Additions and Corrections

1994, Volume 13

Javier A. Cabeza,* José M. Fernández-Colinas, Angela Llamazares, Víctor Riera, Santiago García-Granda, and Juan F. Van der Maelen: Carbonyl Clusters as Homogeneous Catalysts. Kinetic and Molecular Aspects of the Hydrogenation of Diphenylacetylene Promoted by an Alkenyl-Bridged Triruthenium Cluster Complex.

Page 4352. The η^1 -alkenyl derivative [Ru₃(μ_3 -ampy)(η^1 - $PhC=CHPh)(CO)_{9}$ (4) is not the final product of the reaction of $[Ru_3(\mu_3-ampy)(\mu-PhC=CHPh)(CO)_8](1)$ with carbon monoxide, but just a possible (unobserved) intermediate. The final product of this reaction is the μ - α , β -diphenylpropenoyl derivative [Ru₃(μ ₃-ampy)(μ -O=CCPh=CHPh)(CO)₉]¹ (Scheme 1). Although this compound is only stable in solution under a CO atmosphere, it has now been characterized by its ¹³C NMR spectrum and by reactivity studies. Its ¹³C NMR spectrum $(CD_2Cl_2, -70 \ ^{\circ}C)$ contains a resonance at 301.4 ppm (acyl carbon) which was initially overlooked. α -Phenylcinnamaldehyde and α -phenylcinnamyl alcohol (GC-MS identification) are produced when a COsaturated solution of this cluster in dichloromethane is treated with $[PPN][BH_4]$.

We are very grateful to Dr. Guy Lavigne for his comments and suggestions.

⁽¹⁾ Nombel, P.; Lugan, N.; Mulla, F.; Lavigne, G. Organometallics **1994**, 13, 4673. OM9502392