

FRUELA CRUISES DATA BASE

Ricardo Anadón, Marta Estrada (University de Oviedo, Oviedo, Spain Instituto de Ciencias del Mar – CSIC, Barcelona, Spain) <u>ranadon@correo.uniovi.es</u>, <u>marta@icm.csic.es</u>

> Study Area Tracks and stations Individual projects Methods of the Data Base FRUELA cruises Literature

1. MAP OF THE STUDIED AREA

2. MAPS WITH CRUISE TRACKS AND STATIONS

Research Topic / Operation	Principal Investigator	Team on board	Cruise	Reference
Physics				
CTD – Macro and mesoescale distribution	Marc Antoni Garcia (UPC)	Marc Antoni Garcia	F96	(Garcia et al., 2001)
	Oswaldo López (UPC)	Oswaldo López	F95	
		Julia Figa (UPC)	F95	
		Manuel González (UPC)	F95	
		Joan Puigdefabregas (UPC)	F95	
CTD – Geostrophic circulation	Damià Gomis (UIB)	María Pilar Rojas (UPC) Damià Gomis	F96 F95	(Gomis et al., 2001)
CTD – Geostrophic circulation	Danna Gonns (OIB)	Dama Gomis	195	(Gomis et al., 2001)
Chemistry				
Nutrient distribution and utilisation	Carmen González-Castro (IIM)	Carmen González-Castro	F95	(Castro et al., 2001)
		María José Pazo (IIM)	F96	
CO ₂ system, pH and alkalinity	Aida Fernández-Rios (IIM)	Aida Fernández-Ríos	F96	(Álvarez et al., 2001)
	Gabriel Rosón (UV)	Gabriel Rosón	F95	
		Mª Victoria González (IIM)	F95	
POC and DOC distribution	María Dolores Doval (IIM)	María Trinidad Rellán (IIM) María Dolores Doval	F96 F95	(Doval et al., 2001)
POC and DOC distribution	Maria Dolores Doval (IIM)	Ramon Penín (IIM)	F95	(Doval et al., 2001)
		Enrique Nogueira (IIM)	F95	
		Emique Roguena (mai)	175	
Phytoplankton Light and bio-optics	Effin Ling Eigenne (LDA)	Eálin Lánaz Eignanag (LIM)	F95	(Eigurge 2001)
Light and bio-optics	Félix López-Figueroa (UM)	Félix López-Figueroa (UM) Belén Arbones (IIM)	F95 F95	(Figueroa, 2001) (Figueroa et al., 1997)
		María Luisa Villarinos (IIM)	F95 F96	(Lorenzo et al., 2001)
		Waria Luisa Villarinos (IIIVI)	190	(Arbones et al., 2000)
Flow-citometry and size structure	Jaime Rodríguez (UM)	Jaime Rodríguez	F95	(Rodríguez et al., 2001b)
The chomoly and size structure		Francisco Jiménez (UM)	F95	(100119002 01 01., 20010)
		José María Blanco (UM)	F95	
Primary production and pigments (HPLC)	Emilio Fernández (UV)	Emilio Fernández (UV)	F95	(Varela, et al., 2001)
	Manuel Varela (IEO)	Manuel Varela (IEO)	F96	(Rodríguez et al., 2001a)
Gross primary production and microbial respiration (oxygen)	Pablo Serret (UO)	Pablo Serret (UO)	F95	(Serret et al., submitted)
		Emilio Marañón (UO)	F96	
		Natalia González (UO)	F96	
DOC release	Marta Estrada (ICM)	Marta Estrada	F95	(Morán and Estrada,)
Microbial ETS activity	Rosa Martínez (US)	Rosa Martínez	F95	(Morán et al., In press)
New and regenerated production (¹⁵ N)	Antonio Bode (IEO)	Antonio Bode (IEO)	F95	(Bode et al., 2001)
Heterotrophic microbes				
Protist abundance and bacterivory	Dolors Vaqué (ICM)	Dolors Vaqué	F95	(Pedrós-Alió et al., 2001)
5	· · · ·	Núria Guixa-Boixereu (ICM)	F96	(Vaqué et al., 2001)
Prokaryotes abundance and production, Viruses and prokaryotic lysis	Carles Pedrós-Alió (ICM)	Carles Pedrós-Alió	F96	(Guixa-Boixereu et al., 2001)
r		Josep M. Gasol (ICM)	F95	

3. INDIVIDUAL PROJECTS WITHIN THE FRUELA CRUISES

Research Topic Operation	Principal Investigator	Team on board	Cruise	Reference
Meso y macrozooplankton				
Mesozooplankton composition, abundance and grazing	Florentina Álvarez-Marqués (UO)	Florentina Álvarez-Marqués	F95	
	José Luis Acuña (UO)	José Luis Acuña	F96	(Cabal et al., 2001)
		Jesús Alberto Cabal (UO)	F96	
		Mario Quevedo (UO)	F96	
		Jorge Álvarez-Sostres (UO) Ricardo Anadón	F96 F95	
Compared agg and faceal pollet production	Albert Calbet (ICM)	Albert Calbet	F95 F96	(Calbet and Irigaian 1007)
Copepod egg and faecal pellet production	Albert Calbet (ICM)	Xavier Irigoien (ICM)	F96 F96	(Calbet and Irigoien, 1997)
Mesozooplankton respiration, ETS activity	Santiago Hernández-León (ULP)	Santiago Hernández-León	F96	
Nesozoophankton respiration, Erb activity	Suntingo Hernandez Econ (OEI)	Irene Lidia Montero (ULP)	F96	
Bioacustics	Arturo Castellón (ICM)	Arturo Castellón	F96	
Macrozooplankton and fish larvae	Fracesc Pagés (ICM)	Fracesc Pagés	F96	
I	5 ()	Rafael González-Quirós (UO)	F96	
PC and PON export (drifting sediment trap)	Ricardo Anadón (UO)	Ricardo Anadón	F95-F96	(Anadón et al., 2001)
Sediment				
Sediment carbon burial, bioaccumulation and paleoclimatology	Jorge Guillén (ICM)	Jorge Guillén (ICM)	F96	(Masqué et al., 2001)
1 25		Marcelli Farran (ICM)	F96	(Bárcena et al., 2001)
		Pere Masqué (UAB)	F96	
Moorings				
Current meters and sediment traps	Albert Palanques (ICM)	Albert Palanques		(Palanques et al., 2001)
Deposition of carbon and nitrogen	1	Pere Puig (ICM)		(Isla et al., submitted)
		Marc Garcia (UPC)		
Technicians		× ,		
CTD, LHPR, Bioness	Pedro Jornet (UGBOIP)	Pedro Jornet	F95-F96	
	Mario Manríquez (UGBOIP)	Mario Manríquez	F96	
		María Isabel Lloret (ICM)	F95	
~ .		Fernando Uceta (UGBOIP)	F95	
Computing		Miguel Pancorbo (UGBOIP)	F96	
		Zacarías Garcia (UGBOIP)	F95	

ICM Institut de Ciències del Mar (CSIC)- Barcelona; IEO Instituto Español de Oceanografía, Laboratorio Costero de A Coruña - A Coruña; IIM Instituto de Investigacions Mariñas (CSIC) - Vigo; UAB Universitat Autònoma de Barcelona - Barcelona; UGBOIP Unidad de Gestión de Buques Oceanográficos e Instalaciones Polares - Barcelona; UIB Universidad de las Islas Baleares - Palma de Mallorca; ULP Universidad de Las Palmas - Las Palmas de Gran Canaria; UM Universidad de Málaga - Málaga; UO Universidad de Oviedo - Oviedo; UPC Universitat Politècnica de Catalunya (LIM) - Barcelona; US Universidad de Santander; UV Universidad de Vigo - Vigo.

