1  | 0.13872 (12) | 0.21307 (11) | 0.90150 (8)  | 0.0313 (8)  |
| N2  | 0.29592 (11) | 0.36127 (11) | 0.85166 (8)  | 0.0289 (7)  |
| N3  | 0.17224 (11) | 0.36322 (12) | 0.71214 (8)  | 0.0325 (8)  |
| C11 | 0.0722 (2)   | 0.1363 (2)   | 0.87043 (13) | 0.0511 (13) |
| C12 | 0.1193 (2)   | 0.2189 (2)   | 0.98012 (10) | 0.0433 (12) |
| C13 | 0.24482 (14) | 0.18790 (15) | 0.88728 (11) | 0.0347 (10) |
| C21 | 0.3395 (2)   | 0.4542 (2)   | 0.88127 (12) | 0.0433 (11) |
| C22 | 0.31559 (14) | 0.27586 (14) | 0.90035 (10) | 0.0338 (9)  |
| C23 | 0.33531 (14) | 0.3415 (2)   | 0.77781 (10) | 0.0349 (9)  |
| C31 | 0.1173 (2)   | 0.4340 (2)   | 0.66560 (10) | 0.0431 (12) |
| C32 | 0.1640 (2)   | 0.2622 (2)   | 0.68081 (11) | 0.0424 (12) |
| C33 | 0.27755 (13) | 0.3961 (2)   | 0.71878 (10) | 0.0378 (10) |

## Table 2. Geometric parameters (Å, °)

| S1—S2                    | 2.0487 (7)    | S3-Na1                  | 2.9073 (9) |
|--------------------------|---------------|-------------------------|------------|
| S1—S1 <sup>i</sup>       | 2.1158 (9)    | Na1-N3                  | 2.501 (2)  |
| \$2—\$3                  | 2.0344 (7)    | Na1—N2                  | 2.528 (2)  |
| S3-Na1 <sup>i</sup>      | 2.8245 (9)    | Na1—N1                  | 2.565 (2)  |
| S2—S1—S1 <sup>i</sup>    | 107.74 (3)    | N3-Na1-S3 <sup>i</sup>  | 103.79 (4) |
| \$3-\$2-\$1              | 109.65 (3)    | N2-Na1-S3 <sup>i</sup>  | 177.09 (4  |
| S2-S3-Na1i               | 86.70 (2)     | N1—Na1—S3 <sup>i</sup>  | 106.14 (4) |
| S2—S3—Na1                | 95.21 (2)     | N3—Na1—S3               | 90.14 (4)  |
| Na1 <sup>i</sup> —S3—Na1 | 94.05 (2)     | N2-Na1-S3               | 97.95 (4)  |
| N3-Na1-N2                | 74.53 (5)     | N1-Na1-S3               | 157.90 (4) |
| N3-Na1-N1                | 105.62 (5)    | S3 <sup>i</sup> —Na1—S3 | 84.37 (2)  |
| N2-Nal-N1                | 72.28 (5)     |                         |            |
|                          | Symmetry code | (i) -x, 1 - y, z.       |            |

DS thanks the University of Göttingen and the DAAD (Nato scholarship) for financial support.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and bond distances have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71149 (13 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HL1023]

#### References

Abrahams, S. C. & Grison, E. (1953). Acta Cryst. 6, 206-213.

- Banister, A. J., Barr, D., Brooker, A. T., Clegg, W., Cunnington, M. J., Doyle, M. J., Drake, S. R., Gill, W. R., Manning, K., Raithby, P. R., Snaith, R., Wade, K. & Wright, D. S. (1990). J. Chem. Soc. Chem. Commun. pp. 105-107.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1991). SHELXTL-Plus. Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1992). SHELXL-92. Program for crystal structure refinement. Univ. of Göttingen, Germany.
- Stoe & Cie (1988). DIF4. Version 7.08. Diffractometer control program. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (1988). REDU4. Data reduction program. Stoe & Cie, Darmstadt, Germany.
- Tatsumi, K., Inoue, Y., Nakamura, A., Cramer, R. E., VanDoorne, W. & Gilje, J. W. (1990). Angew. Chem. 102, 455-457; Angew. Chem. Int. Ed. Engl. 29, 422-424.
- Wells, A. F. (1984). Structural Inorganic Chemistry, 5th ed. Oxford Univ. Press.

