Measuring Technical Efficiency with Neural Networks: a Review

Daniel Santín, Francisco Delgado y Aurelia Valiño
MEASURING TECHNICAL EFFICIENCY WITH NEURAL NETWORKS: A REVIEW

Daniel Santín*, Francisco J. Delgado* and Aurelia Valiño*

Efficiency Series Paper 09/2001

Abstract
The main purpose of this paper is to provide an introduction to artificial neural networks (ANNs) and to review their applications on efficiency analysis. Finally, a comparison of efficiency techniques in a non-linear production function is carried out. Our results suggest that ANNs are a promising alternative to traditional approaches, econometric models and non-parametric methods such as data envelopment analysis (DEA), to fit production functions and measure efficiency under non-linear contexts.

Keywords: Artificial neural networks, efficiency, non-linear production function.

* Departamento de Economía Aplicada, Universidad Complutense de Madrid, Spain.
* Departamento de Economía, Universidad de Oviedo, Spain.
* Corresponding Author. Departamento de Economía Aplicada, Universidad Complutense de Madrid, Spain.
E-mails: dsantin@ccee.ucm.es, fdelgado@econo.uniovi.es, ecap316@sis.ucm.es
1. Introduction

A wide range of statistical and econometric techniques exists to apply in economics, where the complex reality must be modelled. Artificial neural networks (ANNs) are relatively new techniques that have been applied with success in a variety of disciplines: speech and image recognition, engineering, robotics, meteorology, banking, stock markets, etc.

ANNs have its origins in the study of the complex behaviour of the human brain. McCulloch and Pitts (1943) introduced simple models with binary neurons. Then, Rosenblatt (1958) proposed the multi-layer structure with a learning mechanism based on the work of Hebb (1949), the so-called perceptron, and first neural networks applications began with Widrow (1959).

However, Minsky and Papert (1969) pointed out that a two-layer perceptron was unable to solve the logical XOR (a basic non-linear problem). After a decay in neural networks researching during 70’s, the work by Rumelhart et al. (1986) had an important role in the growth of this technique. They rediscovered the most used learning algorithm, the so-called backpropagation algorithm (BP), together with the use of a three layer perceptron. This neural network was able to deal with non-linear problems.

Although ANNs arose to model the brain, they have been applied when there is not theoretical evidence about the functional form. In this way, ANNs are data-based, not model-based.

The paper is organized as follows. The second section provides an introduction to ANNs. Its advantages and drawbacks are revised too. The third part is dedicated to ANNs on efficiency analysis, where neural networks form a promising analysis tool together with known econometric models as stochastic frontier analysis (SFA) and non parametric methods such as data envelopment analysis (DEA). This section concludes with a review of some published papers about ANNs and efficiency. A simulation procedure is carried out in sections 4 and 5 to compare several efficiency techniques in a non-linear production function context. The final section of the paper offers conclusions and suggests areas for future research.
2. Artificial neural networks: an overview

There is a vast literature about ANNs, basically in the empirical field, since middle 80’s. In this section theoretical background is supplied. ANNs are normally arranged in three layers of neurons, the so-called multilayer structure:

- Input layer: its neurons (also called nodes or processing units) introduce the model inputs.
- Hidden layer(s) (one or more layers): its nodes combine the inputs with weights that are adapted during the learning process.
- Output layer: this layer provides the estimations of the network.

Another breaking point in the neural history was 1989. Several authors published this year that ANNs are universal approximators of functions (Carroll and Dickinson, 1989; Cybenko, 1989; Funahashi, 1989; Hecht-Nielsen, 1989; Hornik et al., 1989; White, 1990). Later, it was demonstrated that ANNs could also approximate their derivates (Hornik et al., 1990). These results justified the forward success reached in applications. Scarselli and Chung (1998) provide an actual and complete review of this property.

Among the different networks, the feedforward neural networks or multilayer perceptron (MLP) are the most commonly used. In these networks, the output is function of the linear combination of hidden units activations, each of one is a non linear function of the weighted sum of inputs. In this way, from:

\[y = f(\mathbf{x}, \theta) + \varepsilon \]

2 Other networks are Radial Basis Functions Networks, relate to cluster and principal component analysis. The Recurrent Networks are extensions of the feed-forward networks, because they incorporate feedbacks, such as the Jordan and Elman networks (Kuan and Liu, 1995).