FRU	ELA 95										
CAST	STATION	DATE	HOUR	LÆ		E	LO	NGITUE	DE	D	EPTH
			GMT							CAST	STATION
1	1	3-12	13:18	62	41	33	60	36	33	208	230
				62	41	34	60	36	26		237
2	2	3-12	22:03	63	1	2	60	16	43	810	866
				63	0	58	60	16	36		862
3	3	4-12	0:38	63	20	5	59	56	27	357	382
				63	20	6	59	56	45		408
4	4	4-12	5:41	63	39	27	59	33	3	287	284
				63	39	25	59	33	7		300
5	5	4-12	9:01	63	51	6	60	10	37	198	300
				63	51	20	60	11	26		201
6	6	4-12	12:11	63	34	29	60	39	28	688	786
				63	34	15	60	41	13		650
7	7	4-12	15:10	63	18	29	61	5	0	620	709
				63	18	24	61	4	12		615
8	8	4-12	17:42	63	2	32	61	30	55	522	565
				63	2	38	61	30	17		562
9	9	5-12	7:35	62	46	10	61	56	50	330	734
				62	46	12	61	56	1		359
10	10	5-12	9:56	62	29	56	62	22	47	359	387
				62	30	4	62	22	53		390
11	11	5-12	13:08	62	13	58	62	47	17	1192	1527
				62	13	34	62	47	29		1123
12	12	5-12	16:02	62	57	51	63	8	29	1832	1856
				62	57	31	63	8	26		1625
13	13	6-12	2:24	62	20	59	64	20	37	2797	3106
				62	21	15	64	20	34		3070
14	14	6-12	6:35	62	34	50	63	56	23	4043	4097
				62	34	39	63	55	36		3967
15	15	6-12	10:36	62	49	30	63	32	13	1986	2000
				62	49	22	63	32	33		2283
16	16	6-12	14:45	63	4	37	63	6	15	562	610
				63	4	44	63	6	1		609
17	17	6-12	16:49	63	19	29	62	41	0	162	195
				63	19	32	62	41	9		188
18	18	6-12	19:19	63	33	33	62	14	27	279	288
				63	33	43	62	14	23		300
19	19	6-12	21:00	63	48	31	61	51	55	149	174
				63	48	31	61	51	57		176
20	20	7-12	1:21	64	9	1	63	5	55	629	664

4. FRUELA 95 STATIONS AND DEPTHS

				64	9	8	63	6	11		674
21	21	7-12	3:45	63	54	52	63	26	6	387	419
			•••••	63	55	1	63	26	13		415
22	22	7-12	5:56	63	41	15	63	50	47	211	241
				63	41	15	63	50	48		241
23	23	7-12	8:09	63	25	54	64	16	17	224	256
				63	25	49	64	16	22		252
24	24	7-12	10:41	63	11	10	64	40	7	2762	2832
				63	11	28	64	39	57		2819
25	25	7-12	17:39	62	56	1	65	3	56	3215	3263
				62	55	32	65	5	11		3303
26	26	8-12	0:05	62	42	31	65	27	42	3184	3240
				62	43	22	65	28	41		3250
27	27	8-12	5:32	63	5	36	66	35	26	3327	3374
				63	5	33	66	37	9		3399
28	28	8-12	12:16	63	19	21	66	12	4	3281	3364
				63	20	51	66	8	28		3327
29	29	8-12	17:37	63	33	3	65	47	26	3216	3215
				63	33	26	65	47	37		3216
30	30	8-12	22:30	63	47	18	65	27	37	385	422
				63	47	5	65	28	2		419
31	31	9-12	0:28	63	59	59	65	5	39	415	447
				63	59	56	65	6	8		447
32	32	9-12	2:43	64	13	2	64	45	0	497	526
				64	12	56	64	45	19		526
33	33	9-12	4:51	64	26	57	64	21	33	97	126
				64	26	56	64	21	18		123
34	34	9-12	8:25	64	54	6	64	29	20	740	726
				64	54	12	64	29	20		798
35	34.1	9-12	12:19	64	54	30	64	29	2	889	900
				64	54	26	64	29	16		798
36	35	10-12	0:32	64	54	46	64	37	24	838	866
07	00	40.40	0.40	64	55	4	64	37	47	540	878
37	36	10-12	2:40	64	52	53 57	64	16	48	543	590
20	07	40.40	5.05	64	52	55	64	17	34	070	568
38	37	10-12	5:05	64	51	28	63 63	54	47	372	390
20	20	10 10	7.20	64	51 57	30	63	54	36	262	367
39	38	10-12	7:39	64	57 57	29 21	63 62	31 21	36	363	309
40	39	10 10	0.20	64 64	57 52	31 1	63 63	31 14	38 14	306	388 334
40	29	10-12	9:20	64 64			63 63	14 14	14 14	306	334 334
41	39.1	10 10	12:08	64 64	51 51	58 58	63 63	14 13		200	334 322
41	J9. I	10-12	12.00	64 64	51 52	58 2	63 63	13 13	56 49	290	322 315
42	40	10_12	17:15	64 64	52 37	∠ 50	63 62	52	49 54	296	530
74	+0	10-12	17.13	64	37	30 34	62 62	52	25	230	350 350
II				04	57	94	02	55	20	I	550

