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Abstract

To deal with the presence of slowly changing vdespPlimper and Troeger (2007)
proposed a fixed effects vector decomposition (FE¥&imator, which is a three-stage
procedure based on the fixed effects estimatorskéev that this estimator moves
between fixed effect and ordinary least squaregm@pg on how its second stage is
specified. This provides an alternative interpietabf the FEVD estimator that allows
us to introduce a one-stage counterpart of the FEM@el, which can be viewed as a
partial Mundlak (1978) transformation of the randefiects model. We illustrate our
approach with an application to UK electricity distition utilities using the same data
as Yu et al. (2009). Our application suggestsahbaestimator and the FEVD yield
similar results when the pooled OLS estimates fgivan panel are similar to the
random effects estimates.

Keywords:. slowly changing variables, fixed effects vectecdmposition, one-stage
estimator.
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1. Introduction

Fixed effects estimation of production, cost, omded functions has a long tradition as
this model allows to control for unobserved heteraty that might be correlated with
the explanatory variables. However, estimatiorheffixed effect (FE) model may yield
implausible parameter estimates when the data icoskawly changing variables, i.e.
variables with relatively low within variance. Tleslowly changing variables are
found in many empirical applications. For instanoecro data sets contain aggregates
which often move slowly over time and firm-leveltalaften contain slowly changing
variables such as labour inputs in farm data, ahptbck in transport firms, or energy
delivered for electricity distribution companieso &ccount for the presence of such
variables, Plimper and Troeger (2007) proposed tiegtlabel the fixed effects vector
decomposition (FEVD) estimator. The FEVD estimasoa three-stage approach based
on the fixed effect estimator that, in certain gimstances, may provide more precise
estimates than the FE estimator in a root mearredw&ror sense. In the first stage, FE
estimates of the panel data model are obtainethdrsecond stage the estimated unit
effects are regressed on the time-invariant vaegbhd the unit means of time-varying
variables of the slowly-changing variables, ther&iycomposing” the unit effects into
their “observable” and “unobservable” components tatter corresponding to the
residuals from this second stage regression. Ihihe stage, the model is estimated by

pooled OLS using the second-stage residuals additiomal regressor.

Formal analyses of the FEVD estimator have beerwiged by Greene (2010) and
Breuschet al. (2010), who show that the FEVD estimator sim@groduces the fixed
effects estimates when only strictly time-invariaatiables are included in the second
stage, i.e., when the unit means of the slowly-givanvariables are not included. In
this paper we focus on the case where the slowdygimg variables are included in the
second stage. The first contribution of our workthat we show that the FEVD
estimator moves between FE and OLS depending onitsasecond stage is specified.
In particular, it is shown that the FEVD estimateproduces the OLS estimates of the
parameters of the time-varying and time-invariaatiables when the whole set of
explanatory variables (i.e. the time-invariant ghtes and the unit means of the time-

varying variables) are included in the second stagés provides an alternative



interpretation of the FEVD estimator: as we incogbe slowly-changing variables, we

move away from FE towards OLS.

Using this interpretation of the FEVD estimatoraashrinkage-type estimator located
between FE and OLS, our second contribution iste t.dvantage of the insights of the
FEVD approach to introduce a one-stage counteljze#d on the random effects (RE)
transformation introduced by Mundlak (1978). Thstirmator can be viewed agartial

random effects Mundlak transformation (REMT), andves between a consistent but
inefficient estimator (FE) and an efficient but amsistent estimator (RE). Unlike the

FEVD, therefore, our estimator moves between tweepdata estimators.

To illustrate our approach we provide an applicatto UK electricity distribution
utilities using the same data as ual. (2009). Our application suggests that our
estimator and the FEVD yield similar results whée pooled OLS estimates for a
given panel are similar to the random effects esas

2. The FEVD estimator

We summarize in this section the main charactesstif the Plimper and Troeger

(2007) FEVD estimator. Let us assume we wish tionege the following model:
Yie =XuB +Ziy +a; + &, 1)

whereX;; isaK X 1 vector oftime-varying explanatory variables; is aP x 1 vector
of time-invariant explanatoryariables, ¢;; is the idiosyncratic error term, ang

captures the effect of unobserved time-invariadividual characteristics.