Acta Cryst. (1993). C49, 1483-1485

# Structure of $\mu$ -[Bis(chloroacetato-O)mercury(II)- $\kappa^2 Hg$ ]- $\mu$ -[1,8-naphthalenediamino- $\kappa^2 NN'$ : $\kappa^2 NN'$ ]-bis[*cis*-dicarbony]-(triisopropylphosphine-P)ruthenium(I)]-(Ru - Ru)

S. GARCÍA-GRANDA\* AND

J. F. VAN DER MAELEN URÍA

Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, Julián Clavería s/n, 33006 Oviedo, Spain

J. A. CABEZA, J. M. FERNÁNDEZ-COLINAS AND V. RIERA

Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Julián Clavería s/n, 33006 Oviedo, Spain

(Received 8 October 1992; accepted 11 February 1993)

#### Abstract

The molecule shows a twofold symmetry through the Hg atom and the diaminonaphthalene ligand. Ru-Ru and Ru-Hg distances are 2.799(1) and 2.795 (1) Å, respectively.

#### Comment

This work is part of a project concerning the reactivity of the Ru—Ru bonds of binuclear ruthenium(I) complexes. The X-ray structures of some selected compounds have been published (Andreu, Cabeza, Riera, Robert & Jeannin, 1989; Cabeza, Fernández-Colinas, Riera, Pellinghelli & Tiripicchio, 1991; Cabeza, Fernández-Colinas, Riera, García-Granda & Van der Maelen Uría, 1991; Cabeza, Fernández-Colinas, García-Granda, Riera & Van der Maelen Uría, 1991). The reported compound (Fig. 1) is isotypic to the analogous trifluoroacetate (Cabeza, Fernández-Colinas, García-Granda, Riera & Van der Maelen Uría, 1992), showing the same twofold axis symmetry through Hg(1), C(6) and C(7). All structural parameters are, therefore, very similar in both structures. The Ru-Ru and Hg-Ru distances are 2.799 (1) and 2.795 (1) Å, respectively, and are slighly shorter and longer than those found in the fluoroacetate compound. The dihedral angle between the Ru-Hg-Ru and O(3)-Hg-O(3)' planes is 36.7 (2)°, against the value of 35.0 (2)° found in the structure referred to above.



Fig. 1. An EUCLID (Spek, 1982) plot, showing the molecular symmetry and atomic numbering scheme.

### **Experimental**

#### Crystal data

| $\Pi_{\mathbf{z}} \mathbf{D}_{\mathbf{y}} (\mathbf{C} \mathbf{U} \mathbf{C}   \mathbf{O}_{\mathbf{z}})$ | Mo Kormination                    | $H_{\alpha}(1) = R_{\mu}(1)$ | 2,795 (1) | P(1) - C(11)  | 1.876 (8) |
|---------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------|-----------|---------------|-----------|
| [HgRu <sub>2</sub> (C <sub>2</sub> H <sub>2</sub> ClO <sub>2</sub> ) <sub>2</sub> -                     |                                   | $R_{\rm H}(1) - C(2)$        | 1.892 (7) | C(11) - C(12) | 1.53 (1)  |
| $(C_{10}H_8N_2)(C_9H_{21}P)_2(CO)_4$                                                                    | $\lambda = 0.71073 \text{ A}$     | Ru(1) - Ru(1)*               | 2.799 (1) | C(14) - C(16) | 1.50(1)   |
| $M_r = 1178.42$                                                                                         | Cell parameters from 25           | N(1) - C(5)                  | 1.418 (8) | C(3) - Cl(1)  | 1.763 (1) |
| Monoclinic                                                                                              | reflections                       | C(6)-C(7)                    | 1.43 (1)  | C(4)—O(4)     | 1.21 (1)  |
| $C_2/c$                                                                                                 | $\theta = 15 - 17^{\circ}$        | C(9) - C(10)                 | 1.39 (1)  | Ru(1) - C(1)  | 1.882 (7) |
|                                                                                                         | $v = 4.482 \text{ mm}^{-1}$       | P(1) - C(17)                 | 1.861 (8) | Ru(1)—P(1)    | 2.426 (2) |
| a = 23.586 (8) A                                                                                        | $\mu = 4.462 \text{ mm}$          | C(14) - C(15)                | 1.54 (1)  | C(2)-O(2)     | 1.136 (8) |
| b = 12.584 (2) Å                                                                                        | T = 293  K                        | C(17) - C(19)                | 1.53 (1)  | C(5)-C(10)    | 1.380 (9) |
| c = 14540(5) Å                                                                                          | Prismatic                         | C(4)—O(3)                    | 1.24(1)   | C(8)C(9)      | 1.37 (1)  |
| $a = 02.92 (2)^{9}$                                                                                     | $0.40 \times 0.33 \times 0.10$ mm | Hg(1) - O(3)                 | 2.339 (6) | P(1) - C(14)  | 1.860 (7) |
| $\beta = 93.83(3)$                                                                                      | V-11                              | Ru(1) - N(1)                 | 2.140 (5) | C(11)-C(13)   | 1.53 (1)  |
| $V = 4306.0 (2) \text{ A}^3$                                                                            | rellow                            | C(1) = O(1)                  | 1.149 (8) | C(17)C(18)    | 1.53 (1)  |
| Z = 4                                                                                                   | Crystal source: synthesis         | C(5)—C(6)                    | 1.430 (8) | C(3)-C(4)     | 1.54 (1)  |
| $D_{\rm m} = 1.818 {\rm Mg}{\rm m}^{-3}$                                                                |                                   | C(7)-C(8)                    | 1.41 (1)  |               |           |