43	41	10-12	19:04	64	33	56	62	35	45	767	813
				64	34	1	62	35	40		810
44	42	10-12	21:43	64	29	40	62	16	4	739	734
				64	29	39	62	16	4		739
45	453	10-12	23:15	64	23	13	61	54	57	619	606
				64	23	6	61	54	54		587
46	44	11-12	1:45	64	17	16	61	39	10	652	664
				64	17	12	61	39	30		668
47	45	11-12	3:14	64	17	1	61	14	7	258	300
				64	16	58	61	14	19		280
48	46	11-12	5:42	64	12	53	61	55	10	445	572
				64	12	53	61	55	1		559
49	47	11-12	9:10	64	3	9	61	46	3	300	1004
				64	3	1	61	45	50		1001
50	47.1	11-12	11:25	64	3	1	61	45	3	1078	1078
				64	3	1	61	45	20		1024
51	48	12-12	17:28	64	49	28	61	37	55	49	55
				64	49	33	61	38	10		69
52	49	12-12	17:56	62	49	45	61	42	26	66	85
				62	49	49	61	42	42		86
53	50	12-12	18:37	62	51	10	61	51	33	163	170
				62	51	11	61	51	56		163
54	51	12-12	19:13	62	52	32	61	57	41		776
				62	52	46	61	58	10		763
55	52	12-12	20:16	62	54	3	62	5	44	735	771
				62	54	18	62	6	18		782
56	53	12-12	21:24	62	55	8	62	14	6	761	808
				62	55	12	62	14	2		805
57	54	12-12	22:45	63	2	12	62	22	55	742	790
				63	2	3	62	22	50		777
58	55	12-12	23:57	63	4	55	62	20	23	239	253
				63	4	48	62	20	18		277
59	56	13-12	0:42	63	8	18	62	16	58	355	391
				63	8	21	62	16	59	100	377
60	57	13-12	1:27	63	11	10	62	14	9	136	162
				63	11	11	62	14	9		155
61	58	13-12	3:36	63	24	42	62	2	8	25	47
		40.40		63	24	45	62	2	8		49
62	59	13-12	4:15	63 63	27	29	61	59	42	92	120
	00	40.40	4.50	63	27	33	61	0	1	405	120
63	60	13-12	4:59	63	30	29	61	56	55	195	226
	<u>.</u>	10.10		63	30	32	61	56	55	40.50	227
64	61	13-12	5:52	63	34	9	61	53	2	1252	1336
05	00	40.40	7.00	63	34	16 50	61	53	34	1010	1280
65	62	13-12	7:23	63	37	59	61	49	23	1210	1280

				63	38	2	61	49	53		1254
	66	63	13-12 8:							377	
				63	41	3	61	46	47		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	67	64	13-12 10	38 63	50	1	61	38	17	585	615
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				63	49	57	61	38	21		580
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	68	65	13-12 11	33 63	53	1	61	35	54	1053	1112
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				63	53	4	61	35	39		1112
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	69	66	13-12 13	15 63	56	46	61	32	52	154	198
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				63	56	47	61	32	43		180
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	70	67	13-12 14	22 64	3	19	61	26	16	385	382
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				64	3	25	61	26	22		379
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	71	68	13-12 16	26 64	5	57	61	23	32	681	695
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				64	6	14	61	23	4		722
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	72	69	13-12 17	36 64	9	36	61	19	29	460	469
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				64	9	33	61	19	8		484
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	73	70	13-12 18	38 64	13	22	61	16	46	402	421
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				64	13	29	61	16	45		444
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	74	71	13-12 19						37	195	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	75	72	13-12 21							304	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	76	73	13-12 22							328	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	77	74	14-12 0:							557	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	78	75	14-12 1:							641	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	70	70	44.40 0.							050	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	79	76	14-1Z Z:							852	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00	77	14 10 5.							1200	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	80	//	14-12 0.							1300	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>81</u>	78	1/ 12 8.							1080	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	01	70	17-12 0.							1000	
63 26 5 61 34 23 1145 83 79 14-12 11:59 63 19 54 61 40 23 927 984 84 80 14-12 14:07 63 13 15 61 40 34 987 84 80 14-12 14:07 63 13 15 61 46 15 950 1040 63 13 35 61 47 7 990 85 81 14-12 15:33 63 7 17 61 52 59 945 1016 86 82 14-12 17:31 63 0 58 61 59 5 817 900 87 52 14-12 17:31 63 0 58 61 59 5 817 900 87 52 14-12 19:23 62 54 11 62 6 16 730 779	82	78 1	14-12 10							103	
83 79 14-12 11:59 63 19 54 61 40 23 927 984 84 80 14-12 14:07 63 13 15 61 40 34 987 84 80 14-12 14:07 63 13 15 61 46 15 950 1040 63 13 35 61 47 7 990 85 81 14-12 15:33 63 7 17 61 52 59 945 1016 86 82 14-12 17:31 63 0 58 61 59 5 817 900 87 52 14-12 17:31 63 0 58 61 59 5 817 900 87 52 14-12 19:23 62 54 11 62 6 16 730 779	02	70.1	11 12 10							100	
84 80 14-12 14:07 63 13 15 61 40 34 987 84 80 14-12 14:07 63 13 15 61 46 15 950 1040 63 13 35 61 47 7 990 85 81 14-12 15:33 63 7 17 61 52 59 945 1016 86 82 14-12 17:31 63 0 58 61 59 5 817 900 87 52 14-12 19:23 62 54 11 62 6 16 730 779	83	79	14-12 11							927	
84 80 14-12 14:07 63 13 15 61 46 15 950 1040 63 13 35 61 47 7 990 85 81 14-12 15:33 63 7 17 61 52 59 945 1016 86 82 14-12 17:31 63 0 58 61 59 5 817 900 87 52 14-12 19:23 62 54 11 62 6 16 730 779	00	10								021	
63 13 35 61 47 7 990 85 81 14-12 15:33 63 7 17 61 52 59 945 1016 63 7 30 61 53 19 984 86 82 14-12 17:31 63 0 58 61 59 5 817 900 87 52 14-12 19:23 62 54 11 62 6 16 730 779	84	80	14-12 14							950	
85 81 14-12 15:33 63 7 17 61 52 59 945 1016 63 7 30 61 53 19 984 86 82 14-12 17:31 63 0 58 61 59 5 817 900 87 52 14-12 19:23 62 54 11 62 6 16 730 779											
63 7 30 61 53 19 984 86 82 14-12 17:31 63 0 58 61 59 5 817 900 63 1 2 61 59 9 817 87 52 14-12 19:23 62 54 11 62 6 16 730 779	85	81	14-12 15							945	
86 82 14-12 17:31 63 0 58 61 59 5 817 900 63 1 2 61 59 9 817 87 52 14-12 19:23 62 54 11 62 6 16 730 779	_	-								_	
631261599817875214-1219:2362541162616730779	86	82	14-12 17							817	
87 52 14-12 19:23 62 54 11 62 6 16 730 779											
	87	52	14-12 19							730	
				62	54	9	62	6	47		777