The three stages of the FEVD procedure can beynpatkented using the notation in
Breuschet al. (2010), which will also facilitate the discussimnthe next section of the
relationship of the FEVD estimator with both OLSdaRE. In particular, leth =
Iy ® 1 be the matrix of dummy variables indicating granpmbership, wherg, is an

N X N dentity matrix and is aT X 1 vector of ones. We use the proyection matrix for



D, i.e. P, =D(D'D)™1D’, to get a vector of group means, aQg = Iy — P, to

reproduce the within-group variation.

In the first stage, a FE regression is performeadguthe within transformation, so that

the individual effects; and the time-invariant variabl&s are removed:

Qpy = QpXp + Qpe (2)

whereQpy = (i — ¥:}, @pX = {X;: — X;}, and Qpe = {&; — &}. The moment

condition corresponding to this FE regression is:
(y—XP)'QpX =0 3)

and the estimated unit effects are@&; = P,(y — Xbrz) Wherebg; is the fixed effects

estimate of (2).

In the second stage, these estimated unit effeetsegressed on the observed time-
invariant variables and the group means of a sufjset theK time-varying variables,
where the/ < K variables inX; are those with relative low within-variance, iskowly
changing variables. A8, (y — Xbgg) is regressed o®pX;b, andZg, the residuals
from this regression arR,(y — Xbrg) — PpX;b, — Zg and the corresponding moment

conditions of this second stage can be written as:
(Po(y = Xbgg) — PpX;b, — Zg) Z = 0 (4b)

whereb, andg are parameters to be estimated. Thus, the umittsfare decomposed
into a part explained by the available between-urigrmation contained i and the
subset/ of rarely changing variables, and an unexplained which corresponds to the
residual from this second stage regression. Thapgaverage residualé, from this

regression are:

h=PD(y_XbFE_X]b2_Zg) (5)



In the third and final stage, the full model is rusing pooled OLS without the unit
effects but including the group-average residiafeom the second stage, yielding the

final FEVD estimates. The moment conditions are:
(y—XB—Zy—h8)[X,Z,h] =0 (6)

Using the moment-condition representation aboviaénnext section we show that this
FEVD estimator can be interpreted as a shrinkage-tgstimator which is located

between FE (a consistent but higher variance esimnand OLS (an inconsistent but
lower variance estimator). The crucial issue hertheé variables that are included in the
second step of the FEVD estimator.

3. Relationship between the FEVD estimator and both OLS and FE

When only the strictly time-invariant variables, are included in the second stage,
Greene (2010) and Breusat al. (2010) prove the following: (i) the estimated
coefficients of the time-varying variables in tiérd stage of the FEVD are exactly the
same as in FEB(= Brg); (ii) the estimates of the coefficients of thené-invariant
variables are the same as those from the secogel @ta= g); and (i) = 1. AsX; in
the second stage above contains no elemgntD], the group average residuals from

this stage are simply :
h=Py(y — Xbpg — Zg) (7)

To prove that the FEVD estimator simply reproduttes fixed effects estimates when
only time-invariant variables are included in trecand stage, Breusc#t al. (2010,
Theorem 1) verified that the moment conditionsa® satisfied a8 = brg, ¥y = g, and

6 = 1. This requires that
Substituting in the definition of from (7) and gathering terms, this simplifies to

(y_XbFE)'QD[XfZlh] =0 (9)



It is straightforward to see that the first setohditions in (9) must be satisfied, since it
is identical to the moment condition (3) that deh,;. The other two set of conditions

must be also satisfied since bdttandh are time-invariant.

We next analyze the opposite situation, assumiagttie group means of all the time-
varying variables are included as regressors inséwnd stage/ & K). Using the
above moment-condition representation, we demdestitzat the FEVD estimator

collapses to OLS, which can be represented bydll@xing moment conditions:
(y = Xbors)X =0 (10)
where we have droppétl for notational ease and the OLS estimate of (4@einoted

by bOLs-1

To prove that the FEVD estimator reproduces the @¢i8nates in this case, we follow
the same methodological strategy as above, i.e.,willeverify that the moment
conditions (6) are satisfied &t = by, andd = 1 when the group means of all the
time-varying variables are included as regressothe second stage. This is equivalent
to assuming that = K and hence the moment conditions in the seconc stag be

written as:
(Pp(y — Xbgg) — PpXby) PpX = [Pp(y — Xbpg — Xb)| PoX = 0 (11)
The group-average residudl$rom this regression are:
h = Pp(y — Xbpg — Xb3) (12)
Taken into account th&@, P, = P, the moment conditions in (11) can be written as:
(v — X(bpg + b3)) PpX =0 (13)

Gathering the sets of both first and second-stagdficients and definin@ = by +
b,, we finally get that:

(y—X60)P,X=0 (14)

! The same results are obtained by includinig (10). It is worth noting that except when werlvavith
the FE estimator we can interppéfas a vector oboth time-varying and time-invariant variables without
any change in the results.