3 For simplicity, we consider one output, but it is easy to extend to various outputs.
where \(\mathbf{x} \) is the vector of explanatory variables, \(\varepsilon \) the error component (assumed independently and identically distributed, with zero mean and constant variance), \(f(\mathbf{x}, \theta) = \hat{y} \) is the unknown function to estimate from the available information, the network consists of:

\[
\hat{y} = f(\mathbf{x}, \Theta) = F \left(\beta_o + \sum_{j=1}^{m} G (\gamma_j + \sum_{i=1}^{n} x_i \alpha_{ij}) \beta_j \right)
\]

where:

\(\hat{y} \): network output
\(F \): output layer activation function
\(G \): hidden layer activation function
\(n \): number of input units
\(m \): number of hidden units
\(\mathbf{x} \): inputs vector (i = 1...n)
\(\Theta \): weights vector (parameters):
\(\beta_o \): output bias
\(\gamma_j \): hidden units biases (j = 1...m)
\(\alpha_{ij} \): weight from input unit \(i \) to hidden unit \(j \)
\(\beta_j \): weights from hidden unit \(j \) to output

From (2), it can be observed that MLPs are mathematical models often equivalent to traditional models in econometrics such as linear regression, logit, AR models for time series analysis..., but with specific terminology and estimation methods (Cheng and Titterington, 1994). For example, in time series analysis, it is possible to predict the value of a variable \(y \) at the moment \(t \), \(y_t \), from past observations, \(y_{t-1}, y_{t-2}, y_{t-3}, \ldots \); then the network is a non linear autoregressive model:

\[
\hat{y}_t = F \left(\beta_o + \sum_{j=1}^{m} G (\gamma_j + \sum_{i=1}^{n} y_{t-i} \alpha_{ij}) \beta_j \right)
\]

Figure 1 represents a MLP with three layers and one output:
The activation function for output layer is generally linear. The logistic function is used for classification purposes. The non linear feature is introduced at the hidden transfer function. From the previous universal approximation studies, these transfer functions must have mild regularity conditions: continuous, bounded, differentiable and monotonic increasing. The most popular transfer function is sigmoid or logistic⁴, nearly linear in the central part. The transfer functions⁵ bound the output to a finite range, [0,1] in the sigmoidal function:

\[
G : \mathbb{R} \rightarrow [0,1] \left\{ G(a) = \frac{1}{1 + e^{-a}}, a \in \mathbb{R} \right\}
\]

Augmented single layer networks incorporate direct links between input and output layers with a linear term. Kuan and White (1994) explained that “given the popularity of linear models in econometrics, this form is particularly appealing, as it suggests that

⁴ In networks without hidden layer, the output can be interpreted as “a posteriori” probabilities - relate to discriminant functions-. With hidden layer, we can interpret the outputs as conditional probabilities (Bishop, 1995).

⁵ Another frequent function is tanh: \(\mathbb{R} \rightarrow [-1,1] \left\{ G(a) = \frac{e^a - e^{-a}}{e^a + e^{-a}}, a \in \mathbb{R} \right\} \). This function differs from sigmoidal (4) in a linear transformation, \(\tanh \left(\frac{a}{2} \right) = 2 \cdot \text{sigm}(a) - 1 \), and occasionally it can achieve faster convergence (Bishop, 1995).
ANN models can be viewed as extensions of, rather than as alternatives to, the familiar models:

\[y = f(x, \Theta) = F \left(\beta_0 + \sum_{i=1}^{n} x_i \alpha_i + \sum_{j=1}^{m} G \left(\gamma_j + \sum_{i=1}^{n} x_i \alpha_{ij} \right) \beta_j \right) \] \hspace{1cm} (5)

From (5) note that if \(\beta_j = 0, j = 1...m \), and if \(F \) is linear, the network is a linear model. Hence White (1989a) implemented a neural network test for non-linearity. This test is compared with other similar tests by Lee et al. (1993).

Architecture selection is one major issue with implications on the empirical results and consists of:

1) Data transformation.
2) Input variables and number, \(n \).
3) Hidden units number, \(m \).
4) Hidden and output activation function.
5) Weight elimination or pruning.

All are open questions today and there are many answers to each one. Data transformation is a common issue: \([0,1]\) or \([a,b]\) normalization, detrended and/or deseasonalized data in time series analysis... The hidden units number is determined by a trial-error\(^6\) process considering \(m = 1, 2, 3, 4... \) Finally, it is common to eliminate "irrelevant" inputs or hidden units (White, 1989b).