88	49	14-12	21:35	62	49	44	61	42	39	65	93
				62	49	41	61	42	43		94
89	83	14-12	22:30	62	56	49	61	36	27	232	260
				62	56	46	61	36	41		263
90	84	14-12	23:34	63	2	49	61	30	33	527	570
				63	2	44	61	30	26		569
91	85	15-12	0:56	63	5	25	61	43	36	592	638
				63	5	24	61	43	39		637
92	86	15-12	2:02	63	11	28	61	37	9	449	482
				63	11	27	61	37	8		482
93	87	15-12	3:06	63	8	48	61	26	5	590	629
				63	8	47	61	25	59		620
94	88	15-12	4:26	63	15	15	61	18	17	1159	1224
				63	15	16	61	18	17		1222
95	89	15-12	6:05	63	21	24	61	12	22	929	948
				63	21	25	61	12	44		988
96	90	15-12	7:49	63	29	12	61	5	34	567	615
				63	29	12	61	5	49		605
97	91	15-12	9:13	63	35	5	60	58	47	594	640
				63	35	4	60	58	47		636
98	92	15-12	10:20	63	38	52	60	56	8	95	124
				63	38	53	60	56	3		125
99	93	15-12	13:39	63	57	19	60	37	45	446	491
100				63	57	21	60	37	51		492
100	94	15-12	15:27	63	52	34	60	16	33	509	558
				63	52	36	60	16	25		543
101	95	15-12	16:55	63	48	47	60	19	54 -	630	676
100	00	45.40	47 50	63	48	45	60	20	7	070	676
102	96	15-12	17:59	63	44	48	60	23	27	679	712
100	07	45 40	40.00	63	44	54	60	23	12	005	731
103	97	15-12	19:30	63 63	31	21	60	30	0	365	408
101	00	45 40	04.54	63 63	38	23	60 60	30	6	200	388
104	98	10-12	21:54	63 62	30 20	28 19	60	36	32	366	432
105	00	16 10	22.05	63 62	30 24	18	60	36 42	6 56	204	386
105	99	10-12	23:05	63 62	24 22	8 50	60	42	56 29	394	416
106	100	16 10	0.40	63 62	23	59	60	42 40	38 54	470	435
106	100	16-12	0:49	63 62	17 17	11 16	60	49 50	54 10	478	514 524
107	101	16-12	2:00	63 63	17 11	16 7	60 60	50 55	10 35	709	524 824
107	101	10-12	2.00	63	11	7 16	60 60	ວວ 55	35 32	798	824 842
108	102	16-12	4:05	63	4	36	60 61	55 1	52 58	389	842 334
100	102	10-12	4.00	63	4 4	30 48	61	2	58 12	209	334 449
109	103	16-12	5:13	63 62	4 58	40 33	61	2 8	12 18	250	449 281
109	105	10-12	5.15	62 62	58 58	35 35	61	8	10	230	201
110	104	16-12	6:52	62 62	58 52	39	61	8 13	46	104	278 134
	104	10-12	0.02	02	52	29	01	13	40	104	134

1				62	52	57	61	14	20		127
111	103.1	16-12	8:36	62	58	32	61	8	4	247	277
		-		62	58	35	61	7	58		277
112	105	16-12	10:56	62	43	14	60	58	52	31	48
				62	43	16	60	59	10		48
113	106	16-12	11:50	62	58	28	60	53	17	155	189
				62	58	24	60	53	21		186
114	107	16-12	12:48	62	54	24	60	47	35	95	123
				62	54	26	60	47	34		122
115	108	16-12	14:05	63	2	48	60	41	41	151	207
				63	2	53	60	41	31		184
116	109	16-12	14:51	63	6	25	60	25	33	554	600
				63	6	25	60	34	48		593
117	110	16-12	16:18	63	13	2	60	28	54	580	633
				63	13	2	60	28	30		629
118	111	16-12	17:48	63	20	4	60	22	38	370	410
110	110	10.10	10.00	63	20	9	60	22	48	505	407
119	112	16-12	19:08	63 00	26	23	60	16	16	565	558
100	440	10 10	00.40	63 63	26	30	60 60	16	42	00	590
120	113	10-12	20:19	63 62	31 31	13 21	60	12	2 13	80	120
121	114	16 12	23:08	63 63	31 43	21 34	60 59	12 59	44	718	118 762
121	114	10-12	23.00	63	43 43	34	59 59	59	32	710	767
122	115	17-12	0:43	63	43	52 59	59	42	36	681	733
122	110	17 12	0.40	63	44	7	59	42	34	001	726
123	116	17-12	2:17	63	36	. 22	59	41	51	715	755
				63	36	22	59	41	47		756
124	117	17-12	4:13	63	27	50	59	51	35	103	129
				63	27	52	59	51	45		129
125	118	17-12	5:15	63	22	8	59	56	14	189	218
				63	22	9	59	56	11		217
126	119	17-12	6:08	63	15	46	60	2	43	814	869
				63	15	54	60	2	44		867
127	120	17-12	8:05	63	8	53	60	9	0	738	783
				63	8	48	60	8	46		784
128	121	17-12	9:25	63	2	35	60	15	21	109	909
100				63	2	28	60	15	5		908
129	121.2	17-12	10:47	63	1	59	60	13	15	856	908
100	400	47 40	10.11	63 63	1	52	60 60	12	25	000	911
130	122	17-12	12:41	62 62	56 56	1	60	21	15 50	829	866
131	123	17 10	14:13	62 62	56 50	4	60 60	20 26	59 57	456	871 479
131	125	17-12	14.15	62 62	50 50	22 28	60 60	20 26	57 54	450	479
132	124	17-12	15:40	62 62	44	20 41	60 60	32	54 50	409	434
102	1 <i>⊆</i> -T	11 14	10.40	62	44	45	60	32	48	100	447
133	125	17-12	17:28	62	44	52	60	10	41	103	121
				62	44	54	60	10	41		125
134	126	17-12	18:20	62	48	7	60	6	56	809	840
				62	47	55	60	6	55		839
135	127	17-12	19:30	62	52	40	60	2	14	990	1035

1				62	52	40	60	2	7	I	1035
126	100	17 10	01.11	62 62	52 58					027	
136	128	17-12	21:11	62 62	50 59	50 3	59 59	56 56	16 26	937	969 992
107	120	17 10	22.26						26 5	040	
137	129	17-12	22:36	63 63	5	9	59	50		842	894
100	400	40.40	0.07	63	5	24	59	50	30	205	899
138	130	18-12	0:07	63 63	11	49 55	59	42	49 25	305	344
100	404	40.40	1.01	63	11	55	59	42	35	040	336
139	131	18-12	1:21	63	18	18	59	36	2	216	235
4.40	400	40.40	0.00	63	18	17	59	35	47		248
140	132	18-12	2:28	63	25	36	59	28	4	908	930
				63	25	38	59	27	37		969
141	133	18-12	3:50	63	23	55	59	17	10	359	407
4.40	40.4	40.40	= 10	63	24	0	59	17	0	100	387
142	134	18-12	5:12	63	29	56	59	11	47	463	498
				63	30	0	59	11	39		496
143	135	18-12	6:18	63	32	20	59	21	57	283	334
	407	40.40	4	63	32	30	59	21	47		317
144	137	18-12	7:51	63	28	10	59	1	29	222	249
				63	28	5	59	1	24		251
145	138	18-12	8:58	63	21	47	59	8	25	92	119
				63	21	44	59	8	31		119
146	138.1	18-12	10:11	63	21	37	59	8	34	90	117
				63	21	37	59	8	37		116
147	139	18-12	11:41	63	14	34	59	16	25	787	821
4.40	4.40	40.40	40.07	63	14	40	59	16	26	704	817
148	140	18-12	13:27	63	7	49	59	25	31	731	760
4.40		40.40	45.40	63	7	49	59	25	31		763
149	141	18-12	15:19	63	1	20	59	30	43	834	866
450	4.40	40.40	10.10	63	1	20	59	30	43	0.05	888
150	142	18-12	16:40	62	55	3	59	37	14	885	940
454	4.40	40.40	40.45	62	55	3	59	37	14	054	942
151	143	18-12	18:45	62	48	33	59	42	24	954	1049
450		10.40	00.00	62	48	33	59	42	24	1100	1049
152	144	18-12	20:20	62	42	57	59	49	35	1100	1188
450	445	40.40	00.07	62	42	57	59	49	35		1170
153	145	18-12	22:37	62	39	35	59	53	20	144	149
454	4.40	40.40	0.05	62	39	35	59	53	20	0.40	179
154	146	19-12	0:05	62	33	25	59	34	36	349	341
455	4 4 7	40.40	4.05	62	33	25	59	34	36	050	401
155	147	19-12	1:05	62	36	41	59	30	57	852	850
450	4.40	10.10	0.45	62	36	41	59	30	57	4074	909
156	148	19-12	2:45	62	44	28	59	22	27	1374	1491
457	4.40	40.40	4.00	62	44	28	59	22	27	4400	1282
157	149	19-12	4:39	62 62	50	44	59 50	15 15	34	1123	1236
450	450	10.40	6.40	62 62	50	44 46	59 50	15	34	600	1104
158	150	19-12	6:18	62	56	46	59	8	41	690	740
450	4 - 4	10.40	0.04	62 62	56	46 40	59 50	8	41 25	200	738
159	151	19-12	8:04	62 62	3	49 40	59 50	1	35	300	332
160	4 5 4	10 40	0.04	62 62	3	49 42	59 50	1 55	35	100	332
160	154	19-12	9:24	63	12	42	59	55	0	198	247