### Data collection

Hg( Ru(

| Enraf-Nonius CAD-4<br>diffractometer<br>$\omega$ -2 $\theta$ scans<br>$T_{min} = 0.77$ , $T_{max} = 1.34$<br>4099 measured reflections<br>2756 independent reflections<br>2626 observed reflections<br>$[I>3\sigma(I)]$ | $R_{int} = 0.027$<br>$\theta_{max} = 25^{\circ}$<br>$h = -27 \rightarrow 27$<br>$k = 0 \rightarrow 14$<br>$l = 0 \rightarrow 17$<br>3 standard reflections<br>frequency: 60 min<br>intensity variation: 5% |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Refinement                                                                                                                                                                                                              |                                                                                                                                                                                                            |
| Final $R = 0.033$                                                                                                                                                                                                       | $(\Delta/\sigma)_{\rm max} = 0.04$                                                                                                                                                                         |
| WR = 0.034                                                                                                                                                                                                              | $\Delta \rho_{\rm max} = 0.90 \ {\rm e \ A}$                                                                                                                                                               |
| 2626 reflections                                                                                                                                                                                                        | $\Delta \rho_{\rm min}$ = -0.75 e A <sup>-3</sup>                                                                                                                                                          |
| 306 parameters                                                                                                                                                                                                          | Atomic scattering factors                                                                                                                                                                                  |
| All H-atom parameters re-                                                                                                                                                                                               | from International Tables                                                                                                                                                                                  |

| fined                             | for X-ray Crystallograph  |  |  |
|-----------------------------------|---------------------------|--|--|
| $w = 1/[\sigma^2(F) + 0.0004F^2]$ | (1974, Vol. IV)           |  |  |
| Table 1 Fractional atomic         | coordinates and equivalen |  |  |

#### nt Table 1. Fractional atomic coordin isotropic thermal parameters $(Å^2)$

$$U_{\text{eq}} = \frac{1}{3} \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