Another critical issue in ANNs is the neural learning or model estimation, based upon searching the weights that minimize some cost function such as square error:

\[\min_{\Theta} \left[E(y - f(x, \Theta))^2 \right] \] \hspace{1cm} (6)

The most popular process is the BP algorithm:

\[\Theta(k+1) = \Theta(k) + \eta \frac{\partial E}{\partial \Theta} (k) \] \hspace{1cm} (7)

\[\Theta(k+1) = \Theta(k) + \eta \nabla f(x, \Theta) [y - f(x, \Theta)] \] \hspace{1cm} (8)

\(^6\) Common criterions for model selection are SIC (Schwartz Information Criterion) or AIC (Akaike Information Criterion).
BP is an iterative process (k indicates iteration). Parameters are revised from the error function \(E \) gradient by the learning rate \(\eta \), constant or variable. The error propagates backwards to correct the weights until some stop criterion –iteration number, error...- is reached. BP has been criticized because of slow convergence, local minimum problem and sensitivity to initial values and \(\eta \). Schiffmann et al. (1992) proposed some improvements\(^7\).

After neural training (training set), new observations (validation and/or test sets) are presented to the network to verify the so-called generalization capability. Here it is relevant the statistical classical bias-variance dilemma (Geman et al., 1992) or overfitting problem.

ANNs have advantages, but logically they also have several drawbacks (figure 2). Therefore, ANNs can learn from experience and can generalize, estimate, predict, with few assumptions about data and relationships between variables. Hence, ANNs have an important role when these relationships are unknown (non parametric method) or non linear (non linear method), provided there are enough observations (flexible form and universal approximation property). However, the flexibility can conduct to learn the noise, and data are not very large in economic series. These restrictions promotes the search of parsimonious models. Finally, algorithm convergence and trial and error process are some relevant drawbacks too.

\[^7\] One alternative consists of adding a term called momentum:

\[
\Theta(k + 1) = \Theta(k) + \eta \frac{\partial E}{\partial \Theta}(k) + \mu \Delta \Theta(k - 1).
\]
3. ANNs and efficiency

Efficiency analysis (Farrell, 1957) is a relevant field in economics. The appropriate use of few resources with the available technology is referred to as technical efficiency. When the technology is not fixed, input combination is searched, and the problem is the so-called allocative efficiency. Fried et al. (1993) and Álvarez (2001) are excellent references for a review of the techniques and applications in the measurement of productive efficiency.

In this analysis, a key issue is the frontier function estimation. This estimation can be carried out following two alternatives, parametric and non parametric techniques:

- **Parametric methods:** a functional form is adopted such as Cobb-Douglas, translog, CES, Leontief generalized.... Parametric techniques can be deterministic or stochastic:
 - Deterministic: frontier deviations are explained because of inefficiency.
 - Stochastic: frontier deviations are decomposed into noise –usually semi-normal- and inefficiency components (Aigner et al., 1977).

Estimations can be done by COLS (corrected ordinary least squares), or maximum likelihood. In COLS independent term is corrected by adding the largest positive error from initial OLS.

- **Non parametric techniques:** no functional form is assumed:
 - Data envelopment analysis (DEA), Charnes et al. (1978). A deterministic frontier is formed by enveloping the available data using mathematical programming. Constant/variable returns to scale and input/output combinations convexity are common assumptions.

Thus, from the following general expression:

\[
y_i = f(x_i, \Theta) + \varepsilon_i - u_i
\]

where \(u_i \geq 0 \) is technical inefficiency, we can adopt the network (2) to estimate the frontier. Costa and Markellos (1997) proposed two procedures: a) similar way than COLS after neural training; b) by an oversized network until some signal to noise ratio is reached. Then, inefficiency is determined as observation-frontier distance.