				63	12	42	59	55	0		232
161	152	19-12	10:27	63	9	49	58	54	18	107	134
			-	63	9	49	58	54	18	-	134
162	153	19-12	11:28	63	15	47	58	46	36	65	92
				63	15	47	58	46	36		93
163	155	19-12	13:08	63	24	16	58	35	18	431	473
				63	24	16	58	35	18		471
164	99	19-12	19:29	63	24	6	60	42	47	384	422
				63	24	6	60	42	47		417
165	74	19-12	22:55	63	47	20	61	13	15	590	613
				63	47	20	61	13	15		645
166	38	20-12	10:56	64	57	36	63	31	48	353	370
				64	57	36	63	31	48		388
167	37	20-12	14:28	64	51	27	63	54	59	387	406
				64	51	27	63	54	59		419
168	36	20-12	17:10	64	54	20	64	15	56	1033	1114
				64	54	20	64	15	56		1053
169	36/37	20-12	19:09	64	52	4	64	6	10	231	230
				64	52	4	64	6	10		231
170	156.1	21-12	2:20	64	57	35	63	32	10	376	340
474	450.4	04.40	0.54	64	57	35	63	32	10	400	376
171	156.1	21-12	3:54	64	57	38	63	32	2	100	347
170	450.0	04 40	0.10	64	57	38	63 63	32	2	207	316
172	156.2	21-12	6:12	64	57 57	34 24	63 62	31	59	327	368
173	156.3	21-12	8:38	64 64	57 57	34 28	63 63	31 31	59 42	370	353 414
175	150.5	21-12	0.50	64	57	28 28	63	31	42	570	382
174	156.4	21-12	11:06	64	57	20 42	63	31	7 2 50	314	353
1/4	100.4	Z - Z	11.00	64	57	42	63	31	50 50	014	346
175	156.5	21-12	13:57	64	57	35	63	31	34	334	364
	10010		10.01	64	57	35	63	31	34		365
176	156.6	21-12	17:00	64	57	35	63	31	38	321	376
				64	57	35	63	31	38		321
177	156.7	21-12	20:09	64	57	27	63	31	10	314	394
				64	57	48	63	31	10		314
178	156.8	21-12	23:11	64	57	33	63	32	23	317	334
				64	57	58	63	32	23		317
179	156.9	22-12	1:56	64	57	36	63	32	1	351	350
				64	57	27	63	32	1		351
180	157	22-12	18:11	64	49	25	63	11	48	362	385
				64	49	8	63	11	48		336
181	158	22-12	20:36	64	38	3	62	52	48	606	622
		00.15	00.15	64	38	7	62	52	48		626
182	159	22-12	23:13	64	33	56	62	35	45	775	797
400	400	00.40	4.05	64	33	51	62	35	45	000	818
183	160	23-12	1:35	64	28	15 50	62	15	29	666	740
104	161	00 40	2.20	64	27 22	59 26	62 61	15 55	29 26	564	704 507
184	161	23-12	3:38	64 64	23 23	26 28	61 61	55 55	26 26	564	597 550
185	162	23-12	5:30	64 64	23 12	28 55	61 61	55 55	26 38	559	559 571
00	102	23-12	0.30	04	١Z	55	01	55	30	009	571

I				64	12	56	61	55	38	I	EGG
196	162	23-12	7.01	64 64	2	50 53	61	55 45	30 29	1076	566
186	163	23-12	7:31	64 64	2	53 45	61	45 45	29 29	1076	1029
107	164	23-12	0.25				61	45	29 37	04	1094
187	164	23-12	9:25	63	56	53	61	32		84	115
100	405	00.40	44.05	63	56	53	61	32	37	F 4 0	213
188	165	23-12	11:35	63	47	16	61	12	58	548	590
100	400	00.40	44.00	63	47	16	61	12	58		594
189	166	23-12	14:20	63	35	1	60	58	44	586	630
100				63	34	60	60	58	44		628
190	167	23-12	16:44	63	24	2	60	42	10	402	442
101				63	24	2	60	42	10		444
191	168.1	26-12	2:00	63	24	9	60	42	53	383	414
100				63	24	10	60	42	53		415
192	168.1	26-12	2:57	63	24	39	60	42	52	103	397
				63	24	43	60	42	52		396
193	168.2	26-12	8:04	63	25	26	60	41	11	338	379
10.1				63	25	28	60	41	11		377
194	168.3	26-12	14:16	63	24	28	60	37	16	413	450
				63	24	28	60	37	16		444
195	168.4	26-12	20:11	63	25	15	60	36	10	361	414
				63	25	24	60	36	10		398
196	168.5	27-12	2:18	63	24	28	60	33	16	340	382
				63	24	30	60	33	16		370
197	169.1	28-12	2:10	64	49	53	63	12	21	263	308
				64	50	4	63	12	21		287
198	169.1	28-12	3:08	64	49	29	63	11	57	111	338
				64	49	26	63	11	57		338
199	169.2	28-12	8:16	64	49	37	63	13	26	224	227
				64	49	33	63	13	26		238
200	169.3	28-12	14:09	64	48	54	63	13	50	119	150
				64	48	54	63	13	50		148
201	169.4	28-12	17:59	64	49	1	63	14	13	98	119
				64	49	2	63	14	13	100	117
202	169.5	29-12	2:01	64	47	42	63	12	8	122	166
				64	47	28	63	12	8		137
203	170	29-12	13:45	64	38	13	62	45	55	163	183
				64	38	20	62	45	55		166
204	171	29-12	14:45	64	36	32	62	47	18	645	707
				64	36	26	62	47	18		676
205	172	29-12	16:22	64	31	56	62	40	20	472	514
				64	31	53	62	40	20		494
206	173	29-12	17:45	64	32	22	62	45	48	444	460
				64	32	29	62	46	25		469
207	174	29-12	19:27	64	31	48	62	28	54	568	591
			_	64	31	45	62	28	12		601
208	175	29-12	21:24	64	34	25	62	26	10	520	552
				64	34	26	62	26	13		534
209	176	29-12	22:40	64	33	54	62	35	54	783	830
			• · -	64	33	56	62	35	48		838
210	177.1	29-12	2:45	64	38	51	62	55	19	573	598