Note that this set of moment conditions coincidathwhose corresponding to the
Between estimator, which estimates (1) by OLS u#iregindividual group means, i.e.

Ppy andPpX. The moment conditions of the Between estimater ar
(Ppy — PpXbgpr) PpX =0 (15)

where bgpr stands for the Between coefficients. These monmoriditions are

equivalent to:
[Pp(y — XbBET)]’PDX = - XbBET)'PDX =0 (16)

It can be seen that the moment conditions in (bdl) (46) are the same, from which it
follows thatf = bgr + b, = bggr. That is, the parameter estimates in the secauk st

b,, correspond to the difference between the Betwaed Within estimates, i.e.

b, = bggr — bFE-2
The previous result implies that the group-averageduals (12) can be written as:
h = Pp(y — Xbpg) — PpX(bggr — bpg) = Pp(y — Xbpgr) (17)

Therefore, the group-average residuals in the skstage do not actually depend on
coefficients estimated in the first stage of th&/BEprocedure using the FE estimator,
but on between coefficients that have not beeni@iplestimated. Note, in addition,

that if we take into account that
bggr = [(PoX)' (PoX)] ™ (PpX)' (Ppy) = [X'PpX]7'X'Ppy (18)
the group-average residuals in (17) can be wraten
h = Pyy — PpX[X'PpX] *X'Ppy (19)
If we next pre-multiply byX’, we get:

X'h=XPpy— XPpX[XPpX]"1X'Ppy = X'Pyy — X'Pyy =0 (20)

2 The same results are obtained if we explicitly kvaith time-invariant variables in equation (15).
Indeed, when time-invariant variables are includéd, corresponding moment conditions of the second
stage can be written a3 — X0 —Zg)'Pp,X =0 and(y — X0 — Zg)'Z = 0. On the other hand, the
moment conditions of the Between estimator, whiotv implies regressing,y againstP, X andZ, can

be written as(y — Xbggr — Z29,)'PpX =0 and (y — Xbggr — Zg,)'Z = 0, where g, stands for the
between coefficients of the time-invariant variagbl@égain both sets of moment conditions are theesam
andf = bgg + b, = bger, andg = g,.



Armed with the above results, we can demonstrae ttte moment conditions in the
third stage are satisfied At= by, andd = 1. Ignoring the time-invariant variables,

these moment conditions simplify to
(y —XB —h8)[X,h] =0 (21)

If the set of moment conditions in (21) are satidfivheng = b, s, andd = 1, this

implies that
(y — Xbors —B)X =0 (22)
(y — Xbors —h)h =0 (23)
Taking the transpose in (22) we get
X'(y = Xbors —h) = X'(y = Xbgrs) —X'h =0 (24)
SinceX'h = 0, the above set of conditions must be satisfigutesit is identical to the
moment condition (10) that defingg; s.
Taking the transpose in (23) we get
h'(y — Xbors —h) = h'(y —h) — h'Xbgys = 0 (25)

Using the fact tha&'h = 0, and substituting foh from (17), the above condition is

identical to
hW(y —h) = (y — Xbper) Pp'(y — Ppy + PpXbggr) = O (26)
As P, = P,, this simplifies to
h'(y = h) = (y — Xbppr) 'PpXbppr = 0 (27)

The above condition must be satisfied since identical to the moment condition (15)
that definedgzr, showing that the FEVD estimator reproduces th& @timates when

the whole set of time-varying variables are inchlids regressors in the second stage.

In summary, this section has shown that the FEV@imesor can be viewed as an

estimator located between FE and OLS. This istied in Figure 1. When only

8



strictly time-invariant variables are included iretsecond stage of the FEVD estimator,
it reproduces the FE estimates. As we incorpotraegtoup means of the time-varying
variables, we move away from FE towards OLS, argvat OLS estimates when the

group means of all the time-varying variables acduded.