. \_ \_

| x            | y                                                                                                                                                                                                                                                                                                                                                                                                 | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $U_{\rm eq}$                                          |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 0.00000      | 0.36659 (3)                                                                                                                                                                                                                                                                                                                                                                                       | 0.25000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0381 (1)                                            |
| -0.05400(2)  | 0.55886 (4)                                                                                                                                                                                                                                                                                                                                                                                       | 0.20379 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0264 (2)                                            |
| -0.0587 (3)  | 0.4860 (5)                                                                                                                                                                                                                                                                                                                                                                                        | 0.0905 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.032 (2)                                             |
| -0.0591 (2)  | 0.4476 (4)                                                                                                                                                                                                                                                                                                                                                                                        | 0.0187 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.051 (2)                                             |
| -0.1100 (3)  | 0.4751 (6)                                                                                                                                                                                                                                                                                                                                                                                        | 0.2565 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.037 (2)                                             |
| 0.1430 (2)   | 0.4259 (5)                                                                                                                                                                                                                                                                                                                                                                                        | 0.2909 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.061 (2)                                             |
| -0.0227(2)   | 0.6411 (4)                                                                                                                                                                                                                                                                                                                                                                                        | 0.3256 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.029 (2)                                             |
| -0.0214 (3)  | 0.7537 (5)                                                                                                                                                                                                                                                                                                                                                                                        | 0.3263 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.029 (2)                                             |
| 0.00000      | 0.8089 (7)                                                                                                                                                                                                                                                                                                                                                                                        | 0.25000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.034 (3)                                             |
| 0.00000      | 0.9229 (8)                                                                                                                                                                                                                                                                                                                                                                                        | 0.25000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.040 (3)                                             |
| -0.0204 (4)  | 0.9764 (7)                                                                                                                                                                                                                                                                                                                                                                                        | 0.3265 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.062 (3)                                             |
| -0.0406 (4)  | 0.9225 (7)                                                                                                                                                                                                                                                                                                                                                                                        | 0.3993 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.053 (3)                                             |
| -0.0407 (3)  | 0.8117 (6)                                                                                                                                                                                                                                                                                                                                                                                        | 0.3986 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.039 (2)                                             |
| -0.12884 (8) | 0.6774 (1)                                                                                                                                                                                                                                                                                                                                                                                        | 0.1444 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0351 (6)                                            |
| -0.1053 (3)  | 0.7690 (6)                                                                                                                                                                                                                                                                                                                                                                                        | 0.0526 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.045 (3)                                             |
| -0.0678 (4)  | 0.7150 (8)                                                                                                                                                                                                                                                                                                                                                                                        | -0.0152 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.052 (3)                                             |
| -0.1515 (4)  | 0.8297 (9)                                                                                                                                                                                                                                                                                                                                                                                        | -0.0051 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.093 (5)                                             |
| -0.1943 (3)  | 0.6159 (6)                                                                                                                                                                                                                                                                                                                                                                                        | 0.0893 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.048 (3)                                             |
| -0.2332 (4)  | 0.5623 (9)                                                                                                                                                                                                                                                                                                                                                                                        | 0.1566 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.079 (4)                                             |
| -0.1858 (4)  | 0.541 (1)                                                                                                                                                                                                                                                                                                                                                                                         | 0.0112 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.088 (4)                                             |
| -0.1546 (4)  | 0.7665 (7)                                                                                                                                                                                                                                                                                                                                                                                        | 0.2348 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.054 (3)                                             |
| -0.1643 (5)  | 0.710(1)                                                                                                                                                                                                                                                                                                                                                                                          | 0.3257 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.065 (4)                                             |
| -0.2057 (6)  | 0.837 (1)                                                                                                                                                                                                                                                                                                                                                                                         | 0.2063 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.110 (6)                                             |
| -0.1298 (5)  | 0.1210 (9)                                                                                                                                                                                                                                                                                                                                                                                        | 0.1822 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.100 (5)                                             |
| -0.1739 (5)  | 0.1283 (9)                                                                                                                                                                                                                                                                                                                                                                                        | 0.0797 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.170 (3)                                             |
| -0.0859 (4)  | 0.2121 (6)                                                                                                                                                                                                                                                                                                                                                                                        | 0.1857 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.050 (3)                                             |
| -0.0655 (3)  | 0.2293 (5)                                                                                                                                                                                                                                                                                                                                                                                        | 0.2653 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.072 (2)                                             |
| -0.0701 (4)  | 0.2564 (6)                                                                                                                                                                                                                                                                                                                                                                                        | 0.1180 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.103 (4)                                             |
|              | x<br>0.00000<br>-0.05400 (2)<br>-0.0587 (3)<br>-0.0591 (2)<br>-0.1100 (3)<br>-0.1430 (2)<br>-0.0227 (2)<br>-0.0214 (3)<br>0.00000<br>-0.0204 (4)<br>-0.0406 (4)<br>-0.0406 (4)<br>-0.0407 (3)<br>-0.12884 (8)<br>-0.1515 (4)<br>-0.1943 (3)<br>-0.2332 (4)<br>-0.1546 (4)<br>-0.1546 (4)<br>-0.1643 (5)<br>-0.2057 (6)<br>-0.1298 (5)<br>-0.1739 (5)<br>-0.0859 (4)<br>-0.0855 (3)<br>-0.0701 (4) | x         y $0.00000$ $0.36659$ (3) $-0.05400$ (2) $0.55886$ (4) $-0.0587$ (3) $0.4860$ (5) $-0.0591$ (2) $0.4476$ (4) $-0.1100$ (3) $0.4751$ (6) $-0.1100$ (3) $0.4751$ (6) $-0.1227$ (2) $0.6411$ (4) $-0.0227$ (2) $0.6411$ (4) $-0.0214$ (3) $0.7537$ (5) $0.00000$ $0.8089$ (7) $0.00000$ $0.8089$ (7) $0.00000$ $0.8089$ (7) $0.00000$ $0.8089$ (7) $0.00000$ $0.8089$ (7) $0.00000$ $0.8089$ (7) $0.00000$ $0.8225$ (8) $-0.0204$ (4) $0.9764$ (7) $-0.0407$ (3) $0.8117$ (6) $-0.12884$ (8) $0.6774$ (1) $-0.1515$ (4) $0.2829$ (9) $-0.1943$ (3) $0.6159$ (6) $-0.2332$ (4) $0.5623$ (9) $-0.1858$ (4) $0.5411$ (1) $-0.1546$ (5) $0.1210$ (9) $-0.1546$ (5) $0.12283$ (9) | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |

#### Table 2. Geometric parameters (Å, °)

| O(3) - Hg(1) - Ru(1)  | 111.6 (2) | C(1) - Ru(1) - Hg(1)      | 77.7 (2)   |
|-----------------------|-----------|---------------------------|------------|
| C(2) - Ru(1) - Hg(1)  | 74.9 (2)  | C(2) - Ru(1) - C(1)       | 94.7 (3)   |
| N(1) - Ru(1) - Hg(1)  | 95.4 (1)  | N(1) - Ru(1) - C(1)       | 163.2 (2)  |
| N(1) - Ru(1) - C(2)   | 98.4 (3)  | P(1) - Ru(1) - Hg(1)      | 158.00 (1) |
| P(1) - Ru(1) - C(1)   | 89.4 (2)  | P(1) - Ru(1) - C(2)       | 88.6 (2)   |
| P(1) - Ru(1) - N(1)   | 101.5 (1) | $Ru(1) - Hg(1) - Ru(1)^*$ | 60.10(1)   |
| O(1) - C(1) - Ru(1)   | 174.8 (6) | O(2) - C(2) - Ru(1)       | 177.8 (7)  |
| C(5) - N(1) - Ru(1)   | 119.7 (4) | C(6) - C(5) - N(1)        | 119.3 (6)  |
| C(10) - C(5) - N(1)   | 121.7 (6) | C(10) - C(5) - C(6)       | 119.0 (6)  |
| C(7) - C(6) - C(5)    | 119.1 (4) | C(8) - C(7) - C(6)        | 118.5 (5)  |
| C(9) - C(8) - C(7)    | 121.8 (8) | C(10) - C(9) - C(8)       | 119.4 (8)  |
| C(9) - C(10) - C(5)   | 122.2 (7) | C(11) - P(1) - Ru(1)      | 112.8 (2)  |
| C(14) - P(1) - Ru(1)  | 117.5 (3) | C(14) - P(1) - C(11)      | 103.1 (4)  |
| C(17) - P(1) - Ru(1)  | 112.5 (3) | C(17) - P(1) - C(11)      | 105.0 (4)  |
| C(17) - P(1) - C(14)  | 104.7 (4) | C(12) - C(11) - P(1)      | 113.4 (5)  |
| C(13) - C(11) - P(1)  | 117.5 (6) | C(13) - C(11) - C(12)     | 106.9 (8)  |
| C(15) - C(14) - P(1)  | 114.9 (6) | C(16) - C(14) - P(1)      | 116.0 (6)  |
| C(16) - C(14) - C(15) | 108.8 (8) | C(18) - C(17) - P(1)      | 114.0 (6)  |
| C(19) - C(17) - P(1)  | 116.4 (7) | C(19) - C(17) - C(18)     | 109.9 (9)  |
| C(4) - C(3) - Cl(1)   | 110.2 (4) | O(3)-C(4)-C(3)            | 112.1 (7)  |
| O(4) - C(4) - C(3)    | 123.9 (8) | O(4)-C(4)-O(3)            | 123.7 (8)  |
| C(4) - O(3) - Hg(1)   | 104.9 (5) |                           |            |

Synthesis: the title compound was prepared as described previously (Cabeza *et al.*, 1992). It was recrystallized by layering diethyl ether on a concentrated solution of the complex in dichloromethane, allowing the layers to diffuse slowly at 253 K. Profile analysis was performed on all reflections (Lehmann & Larsen, 1974; Grant & Gabe, 1978). Some doubly measured reflections were averaged. Lorentz and polarization corrections were applied and data reduced to  $|F_o|$  values.