				64	38	43	62	55	9		594
211	177.1	30-12	3:54	64	38	44	62	55	39	101	642
			••••	64	38	40	62	54	32		611
212	177.2	30-12	8:07	64	38	44	62	53	56	623	673
				64	38	33	62	53	46		629
213	177.3	30-12	14:21	64	37	26	62	47	44	675	734
				64	37	10	62	47	37		672
214	177.4	30-12	21:55	64	36	17	62	45	0	628	632
				64	36	32	62	44	56		635
215	177.5	31-12	1:54	64	36	3	62	44	59	550	593
				64	36	2	62	45	0		592
216	178.1	2-1	2:05	63	58	0	61	41	0	1124	1170
				63	58	5	61	41	19		1180
217	178.1	2-1	3:37	63	58	21	61	41	57	112	1188
		. (63	58	24	61	42	7		1190
218	178.2	2-1	8:00	63	58	26	61	44	15	1108	1170
010	470.0	0.4	14.00	63	58	35	61	44	33	4407	1171
219	178.3	2-1	14:02	63 63	57	50	61	40	32	1107	1158
220	170 /	2.1	20.00	63 63	57 57	57 27	61	40 25	22 50	000	1169
220	178.4	3-1	20:08	63	57 57	37 54	61 61	35 35	59 45	889	933 944
221	178.5	3-1	1:55	63	56	29	61	37	45 58	1101	944 1157
221	170.5	5-1	1.55	63	56	23 27	61	38	2	1101	1158
222	179	3-1	10.05							690	
	110	0.	10.00							000	
223	180	3-1	11:35							983	
				64							
224	181	3-1	12:41	64	19	2	61	48	13	889	940
				64	18	58	61	48	23		908
225	182	3-1	13:52	64	20	8	61	43	56	720	704
				64	20	7	61	44	0		715
226	183	3-1	15:07	64	21	9	61	40	7	402	870
227	184.1	4-1	2:43							691	
228	184.1	4-1	4:01							100	
000	1010		7.50							570	
229	184.2	4-1	7:56							579	
220	101 2	11	14.20							101	
230	104.3	4-1	14.20							401	
231	184 4	⊿_1	19.28							626	
201	104.4	7-1	15.50							020	
232	184 4	4-1	22.00							60	
	. о г. т										
233	184.5	5-1	1:57							508	
225	182	3-1	13:52	64 64 64 64 64 64 64	17 16 18 18 19 18 20 20	5 58 7 3 2 58 8 7	61 61 61 61 61 61 61	56 56 42 42 48 48 43 43	37 15 18 38 13 23 56 0	720	727 705 999 1036 940 908 704 715

FRU											
CAST	STATION	DATE	HOUR GMT	LATITUDE		LONGITUDE			DEPTH CAST STATION		
234	185	18-1	13:55	63	11	4	59	22	7	206	792
			14:30	63	11	31	59	22	18		786
235	186	19-1	2:47	64	3	9	61	45	50	1004	1027
			3:47	64	3	6	61	45	56		1008
236	187		17:21	64	54	18	64	28	57	726	678
			18:17	64	53	47	64	29	27		590
237	187.2	20-1	2:09	64	54	33	64	29	6	100	970
			2:34	64	54	43	64	29	12		1007
238	188		4:08	64	52	55	64	16	39	596	621
				64	52	53	64	16	44		594
239	189		5:40	64	51	24	63	54	39	100	409
				64	51	20	63	54	52		414
240	190		9:29	64	57	31	63	31	24	334	354
			9:54	64	57	37	63	31	24		353
241	191		11:01	64	51	58	63	14	21	302	320
			11:37	64	52	15	63	14	25		314
242	192		14:48	64	37	51	62	52	38		529
0.40	400		15:27	64	37	37	62	52	20	770	526
243	193		16:35	64	33	51	62 62	35 25	31	772	815
044	104		17:28	64	34	1	62 62	35	32	704	809 765
244	194		21:24	64	29	34	62 62	15	38	721	765 760
245	195		22:00 23:20	64 64	29 22	34 49	62 61	15 53	32 58	515	750 544
245	195		23:20	64	22	49 47	61	53 54	7	515	554
246	195.2	21-1	23.37	64	22	35	61	53	6	103	554
240	199.2	21-1	3:15	64	22	35	61	52	23	105	
247	196		4:40	64	12	36	61	55	5	620	627
	100		5:00	64	12	36	61	55	6	020	627
248	197	22-1	20:15	62	42	25	65	27	34	3163	3236
			22:41	62	43	38	65	26	36		3266
249	198		3:14	62	56	16	65	3	30	3196	3250
			5:48	62	56	38	65	3	23		3258
250	199		10:20	63	11	19	64	39	46	2742	2784
			12:20	63	12	10	64	39	38		2810
251	200		14:15	63	25	55	64	16	37	234	272
			14:40								
252	201		21:15	63	41	21	63	50	32	215	240
			22:02	63	41	14	63	50	14		240
253	201.2	23-1	1:44	63	41	18	63	50	52	218	242
			2:18	63	41	13	63	51	6		236
254	202		4:34	63	54	51	63	26	2	393	420
			5:02	63	54	56	63	26	10		
255	203		7:00	64	8	54	63	5	50	615	634
	6 6 6		7:47	64	8	35	63	5	26	105	622
256	204		13:38	63	48	27	61	52	4	165	187
057	005		14:19	63	48	28	61	53	6	000	204
257	205		19:30	63	33	35	62	14	22	260	280