8 Another non parametric technique is FDH, Free Disposal Hull.
ANNs are flexible, non parametric (free-model) and stochastic techniques, and it is theoretically possible to make statistical inference such as interval confidence\(^9\) to inefficiency indexes. However, ANNs have not theoretical studies in efficiency analysis and few applications have been made in this field. Moreover, results are not easily interpretable and many technical resources are needed. As we expected, no technique is superior to the rest, and the nature of the particular problem will determine the most appropriate one. The comparison of efficiency measurement approaches is summarized in table 1 (partially based on Costa and Markellos, 1997):

<table>
<thead>
<tr>
<th>Comparative Factor</th>
<th>Econometrics</th>
<th>DEA</th>
<th>ANNs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assumptions: functional form, data...</td>
<td>Strong</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Flexibility</td>
<td>Low-Medium</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Theoretical basis</td>
<td>Strong</td>
<td>Strong</td>
<td>Medium</td>
</tr>
<tr>
<td>Theoretical studies and applications on Efficiency</td>
<td>Yes</td>
<td>Yes</td>
<td>Few</td>
</tr>
<tr>
<td>Statistical significance</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Interpretability of results</td>
<td>Medium</td>
<td>Low</td>
<td>Medium</td>
</tr>
<tr>
<td>Estimation / prediction</td>
<td>High</td>
<td>No</td>
<td>High</td>
</tr>
<tr>
<td>Costs: software, estimation time...</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
</tr>
</tbody>
</table>

The following table summarizes the principal publications about ANNs and efficiency:

Table 2. Summary of publications about ANNs and efficiency

<table>
<thead>
<tr>
<th>Joerding et al. (1994) Production function</th>
<th>Theoretical properties imposition about technology – positivity, monotonicity, quasiconcavity-.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ANNs similar to Fourier flexible form.</td>
</tr>
<tr>
<td></td>
<td>Simultaneous estimation of production function and inputs demand system.</td>
</tr>
<tr>
<td></td>
<td>Not possible to impose Constant Returns to Scale in all (x) because linear activations –not universal approximation-. Approximation by adding a term to squares sum.</td>
</tr>
</tbody>
</table>

\(^9\) Confidence intervals in general neural network framework are proposed and revised by Hwang and Ding (1997), De Veaux et al. (1998) and Rivals and Personaz (2000).
Table 2 (continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Synthetic sample to frontier estimation — adding noise $N(0,\sigma^2)$ to the inputs.</td>
</tr>
<tr>
<td></td>
<td>ANNs results similar to COLS and DEA; however ANNs offer advantages at decision making, impact of constant Vs variable returns over scale, congestion areas.</td>
</tr>
<tr>
<td></td>
<td>Data from Cobb-Douglas, CES and generalized Leontief.</td>
</tr>
<tr>
<td></td>
<td>Functions: ANNs, Cobb-Douglas, translog, CES and Leontief. 2 inputs.</td>
</tr>
<tr>
<td></td>
<td>Comparison: mean, maximum and minimum efficiency, standard deviation, correlation between real and estimated efficiencies.</td>
</tr>
<tr>
<td></td>
<td>ANNs outperform Translog and Cobb-Douglas when translog function is simulated. No differences when Leontief or CES are simulated.</td>
</tr>
<tr>
<td></td>
<td>Functional form mis-specification — with ANNs and translog - not affect to mean, maximum and minimum efficiency, but lead to incorrect firm efficiency and ranking.</td>
</tr>
<tr>
<td></td>
<td>Application: data from 7454 students, 12 inputs.</td>
</tr>
<tr>
<td></td>
<td>ANNs superior to econometric approach at frontier estimation.</td>
</tr>
<tr>
<td></td>
<td>Data: simulated from CES and generalized Box-Cox.</td>
</tr>
<tr>
<td></td>
<td>ANNs worst than Fourier – not to impose symmetry and homogeneity like Fourier and AIM-. Convergence problems when impose these properties to ANNs.</td>
</tr>
</tbody>
</table>

Finally, are ANNs “efficient” techniques in efficiency analysis today? Clearly, much work remains to be done in this area. At the present time, the answer is uncertain. The future answer to that question will be the result of the balance between costs (knowledge, model complexity, algorithms, economic interpretation, ...) and benefits (better results, decision making, flexibility…).
4. The Experiment

In order to examine the performance of efficiency techniques, let \(F(x) \) be the further one input-one output non-linear continuous production function:

\[
F(x) = \begin{cases}
\left(\frac{x}{e} \right)^2 & \text{if } x \in [0, e] \\
\ln(x) & \text{if } x \in [e, e^2] \\
A \cdot \cos(x-e^2) + 2 - A & \text{if } x \in [e^2, e^2 + \pi], \text{ where } A = 0.25 \\
\ln(x - 2\pi) & \text{if } x \in [e^2 + \pi, 26]
\end{cases}
\]

Through this production function (see figure 3) we introduce all returns to scale possibilities. The first part of (10) presents increasing returns to scale (IRS). Second and fourth sections show decreasing returns to scale (DRS). Third section presents a not common theoretical technology where an increase in one input implies a decrease in one output. According to Costa and Markellos (1997) we will call this phenomenon a “congested area”.