[INSERT FIGURE 1 HERE]

The crucial issue with the FEVD estimator is therefwhat variables to include in the
second stage. Strictly time-invariant charactexsstwill obviously be included and
variables with sufficiently low within-variance shld also be included. Plimper and
Troeger (2007) carry out Monte Carlo simulationsptovide the conditions under
which a time-varying variable should be includedthe second stage. Using the root
mean squared error as their criterion, they findt tthe decision to treat a slowly
changing variable as time-varying or time-invaridapends on the correlation between
the variable and the unobserved heterogeneity lamddatio of the between to within
variance. For a correlation of 0.3 between thealdei and the unit heterogeneity, a
between-to-within ratio of approximately 1.7 is fatiént for the FEVD estimator to
outperform FE. When the correlation rises to O, between-to-within ratio rises to
about 2.8. While this correlation is unobservatile,inclusion of additional variables in
z will reduce the potential for correlation, and mjier and Troeger (2007) suggest that
a between-to-within ratio of 2.8 is sufficient tesjify the inclusion of the variable in the

second stage.

The importance of the between-to-within varianceaasriterion for the inclusion of
time-varying variables in the second stage is tlear. The aim is to maximize the use
of between variation for those variables with nekly low within variation, and we
include the group means of more time-varying vdesalwe move away from FE to
OLS. Alternatively, we move away from a consisteut higher variance estimator (FE)
towards an inconsistent but lower variance estim@d.S), and it is in this sense that
the FEVD can be interpreted as a shrinkage estmvetere the criterion for leaning
more towards one or the other depends on the betteewithin variance of the time-

varying variables and their subsequent inclusiothésecond stage.



4. A partial Random Effects Mundlak transformation

We take advantage of the preceding interpretatidheoFEVD estimator to introduce a
one-stage counterpart of the estimator that can bés interpreted as a shrinkage
estimator, this time between FE and RE. Our moslddased on the random effects
Mundlak transformation (REMT) introduced by Mundlgk978)® Mundlak showed
that the FE parameter estimates can be obtained the RE model by simply adding
the individual means oéll time-varying variables as explanatory variables.the
REMT, the individual effectg; in (1) are substituted by

@ = w; + Y=t PrXrir 0;~N(0,08) (28)
Replacing the unit effects in (1) with (28), theME model can be expressed as:
Yie = ©; + The1 P Xki + ko1 BiXiie + Tomer VmZmi + Eit (29)
where it is assumed thatanda; are uncorrelated.

REMT corrects for endogeneity at the cost of didicey all between information, which
is of course why it yields FE estimates as it ombes the within information of the
time-varying variable$.Our proposal is to introdusame but not all of the unit means
as additional regressors in the RE model. This mode therefore be labelled as a
Partial REMT. This will permit us to take advantagfehe between information of the
variables whose unit means are excluded as regsesatich will lead to lower-
variance estimates at the cost of not controlliogthe possible endogeneity of these

variables. As in the FEVD, therefore, the issuenis of trading bias for efficiency.

As shown in Figure 2, if we introduce the unit meamh only a subset of theK time-
varying variables, where the variables Jrare those with sufficiently high within-
variance for reasons that will become clear bels@/again arrive at an estimator which
is located between a consistent but higher variastienator (FE) and an inconsistent

but lower variance estimator (RE).

% See also Chamberlain (1980).
* This can be seen by noting that the REMT mode) €28 be rewritten as:

Vie = ;i + Xi=100k + Bi)Zii + Xie1 Bie Ciie — Xit) + Loe YimZmi + Eir-
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[INSERT FIGURE 2 HERE]

Replacing the unit effects in (1) with a modifiedrsion of (28) where only unit

means are included so thgt= w; + Z],;If PrXi, the partial REMT model can finally

be expressed as:

Yie = Wi + Z{;Iipkyki + Yke1BiXkie + Tin=1VYmZmi + € (30)
Which unit means should be includedJ? Recall that Plimper and Troeger (2007)
included unit means in their second stage to malee af between information for
variables with relatively low within variation sbét the variables included were those
with high between-to-within variance ratios. Thermwariables included in this second
stage, the further away from FE and the closee#tinator gets to OLS. In our partial
REMT we are going in the opposite direction, toveakE: the more unit means we
introduce into (30), the less between informatianuge and the more we rely on within
information. As a criterion for choosing our unieanms, ideally we will only discard
between information when we are left with sufficiewithin information to
satisfactorily estimate the parameter. Our criten® thus the inverse of that of the
FEVD: the unit means to be introduced will be tho$evariables with relative low

between-to-within variance ratios.