5. FRUELA 96 STATIONS AND DEPTHS

			19:59	63	33	28	62	13	43		284
258	206		22:42	63	19	25	62	41	2	162	189
			23:09	63	19	26	62	40	45		184
259	207	1-1	2:31	63	4	40	63	6	31	570	597
			3:15	63	4	37	63	8	27		619
260	208			62	49	27	63	32	14	1918	1969
			7:29	62	49	34	63	32	20		1998
261	209		14:25	62	34	51	63	56	13	4042	4083
			17:22	62	35	11	63	55	57		4086
262	210		19:54	62	21	9	64	20	15	2756	2780
			22:18	62	21	48	64	19	14		2798
263	211	25-1	4:49	61	57	57	63	8	24	3768	3836
			7:54	61	58	4	63	8	20		3838
264	212		15:24	62	14	3	62	46	46	3978	4034
			18:33	62	14	19	62	46	35		3933
265	213		20:30	62	28	58	62	22	45	358	388
			21:08	62	30	19	62	23	8		398
266	214	26-1	1:10	62	46	11	61	57	6		412
			1:42	62	46	11	61	56	47		441
267	215		5:31	63	2	23	61	31	7	524	560
			6:17	63	2	45	61	29	28		540
268	216		9:57	63	18	30	61	5	15	704	722
000	047		40.50	~~~	24	20	~~~	20	07	700	704
269	217		12:56 13:50	63 63	34 34	30 42	60 60	39 39	37 2	706	734 750
270	218		17:20	63	54 51	42 6	60 60	10	2 41	215	232
210	210		17:20	63	51	8	60	10	36	215	232
271	219		20:21	63	39	25	59	32	56	217	235
2/1	213		20:21	63	39	28	59	32	44	217	198
272	220	27-1	0:15	63	20	3	59	56	33	341	394
212	220	21-1	0:46	63	20	13	59	56	24	541	004
273	221		4:29	63	1	0	60	16	37	810	862
210			5:20	63	0	28	60	16	0	010	002
274	222		8:26	62	41	35	60	36	34	233	254
27.1			9:01	62	41	40	60	36	34	200	261
275	223	28-1	2:41	62	27	55	62	26	2	1138	1180
2/0	220	20 1	2	62	27	59	62	26	3	1100	1100
276	223.1		8:30	62	28	7	62	25	14	916	1032
			9:25	62	28	45	62	24	59		
277	223.2		14:11	62	28	16	62	23	34	836	875
	-		15:05	62	27	41	62	23	8		940
278	223.3		20:00	62	27	29	62	23	12	1031	1040
			21:04	62	27	22	62	23	0		1062
279	223.4	29-1	2:00	62	26	56	62	23	20	1238	1282
			3:20	62	26	25	62	24	13		1360
280	224		19:57	62	55	33	59	58	37	1023	1065
281	224.1	30-1	2:04	63	1	5	60	16	57	824	863
			3:10	63	1	14	60	16	54		866
282	224.2		8:00	62	59	28	60	13	8	952	997
			9:01	62	59	9	60	13	8		
283	224.3		13:56	62	55	48	60	7	33	1011	1010
			15:07	62	55	4	60	4	56		1010
284	224.4		20:02	62	51	34	59	57	21	757	894

			21:04	62	51	23	59	55	22		
285	224.5	31-1	2:36	62	46	58	59	46	55	978	1036
			3:42	62	46	38	59	44	10		1202
286	225.1		2:44	64	3	6	61	45	49	1022	1053
			3:49	64	3	39	61	46	56		
287	225.2		8:25	64	3	5	61	46	45	1121	1170
			8:31	64	3	2	61	46	40		1156
288	225.3		14:01	64	2	55	61	46	47	1087	1138
			15:12	64	2	51	61	47	18		
289	225.4		20:01	64	2	43	61	45	57	1072	1124
			21:06	64	2	23	61	46	29		1144
290	225.5	2-1	2:20	64	2	17	61	46	50	1092	1150
291	226	3-1	2:16	64	51	25	63	54	42	30	410
	/		2:34	64	51	17	63	55	27		408
292	226.1		3:16	64	51	25	63	55	46	360	379
293	226.2		8:51	64	51	13	63	54	51	384	402
293	220.2		0.01	64 64	51	10	63	54 54	53	304	402 406
294	226.3		14:00	64	51	44	63	58	32	492	400 502
234	220.5		14.00	64	51	34	63	59	6	492	461
295	226.4		20:00	64	52	39	63	58	58	167	194
200	220.4		20:00	64	52	53	63	58	40	107	290
296	226.5		22:16	64	50	33	63	55	27	325	336
200	220.0		22:48	64	50	16	63	54	34	020	000
297	226.6	4-1	2:08	64	50	39	64	1	46	379	414
			2:39	64	50	44	64	1	41		380
298	227.1		20:03	64	32	26	62	30	26	740	770
			20:58	64	32	21	62	29	54		753
299	227.2	5-1	1:05	64	32	34	62	31	8	763	785
			2:08	64	32	29	62	31	23		739
300	227.3		8:02	64	32	5	62	28	47	670	689
			8:50	64	31	60	62	28	27		701
301	227.4		14:10	64	30	5	62	22	39	647	672
			14:59	64	30	2	62	22	11		681
302	227.5		19:50	64	20	26	62	18	55	567	599
				64	8	13	62	18	45		

6. CTD METHODS

Marc A. García, Damiá Gomis

(Universitat Politècnica de Catalunya, Barcelona, Institut Mediterrani d'Estudis Avançats (CSIC-UIB), Palma de Mallorca, Spain) <u>mgarlop@ciccp.es</u>, <u>dfsdgb4@ps.uib.es</u>

Surface-to-bottom CTD cast was performed with a GO MkIIIC WOCE probe provided with extra dissolved oxygen, fluorescence and light transmission sensors. Water samples were obtained routinely at 24 levels with a GO Rosette equipped with 10 l Niskin bottles. Some of the Niskin bottles carried RTM SiS 4002 digital reversible thermometers. Salinity was obtained from water samples by means of a Guildline Autosal 8600 B. The θ has been derived from CTD profiles. Calibration of CTD after the FRUELA cruises is annexed as GIF file

7. CHEMICAL METHODS

Marta Alvarez, Aida F. Ríos (Instituto de Investigacións Marinas. CSIC. Spain) marta@iim.csic.es, aida@iim.csic.es

A Metrohm E-654 pH-meter equipped with a Ross (Orion 81-04) combined glass electrode was used to determine **pH** on the NBS scale. The temperature was measured using a platinum resistance thermometer and finally pH was referred to a standard temperature of 15° C (pH₁₅) according to Pérez and Fraga (1987a). The method has a shipboard precision of ± 0.002 pH₁₅ (Ríos and Rosón, 1996) and an accuracy of ± 0.004 pH₁₅ using samples of Certified Reference Material (CRMs) provided by Dr. Dickson from the Scripps Institution of Oceanography (Ríos and Pérez, 1999; Ríos and Rellán, 1998).

Alkalinity was determined by automatic potentiometric titration with HCl at a final pH of 4.44 (Pérez and Fraga, 1987b). The electrodes were standardised using an NBS buffer of pH 7.413 and checked using an NBS buffer of 4.008. This method has a precision of 0.1% (Pérez and Fraga, 1987b), and an accuracy of $\pm 1.4 \mu$ mol.kg⁻¹ (Ríos and Pérez, 1999; Ríos and Rellán, 1998).