![Diagram of the non-linear production function](image)

Figure 3. The Non-Linear Production Function

However, our intention here is to illustrate what occurs with efficiency estimations when our “traditional linear models” are not the real production functions for the multi-input
and multi-output specification. Here we are thinking in a large group of others non-linear relationships possibilities beyond those outlined in economic theory with a soft and constant curvilinear increasing and decreasing returns to scale into our production process, not only between one input and one output even between different inputs. Should we consider any chance for the existence of this kind of technology?

Costa and Markellos (1997) found this kind of non-linear relationship in their analysis of the production function in London underground from 1970 to 1994 with a MLP. They showed the existence of a negative slope between inputs (fleet size and workers) and outputs (millions of trains km. per year covered by fleet). Baker (2001) concludes in his empirical educational production function analysis with different kinds of neural networks, how substantial performance gains can be achieved for class sizes declining from 14 to 10 students, but also increasing class size (reducing our theoretical input) from 18 to 20 students, meanwhile a linear model only detects a slight downward slope.

Moreover, many educational research articles have found significant coefficients with the “wrong sign” (e.g. higher per pupil district expenditure or higher teacher education associated with lower student test scores). Eide and Showalter (1998) and Figlio (1999) conclude that traditional restrictive specifications of educational production functions fail to capture potential non-linear effects of school resources. Although they employ more flexible specifications for approximating educational production function like quantile regression and translog function respectively with good results over linear and homothetic relationships, why do not explore the possibility of others non-linear models?

Returning to our experiment, we consider four different scenarios with 50, 100, 200 and 300 decision making units (DMUs). Pseudo-random numbers uniformly distributed across the input space are generated for each scenario: \(X \sim U(0,26) \)

Afterwards, we calculate the true output that is also the true production frontier showed in figure 4 and we generate inefficiencies through injecting different quantities of noise. Statistical noise is assigned only to the output in the next manner:

10 See Hanushek (1986) for a survey.
where y^* will be the observed output, $a=0.05$ if $b=0.1, 0.2, 0.3$; and $a=0.15$ if $b=0.35, 0.6$, and we measure true technical efficiency (te) as follows:

$$te = \frac{y^*}{y} \quad (\text{we allow for } te>1)$$

For the sake of simplicity, we assume data is free of noise term and all differences between true and observed output are inefficiencies\(^{11}\). However, we allow for $te>1$ with the aim of representing the existence of outliers.

For each scenario we compute technical efficiency for OLS, COLS with SPSS software, SFA with FRONTIER 4.1 (Coelli, 1996b), DEAcrs and DEAvrs with DEAP 2.1 (Coelli, 1996a) and MLP with S-PLUS software.

Previous to train the MLPs, we split data in two parts, training and validation sets\(^{12}\). Normally, the model is developed on the training set and tested on the validation set. After an exploratory analysis, we test how error differences for training and validation patterns was almost identical so we decide to join in-sample (training set) and out-of-sample (validation set) estimations for computing estimated output. We performed a search from three to eight neurons in one hidden layer with learning coefficient and weight decay fixed with 0.5 and 0.001 values respectively. In order to prevent overfitting, we stopped training when 500 iterations was reached. Neural networks validation sets estimations closer to y^* (MLP Best) were selected for comparisons with remaining techniques\(^{13}\).

\(^{11}\) Zhang and Bartels (1998) also assume free of noise data. Nevertheless, we would obtain identical results in this experiment if we decompose the error term in a normal error variable iid $u \sim N(0, \delta^2)$ and in a half normal efficiency variable iid $v \sim N(0, \delta_v^2)$.

\(^{12}\) We choose a typical rule of thumb on a 80:20 ratio.

\(^{13}\) A different quite interesting alternative was proposed by Hashem (1993) through combining all trained neural networks according with its performance, i.e. a higher weight in final result for best fitting in validation sets.
5. The Results

We calculate Pearson’s correlation coefficients between estimated and true efficiency scores for all techniques over all scenarios (table 3).

According with results displayed in table 3, MLP results best in all cases except one. Note that compared with others techniques, MLP obtains robust estimations with few variations respect true efficiency over number of DMUs and injected noise. MLP is superior to traditional techniques when underlying technology is under moderate noise together with more DMUs. However, our results show how DEA with variable returns to scale is a little superior to ANN with a lot of efficiency-noise and few DMUs.

