(Benzophenone imine-N)nonacarbonyldirhenium (0)(Re-Re) Javier A. Cabeza, Ignacio del Río, Noé Zuñiga-Villarreal and Santiago García-Granda

[^0]Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Javier A. Cabeza, ${ }^{\text {a }}$ Ignacio del Río, ${ }^{a}$ Noé Zuñiga-Villarreal ${ }^{\text {a }}$ and Santiago García-Granda ${ }^{\text {b }}$
${ }^{\text {an }}$ Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Avda. Julián Clavería, 8, 33006
Oviedo, Spain, and ${ }^{\mathbf{b}}$ Departamento de Química Física y Analítica, Facultad de Química,
Universidad de Oviedo, Avda. Julián Clavería,
8, 33006 Oviedo, Spain
Correspondence e-mail:
sgg@sauron.quimica.uniovi.es

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.016 \AA$
R factor $=0.034$
$w R$ factor $=0.094$
Data-to-parameter ratio $=14.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

(Benzophenone imine-N)nonacarbonyldirhenium (0)(Re—Re)

The reaction of $\left[\operatorname{Re}_{2}(\mathrm{CO})_{10}\right]$ with benzophenone imine in dichloroethane, in the presence of $\mathrm{Me}_{3} \mathrm{NO}$, leads to the binuclear title compound, nonacarbonyl(diphenylmethan-imine- N) dirhenium $(0)(R e-R e), \quad\left[\mathrm{Re}_{2}\left(\mathrm{HN}=\mathrm{CPh}_{2}\right)(\mathrm{CO})_{9}\right]$. Both Re atoms are in an octahedral environment. The $\mathrm{HN}=\mathrm{CPh}_{2}$ ligand is attached to one of the metal atoms through the N atom, occupying an equatorial position. The equatorial carbonyl ligands of each octahedral fragment are staggered by 45°.

Comment

Interest in the synthesis and reactivity of late-transition-metal amido complexes has grown considerably in recent years as a consequence of the relative scarcity of such compounds and of their potential use in carbon-nitrogen bond-forming reactions (Cabeza et al., 1998). In this field, we have recently communicated the first insertion of a non-activated alkyne into a metal-nitrogen bond, achieved on a triruthenium cluster derived from benzophenone imine (Cabeza et al., 1997). In an extension of the interesting reactivity observed for these ruthenium complexes to other transition metals, we studied the reactivity of benzophenone imine with osmium (Cabeza et al., 2000) and rhenium carbonyl derivatives. The crystal structure reported herein of (benzophenone imine- N) nonacarbonyldirhenium $(0)(R e-R e)$, (I), is part of this latter study.

Received 22 January 2001 Accepted 23 February 2001 Online 28 February 2001

(I)

Experimental

$\mathrm{Me}_{3} \mathrm{NO}(46 \mathrm{mg}, 0.767 \mathrm{mmol})$ was added to a solution of $\left[\mathrm{Re}_{2}(\mathrm{CO})_{10}\right]$ ($200 \mathrm{mg}, 0.307 \mathrm{mmol}$) and benzophenone imine ($103 \mu \mathrm{l}, 0.614 \mathrm{mmol}$) in 1,2-dichloroethane (20 ml). The color changed immediately to dark orange. The mixture was heated at reflux temperature for 1 h . The solution was concentrated under reduced pressure to ca 3 ml and the residue set on the top of a column of neutral alumina ($2 \times 10 \mathrm{~cm}$, activity I). Elution with hexanes afforded a small amount of unreacted $\left[\mathrm{Re}_{2}(\mathrm{CO})_{10}\right]$. Subsequent elution with hexanes/dichloromethane (3:1) afforded an orange band which contained 110 mg (44%) of the title compound, which was crystallized from $\mathrm{Et}_{2} \mathrm{O} /$ hexanes at 253 K .

Crystal data

$\left[\mathrm{Re}_{2}\left(\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}\right)(\mathrm{CO})_{9}\right]$
$M_{r}=805.72$
Monoclinic, $P 2_{1} / c$
$a=10.8071(6) \AA$
$b=13.6951(8) \AA \AA$
$c=16.4285(11) \AA$
$\beta=102.780(4){ }_{2}^{\circ}$
$V=2371.3(2) \AA^{3}$
$Z=4$
$D_{x}=2.275 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2241 reflections
$\theta=1-25^{\circ}$
$\mu=10.25 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prismatic, yellow
$0.26 \times 0.10 \times 0.07 \mathrm{~mm}$