Structure solved by Patterson interpretation using the program *SHELXS86* (Sheldrick, 1985). Solution showed a  $C_2$  axis through the Hg(1), C(5) and C(6) atoms. Isotropic least-squares refinement, using a local version of *SHELX76* (Sheldrick, 1976; Van der Maelen Uría, 1991), converged to R = 0.12. Empirical absorption correction (Walker & Stuart, 1983) lowered this parameter to R = 0.09.

Anisotropic refinement followed by a difference Fourier synthesis allowed the location of all the H atoms. Positional parameters and anisotropic thermal parameters of the non-H atoms were refined. All H atoms were refined isotropically, including positional parameters, except for C(13), C(15), C(16) and C(19) methyl groups, H(31) and (H32), which were left riding, constraining the distances to their parent atoms.

Geometrical calculations were made with *PARST* (Nardelli, 1983). All calculations were carried out on a MicroVAX-3400 at the Scientific Computer Center, University of Oviedo, Spain.

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71088 (29 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HU1035]

#### References

- Andreu, P. L., Cabeza, J. A., Riera, V., Robert, F. & Jeannin, Y. (1989). J. Organomet. Chem. 372, C15-C18.
- Cabeza, J. A., Fernández-Colinas, J. M., García-Granda, S., Riera, V. & Van der Maelen Uría, J. F. (1991). J. Chem. Soc. Chem. Commun. pp. 168-170.
- Cabeza, J. A., Fernández-Colinas, J. M., García-Granda, S., Riera, V. & Van der Maelen Uría, J. F. (1992). *Inorg. Chem.* **31**, 1233-1238.

©1993 International Union of Crystallography Printed in Great Britain – all rights reserved

- Cabeza, J. A., Fernández-Colinas, J. M., Riera, V., García-Granda, S. & Van der Maelen Uría, J. F. (1991). *Inorg. Chim. Acta*, **185**, 187-192.
- Cabeza, J. A., Fernández-Colinas, J. M., Riera, V., Pellinghelli, M. A. & Tiripicchio, A. (1991). J. Chem. Soc. Dalton Trans. pp. 371–377.
- Grant, D. F. & Gabe, E. J. (1978). J. Appl. Cryst. 11, 114-120.
- Lehmann, M. S. & Larsen, F. K. (1974). Acta Cryst. A30, 580-584.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1985). SHELXS86. In Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger & R. Goddard, pp. 175–189. Oxford: Clarendon Press.
- Spek, A. L. (1982). The EUCLID package. In Computational Crystallography, edited by D. Sayre. Oxford: Clarendon Press.
- Van der Maelen Uria, J. F. (1991). PhD thesis. Univ. of Oviedo, Oviedo, Spain.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1993). C49, 1485-1487

## Structure of Diaqua(4,7-diazadecanediamide- $N^4$ , $N^7$ ,O,O')nickel(II) Perchlorate

TSONG-JEN LEE AND ARLOHUN WANG

Department of Physics, National Tsing Hua University, Hsinchu, 30043 Taiwan

TA-YUNG CHI AND CHUNG-SUN CHUNG

Department of Chemistry, National Tsing Hua University, Hsinchu, 3004-3 Taiwan

(Received 21 October 1992; accepted 2 February 1993)

#### Abstract

The Ni<sup>II</sup> ion is six-coordinated in a distorted octahedral geometry, through two equatorial amino N atoms and two equatorial amide O atoms of the tetradentate ligand, and two axial water O atoms.

#### Comment

The Ni<sup>II</sup> ion is six-coordinated in a distorted octahedral geometry, where the quadridentate ligand 4,7diazadecanediamide coordinates to the Ni<sup>II</sup> ion with two amino N atoms and two amide O atoms in equatorial positions (Freeman, 1967; Sigel & Martin, 1985); two water O atoms occupy the axial positions. The two asymmetric N atoms, N(2) and N(3), have the same *R* or *S* configurations. The two N(amino)— Ni—O(amide) bond angles are close to  $180^{\circ}$  and the NiN<sub>2</sub>O<sub>2</sub> group is almost planar. The diazadiamide in