Table 3. Pearson’s correlation coefficients between estimated and true efficiency scores for different techniques, number of DMUs and different quantities of injected noise.

<table>
<thead>
<tr>
<th>Efficiency Techniques</th>
<th>50 DMUs</th>
<th>OLS</th>
<th>COLS</th>
<th>SF</th>
<th>DEAcrs</th>
<th>DEAhrs</th>
<th>MLP_BEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>50(15)</td>
<td>0.180</td>
<td>0.104</td>
<td>0.441</td>
<td>0.297</td>
<td>0.431</td>
<td>0.788</td>
<td></td>
</tr>
<tr>
<td>50(25)</td>
<td>0.230</td>
<td>0.249</td>
<td>0.294</td>
<td>0.119</td>
<td>0.296</td>
<td>0.938</td>
<td></td>
</tr>
<tr>
<td>50(35)</td>
<td>0.464</td>
<td>0.405</td>
<td>0.581</td>
<td>0.419</td>
<td>0.714</td>
<td>0.804</td>
<td></td>
</tr>
<tr>
<td>50(50)</td>
<td>0.584</td>
<td>0.575</td>
<td>0.630</td>
<td>0.378</td>
<td>0.798</td>
<td>0.873</td>
<td></td>
</tr>
<tr>
<td>50(75)</td>
<td>0.608</td>
<td>0.520</td>
<td>0.443</td>
<td>0.473</td>
<td>0.895</td>
<td>0.887</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>100 DMUs</th>
<th>OLS</th>
<th>COLS</th>
<th>SF</th>
<th>DEAcrs</th>
<th>DEAhrs</th>
<th>MLP_BEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>100(15)</td>
<td>0.145</td>
<td>0.146</td>
<td>0.096</td>
<td>0.090</td>
<td>0.183</td>
<td>0.897</td>
</tr>
<tr>
<td>100(25)</td>
<td>0.255</td>
<td>0.211</td>
<td>0.239</td>
<td>0.286</td>
<td>0.293</td>
<td>0.751</td>
</tr>
<tr>
<td>100(35)</td>
<td>0.297</td>
<td>0.237</td>
<td>0.332</td>
<td>0.357</td>
<td>0.498</td>
<td>0.919</td>
</tr>
<tr>
<td>100(50)</td>
<td>0.496</td>
<td>0.490</td>
<td>0.321</td>
<td>0.345</td>
<td>0.661</td>
<td>0.951</td>
</tr>
<tr>
<td>100(75)</td>
<td>0.557</td>
<td>0.517</td>
<td>0.474</td>
<td>0.543</td>
<td>0.728</td>
<td>0.855</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>200 DMUs</th>
<th>OLS</th>
<th>COLS</th>
<th>SF</th>
<th>DEAcrs</th>
<th>DEAhrs</th>
<th>MLP_BEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>200(15)</td>
<td>0.184</td>
<td>0.205</td>
<td>0.139</td>
<td>0.076</td>
<td>0.249</td>
<td>0.816</td>
</tr>
<tr>
<td>200(25)</td>
<td>0.326</td>
<td>0.322</td>
<td>0.258</td>
<td>0.187</td>
<td>0.439</td>
<td>0.961</td>
</tr>
<tr>
<td>200(35)</td>
<td>0.377</td>
<td>0.329</td>
<td>0.280</td>
<td>0.348</td>
<td>0.479</td>
<td>0.947</td>
</tr>
<tr>
<td>200(50)</td>
<td>0.554</td>
<td>0.557</td>
<td>0.331</td>
<td>0.365</td>
<td>0.686</td>
<td>0.924</td>
</tr>
<tr>
<td>200(75)</td>
<td>0.685</td>
<td>0.705</td>
<td>0.337</td>
<td>0.483</td>
<td>0.794</td>
<td>0.934</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>300 DMUs</th>
<th>OLS</th>
<th>COLS</th>
<th>SF</th>
<th>DEAcrs</th>
<th>DEAhrs</th>
<th>MLP_BEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>300(15)</td>
<td>0.214</td>
<td>0.248</td>
<td>0.029</td>
<td>0.026</td>
<td>0.302</td>
<td>0.887</td>
</tr>
<tr>
<td>300(25)</td>
<td>0.374</td>
<td>0.332</td>
<td>0.388</td>
<td>0.280</td>
<td>0.457</td>
<td>0.935</td>
</tr>
<tr>
<td>300(35)</td>
<td>0.447</td>
<td>0.409</td>
<td>0.417</td>
<td>0.316</td>
<td>0.587</td>
<td>0.975</td>
</tr>
<tr>
<td>300(50)</td>
<td>0.606</td>
<td>0.607</td>
<td>0.663</td>
<td>0.319</td>
<td>0.736</td>
<td>0.935</td>
</tr>
<tr>
<td>300(75)</td>
<td>0.759</td>
<td>0.722</td>
<td>0.804</td>
<td>0.541</td>
<td>0.857</td>
<td>0.973</td>
</tr>
</tbody>
</table>