By including the unit means of only those variableish sufficiently high within-
variance, the coefficients of slowly changing vhalés are biased, as in the FEVD
model, but have lower variances than estimates theE model. Note, however, that
these estimates are obtained here in a one-stggessen, while the FEVD model
requires estimating three equations.

5. Empirical lllustration

We illustrate our approach with an application tK ¥lectricity distribution utilities
using the dataset of Yet al. (2009) on 12 distribution networks in the UK fibre
1995/96 to 2002/03 period. This dataset is paditylappropriate for our purposes as
many crucial determinants of utility costs suchlesenergy delivered or the number of

customers are persistent or slowly changing vagabMoreover, there are many

11



characteristics of the electricity distribution tw®¢ such as geography, weather
conditions, network characteristic, etc. that affepduction costs but which are not
observed (Farsi and Filippini, 2004) so that indial firm effects need to be modeled. .
Table 1 reports the summary statistics of the dstad. All monetary variables are

expressed in 2003 real terms.
[INSERT TABLE 1 HERE]
To illustrate our approach we estimate a simplé¢ ftogtion than can be written as:
TotalCost;y = a; + B1 - ENERGY; + 5 - EPR;y + B3 - CML;; + €4 (31)

where TotalCost includes capital and operational costs and theoxppity cost of
network energy losses, following Jamasial. (2010). The output variabEENERGY is
the energy deliveret;EPR is the price for network energy losses; aBbIL is a
measure of service quality, measured by the customeutes lost. The between and

within standard deviations are shown in Table 2.
[INSERT TABLE 2 HERE]

The estimated coefficients and the heteroskedpstmbust standard errors from the
OLS, FE and FEVD estimators are shown in Table 3.

[INSERT TABLE 3 HERE]

All coefficients in the OLS model have their exptisigns. Thus, the coefficients of
energy delivered and input price are positive atatistically significant and the
coefficient of customer minutes lost is negatiwgggesting a positive marginal cost of
quality improvements. However, Jamaghal. (2010) note that the quality of service
variable may be correlated with average weatheditions, and hence the estimated
marginal cost of quality improvements is likelylie downward biased. They examine
how to address this issue when weather data isahlai Here we will try to control for
this endogeneity problem using “adjusted” FE andeR&mators.

® Customer numbers and units of energy delivered thee most commonly-used outputs in the
benchmarking of distribution network utilities. @iv that the statistical correlation between these t
outputs is large (over 97%), we only present ouapeter estimates using energy delivered as a @niqu
output. The specification of the cost function thses the energy delivered as output appears more
appropriate as our dependent variable includesdkeof energy losses.

12



The low precision of the FE estimator in the présgplication is clearly illustrated by
the fact that the coefficient of the energy dekeervariable is negative and not
statistically significant. The reason is that thiéhim variation of this variable is much
lower than the between variation (see Table 2).th¢eefore estimate a FEVD model
using the variabl&ENERGY as a regressor in the second stage. From Tahlea® ibe
seen that all coefficients again have their expesigns. The coefficient of the residual
from the second stag®;) is close to unity, which is expectedJote also that the
parameter estimate for CML increases in absolutagdo 0.235. This value is quite
similar to the marginal cost of quality improvemetttained in Jamasé al. (2010)
where weather variables are included to control thee endogeneity of the quality

services variable.

The estimates from the Between and FE estimataiglasecond stage of the FEVD
estimator when the group means of all the timeingryariables are included are
shown in Table 4. This illustrates the result fr@®action 3 that the estimates on the
group means of the time-varying from the secondestd# the FEVD are the difference

between the estimates from the Between and FE atstim
[INSERT TABLE 4 HERE]

Table 5 shows the estimated coefficients using BR&b8 models. All coefficients in the
RE model have the expected signs. Interestingly, @S and RE models yield the
same estimates as the variance of the unit effleassfound to be equal to zero in the
RE model. This was despite the fact that in thenk@tel we find evidence of unit

effects and a Hausman test rejected RE (see TabteBce, both the FEVD and partial
REMT estimators are effectively located betweendhme estimators insofar as OLS
and RE are the same. This provides an ideal siuati compare both estimators. The

second model in Table 5 is the REMT which reprodube FE parameter estimates as

it includes the individual means afl cost determinants (i.&NERGY, EPR andCML)

as explanatory variables.