Data collection

Nonius CAD-4 diffractometer $\omega-2 \theta$ scans
Absorption correction: empirical
(XABS2; Parkin et al., 1995)
$T_{\text {min }}=0.113, T_{\text {max }}=0.485$
7361 measured reflections
4499 independent reflections
2349 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.054$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.094$
$S=1.00$
4499 reflections
307 parameters
$\theta_{\text {max }}=26.0^{\circ}$
$h=-13 \rightarrow 12$
$k=0 \rightarrow 16$
$l=0 \rightarrow 20$
3 standard reflections every 200 reflections frequency: 60 min intensity decay: 2.4%

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0426 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.94 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.28 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Re1-C15	1.904 (11)	N1-C1	1.285 (11)
Re1-C17	1.929 (11)	O14-C14	1.137 (13)
Re1-C16	1.976 (12)	O15-C15	1.160 (12)
Re1-C14	1.986 (12)	O16-C16	1.136 (12)
Re1-N1	2.209 (7)	O17-C17	1.146 (11)
Re1-Re2	3.0542 (6)	O18-C18	1.169 (15)
Re2-C18	1.918 (14)	O19-C19	1.133 (13)
Re2-C20	1.956 (12)	O20-C20	1.166 (12)
Re2-C21	1.960 (13)	O21-C21	1.145 (13)
Re2-C19	1.968 (14)	O22-C22	1.143 (12)
Re2-C22	1.995 (12)		
C15-Re1-C17	90.5 (4)	C18-Re2-C21	94.2 (6)
C15-Re1-C16	91.3 (4)	C20-Re2-C21	90.5 (5)
C17-Re1-C16	89.6 (5)	C18-Re2-C19	96.2 (6)
C15-Re1-C14	94.4 (5)	C20-Re2-C19	87.9 (5)
C17-Re1-C14	88.6 (4)	C21-Re2-C19	169.5 (5)
C16-Re1-C14	174.0 (5)	C18-Re2-C22	96.4 (5)
C15-Re1-N1	93.6 (3)	$\mathrm{C} 20-\mathrm{Re} 2-\mathrm{C} 22$	169.0 (5)
C17-Re1-N1	175.9 (4)	$\mathrm{C} 21-\mathrm{Re} 2-\mathrm{C} 22$	91.2 (5)
C16-Re1-N1	89.9 (4)	C19-Re2-C22	88.5 (5)
C14-Re1-N1	91.5 (4)	C18-Re2-Re1	177.6 (4)
C15-Re1-Re2	177.1 (3)	C20-Re2-Re1	83.9 (3)
C17-Re1-Re2	87.3 (3)	C21-Re2-Re1	84.1 (4)
C16-Re1-Re2	86.9 (3)	C19-Re2-Re1	85.4 (3)
C14-Re1-Re2	87.3 (3)	$\mathrm{C} 22-\mathrm{Re} 2-\mathrm{Re} 1$	85.4 (3)
N1-Re1-Re2	88.6 (2)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Re} 1$	137.4 (7)
C18-Re2-C20	94.3 (5)		

H atoms were placed in geometrically idealized positions employing appropriate riding models with isotropic displacement parameters constrained to 1.2 times the $U_{\text {eq }}$ of their carrier atoms.

Figure 1
The structure of the title complex showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CRYSDA (Beurskens et al., 1992); data reduction: REFLEX (García-Granda et al., 1999); program(s) used to solve structure: DIRDIF (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: EUCLID (Spek, 1982); software used to prepare material for publication: SHELXL97.

We thank the Spanish CICYT (BQU2000-0219) for partial support.

References

Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. \& Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
Cabeza, J. A., del Río, I., Franco, R. J., Grepioni, F. \& Riera, V. (1997). Organometallics, 16, 2763-2764.
Cabeza, J. A., del Río, I., Grepioni, F. \& Riera, V. (2000). Organometallics, 19, 4643-4646.
Cabeza, J. A., del Río, I., Moreno, M., Riera, V. \& Grepioni, F. (1998). Organometallics, 17, 3027-3033.
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
García-Granda, S., Aguirre-Pérez, A. \& Gutiérrez-Rodríguez, A. (1999). THE REFLEX. Internal Report. X-ray Laboratory, University of Oviedo, Spain. Parkin, S., Moezzi, B. \& Hope, H. (1995). J. Appl. Cryst. 28, 53-56.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1982). The EUCLID Package. In Computational Crystallography, edited by D. Sayre, p. 528. Oxford: Clarendon Press.

[^0]: Copyright © International Union of Crystallography
 Author(s) of this paper may load this reprint on their own web site provided that this cover page is retained. Republication of this article or its storage in electronic databases or the like is not permitted without prior permission in writing from the IUCr.