In figure 4, we illustrate a particular example for 300 DMUs and when 25% of uniform noise is injected in true output. After drawing true frontier and all efficiency estimations provided by the different approaches, we observe how MLP is able to find out the non-

14 We also compute Spearman’s rank correlation coefficients with similar results.
linearity contained in data. We see that MLP is an average performance technique, although we could do MLP becomes a frontier moving upwards the curve up to the highest residual as we usually do with COLS.

Through figure 4, we can also see how ANNs are a good tool, as noted by Lee et al. (1993), to do an exploratory analysis for searching the existence of non-linear relationships between inputs and outputs before applying a conventional approach and avoiding possible functional form misspecifications. Moreover, this possibility increases exponentially as long as we augment number of inputs, outputs and contextual variables implied in our production process.

Figure 4. Production functions estimated by different techniques

5. Conclusions
The results of our simulations confirm that MLP can be used as an alternative tool to econometric and DEA based-techniques for measuring technical efficiency. Another conclusion is that no methodology is always the optimal one for all situations. The benefits of the MLP are its high flexibility and its freedom of a priori assumptions when
estimating a noisy non-linear model that allow us to prevent functional forms misspecifications and to test if there exist an underlying structure in the available data.

Although we believe that ANNs can be a potential alternative for measuring technical efficiency and outperform other techniques results when the production process is unknown, it seems reasonable more applied and comparative research. On one hand, although ANNs are increasingly common in a broad variety of domains in economics, there is still a lack of both theoretical and empirical work in efficiency analysis. On the other hand, here we only concentrate on MLP approach but there are many neural models. Further research should explore the abilities and drawbacks of others ANNs approaches like Bayesian Neural Networks or Generalized Regression Neural Networks versus backpropagation in measuring efficiency through Monte Carlo experiments.
References

Efficiency Series Papers

01/2001 Future Research Opportunities in Efficiency and Productivity Analysis
Knox Lovell

02/2001 Some Issues on the Estimation of Technical Efficiency in Fisheries
Antonio Alvarez

03/2001 A Resource-Based Interpretation of Technical Efficiency Indexes
Eduardo González and Ana Cárcaba

04/2001 Different Approaches to Modeling Multi-Species Fisheries
Antonio Alvarez and Luis Orea

05/2001 The Relationship Between Technical Efficiency and Farm Size
Antonio Alvarez and Carlos Arias

06/2001 New Developments in the Estimation of Stochastic Frontier Models with Panel Data
William Greene

07/2001 Human Capital and Macroeconomic Convergence: A Production-Frontier Approach
Daniel J. Henderson and R. Robert Russell

08/2001 Technical Efficiency and Productivity Potential of Firms Using a Stochastic Metaproduction Frontier
George E. Battese, D.S. Prasada Rao and Dedi Walujadi

09/2001 Measuring Technical Efficiency with Neural Networks: A Review
Francisco J. Delgado, Daniel Santín and Aurelia Valiño

10/2001 Evaluating the Introduction of a Quasi-Market in Community Care: Assessment of a Malmquist Index Approach
Francisco Pedraja Chaparro, Javier Salinas Jiménez and Peter C. Smith

11/2001 Economic Efficiency and Value Maximisation in Banking Firms
Ana Isabel Fernández, Fernando Gascón and Eduardo González

01/2002 Capacity Utilisation and Profitability: A Decomposition of Short Run Profit Efficiency
Tim Coelli, Emili Grifell-Tatjé and Sergio Perelman

02/2002 Rent-Seeking Measurement in Coal Mining by Means of Labour Unrest: An Application of the Distance Function
Ana Rodríguez, Ignacio del Rosal and José Baños-Pino