[INSERT TABLE 5 HERE]

® Recall that Breuscét al. (2010) and Greene (2011) have shown that whentone-invariant variables
are included in the second stage the coefficieexétly unity.
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For thepartial REMT model we include the individual measisthose variables with
the lowest between-to-within variance ratios, EBER andCML.” The point estimate of
the only slowly changing variable in our applicati®ENERGY) is again reasonable
from an economic perspective. The partial REMT nhopleoduces quite similar
estimates to the FEVD, as is to be expected giiensimilarity of the RE and OLS

estimates.

4. Conclusions

In this paper we have shown that the fixed-effeettor decomposition (FEVD)
estimator introduced by Plimper and Troeger (2@an) be interpreted as an estimator
lying between a consistent but higher varianceregtr (FE) and a biased but lower
variance estimator (OLS). The FEVD estimator mofresn FE towards OLS as we
incorporate the group means of time-varying vagabh the second stage of the FEVD
estimator. The criterion for including time-varyingriables in the second stage is
related to the between-to-within variance of thaetivarying variables. Using the
insights of the FEVD estimator, we propose a oagestcounterpart which can be
viewed as a partial random effects Mundalk (REMM@nsformation and we have
illustrated the estimator with an application to @kectricity distribution utilities. Our
results show that the partial REMT permits moreso@able coefficients of variables
with low within variance than FE and for the dat¢d ssed the estimates are quite close
to those of the FEVD. We believe that our modekisfan interesting alternative to
FEVD in the presence of slowly changing variabled gariables with low between-to-
within variance ratios. As our model lies betweel &1d RE, the better the RE
estimates the better the partial REMT. When theaR& OLS estimates are close, the
partial REMT can be expected to produce similaimeges to FEVD, with the
difference that the partial is a mix of two purenelbdata estimators whereas the FEVD

is a mix of a panel estimator (FE) and a non-pasgimator (OLS).

" Note from Table 2 that the inclusion BPR will lead to little loss of between informatiomdiuding
CML will entail a loss of substantial between inforioatbut this still leaves a lot of within informati
to work with as can be seen by the fact that thkimivariance is higher than the between variance.
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Table 1: Descriptive Statistics (96 Observations)

Variable Unit Mean Std. dev. Min M ax
Total Cost Million £ 243.99 85.66 88.16 449.99
ENERGY Thousand GWh 20.67 7.26 7.492 36.262
CML Million Minutes 163.75 76.58 60.67 670.58
EPR Thousand £ 43.79 12.93 25.19 77.06
Table 2. Between and within standard deviations

Variable Between Within Between-to-within ratio

ENERGY 7.43 1.24 5.98

EPR 3.38 12.52 0.27

CML 51.34 58.50 0.88

Table 3. Cost function parameter estimates: OLS, FE andFEV

OLS FE FEVD
Variable Coef. S.E. Coef. S.E. Coef. .E.S
ENERGY 9.770 0.779 -3.189 4.890 10.179 0.760
EPR 4.232 0.304 3.341 0.349 4.120 0.298
CML -0.155 0.054 -0.178 0.076 -0.235 0.061
Constant 243.99 4.231 243.99 3.917 243.993.913
0 - - - - 1.009 0.263
Hausman test (d.o.f.) 27.55 (3)
F-test:a; = O (p-value) 2.39 (0.01)

FEVD 2" stage Dep. Var. = a;)

ENERGY
R

13.130 0.2415
0.969
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Table 4. Between, FE and second stage FEVD estimates

BETWEEN FE FEVD ¥ Stage
Variable Coef. S.E. Coef. S.H. Coef. .E.S
ENERGY 8.626 0.930 -3.189 4.890 11.8150.274
EPR 5.569 1.346 3.341 0.349 2.228 0.397
CML 0.151 0.126 -0.178 0.076 0.329 0.037
Constant 243.99 3.885 243.99 3.917 - -
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Table5. Cost function parameter estimates: RE-based models

RE REMT Partial REMT
Variable Coef. S.E. Coef. S.E. Coef. S.E.
ENERGY 9.770 0.779 -3.189 5.278 8.129 0.876
EPR 4.232 0.304 3.341 0.378 4.045 0.309
CML -0.155 0.054 -0.178 0.068 -0.252 0.062
ENERGY - - 11.815 5.277 - -
EPR - - 2.228 1.071 1.267 1.053
CML - - 0.329 0.163 0.455 0.150
Constant 243.99 4231 243.99 3.914 243.99 4.036
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Figure 1. FEVD estimator and its anchoring estimators
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Figure 2. Partial adjusted RE estimator and its anchorstgrators
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