Carmen G. Castro (Instituto de Investigacións Marinas. CSIC. Spain) ccarmen@iim.csic.es

Nutrient samples were filtered through 0.45 μ m Millipore filter prior to analysis and were analysed within 12 h after collection; and were stored in the refrigerator prior to analysis and in the dark. Nutrient concentrations were determined by segmented flow analysis with Technicon AAII systems, following Hansen and Grasshoff (1983) with some improvements (Mouriño and Fraga, 1985; Álvarez-Salgado *et al.*, 1992). The analytical error was ±0.05 μ mol·kg⁻¹ for nitrate, ±0.05 μ mol·kg⁻¹ for silicic acid and ±0.01 μ mol·kg⁻¹ for phosphate. **Dissolved oxygen** was determined by Winkler potentiometric titration. The estimated analytical error was ±1 μ mol·kg⁻¹. Oxygen saturation was calculated following Benson and Krause equation (UNESCO, 1986). **Chlorophyll** *a* was measured using 90% acetone extraction in a 10,000 R Turner fluorometer (Yentsch and Menzel, 1963). The precision was ± 0.05 mg·m⁻³. **Particulate organic matter** (filtration volume 1 1) was collected on Whatman GF/F filters and analyses were performed in a PE 2400 elemental analyser, with a precision of ±0.04 µmol·kg⁻¹ for nitrogen and ±0.1 µmol·kg⁻¹ for carbon.

M.D. Doval (Instituto de Investigacións Marinas. CSIC. Spain) marylo@iim.csic.es , mdoval@cccmm.cesga.es

Seawater samples for **DOC** analysis were collected with 100 ml polyethylene syringes with teflon plunger tips and filtered by hand through Whatman Puradisc GF/F disposable filter devices (0.7µm pore size) on polypropylene housing. The filtrate was drawn eventually into 50 ml polyethylene containers. The filtering system and the containers used for DOC had been previously soaked on 0.1 N HCl, and rinsed with Milli-Q water. In addition, the containers were rinsed three times with 50 ml of sample. Samples were immediately stored at -70°C until analysis in the base laboratory, eight months later. This storage technique has demonstrated no artefactual results on the micromolar scale (Hansell and Carlson, 1998b).

DOC determination was performed by high temperature catalytic oxidation (HTCO) with a commercial Shimadzu TOC-5000. The combustion guartz tube was filled with a 0.5% Pt on Al₂O₃ catalyst. Three to 5 replicate injections of 200 µl were performed per sample. The concentration of DOC was determined by subtracting the average peak area from the instrument blank area and dividing by the slope of the standard curve. The instrument blank is the system blank plus the filtration blank. The system blank was determined by subtracting the DOC in UV-Milli-Q to the total blank. Measurements made with the high sensitivity catalyst (Pt on silica wool) produced values $<2 \mu mol C l^{-1}$ for fresh UV-Milli-Q water. The filtration blank (determined by filtering UV-Milli-Q water through the filtration system) was $<2 \mu$ mol C l⁻¹. Before sample analyses, the catalyst was washed by injecting UV-Milli-Q, for at least 12 h, until the system blank was low and stable. The system blank was $\leq 8 \mu mol C l^{-1}$. The device was standardized with Potassium Hydrogen Phthalate (KHP). The coefficient of variation (C.V.) of the peak area for the 3-5 replicate analyses of each sample was $\sim 1\%$. The accuracy of our HTCO system has been tested within the international intercalibration exercise conducted by J. Sharp (Univ. of Delaware), with very satisfactory results (within $\pm 10\%$; J. Sharp, pers. com.).

8. CHLOROPHYLL a, PRIMARY PRODUCTION AND COMMUNITY METABOLIMS METHODS

Manuel Varela

(Instituto Español de Oceanografía, La Coruña, Spain) <u>manuel.varela@co.ieo.es</u>

Samples were obtained with PVC Niskin bottles in a CTD rossete system (no trace metal clean) at depths of 100, 50, 25, 10 and 1% of surface PAR. Particulate material was concentrated by filtration of 100-250 ml of seawater and pigments were extracted in 90% acetone (Parsons *et al.*, 1984) for 24 h in dark at 4° C. Chlorophyll a concentration was measured fluorimetrically on board, using a Turner Designs fluorometer. No sonication or destruction of filters was carried out. Samples for chlorophyll and primary production (after incubation) measurements were size fractionated by sequential filtration through Nucleopore 10 μ m, Nucleopore 2 μ m and Whatman GF/F filters, under vacuum pressures lower than 250 mm Hg.

The method followed for the C¹⁴ uptake experiments was based on that described in the JGOFS protocols. Water samples from each sampled depth were poured into three clear 300 ml polycarbonate bottles. In addition, a dark bottle was used for the 100%, 25% and 1% levels. Each bottle was inoculated with 740 kBq (20 μ Ci) of C¹⁴ labelled sodium bicarbonate and incubated for 24 h in a deck incubator refrigerated with surface water. The different light regimes of the sampling depths were simulated using neutral density filters. For some stations, two sets of data were obtained, one from on deck incubations and the other from *in situ* incubations. Correlation between the two data sets was very good (n=25; r²= 0.98; p<0.0001). Following incubation, samples were sequentially filtered (see previous section) and the filters were placed into scintillation vials and exposed to concentrated HCl fumes for 12 h. The incorporated radiocarbon was determined using a Beckman Liquid Scintillation Counter.

Pablo Serret (Universidade de Vigo, Vigo, Spain) pserret@uvigo.es

Rates of O_2 production and consumption by the planktonic community were determined by *in vitro* changes of seawater O_2 concentration in transparent ("light") and dark

bottles incubated *in situ* during 24 hours. Sampling and incubation were carried out at the same depths of 14 C experiments. Twelve 250 ml, gravimetrically calibrated, borosilicate bottles were carefully filled from every Niskin bottle by means of a silicone tube, overflowing more than 500 ml. Filled bottles were immediately closed and kept, in darkness, into a deck incubator refrigerated with surface water. An initial set of four dark bottles was fixed at once, the remaining (four dark, covered with aluminium foil, and four transparent or "light" bottles) were attached to a buoy at the depths of origin of the sampled water. Dissolved oxygen concentration was determined following the method described above. Data were available only for 4 stations of the FRUELA 95 cruise, two in tje Gerlache Strait and two in the Bransfield Strait. Fixing and storage procedures, reagents and standardisation followed the recommendations by Grasshoff *et al.* (1983). Dissolved oxygen concentration was measured through automated precision Winkler titration performed with a Metrohm 716 DMS Titrino, using a potentiometric end point. Aliquots of fixed samples were delivered by a 50 ml overflow pipette.

9. PHOTOSYNTHESIS, PRIMARY PRODUCTION AND PHYTOPLANKTON GROWTH RATES METHODS

Luisa M. Lorenzo, Belén Arbones, Francisco G. Figueiras (Instituto de Investigacións Mariñas, CSIC, Vigo, Spain) luimar@iim.csic.es, belen@iim.csic.es, paco@iim.csic.es

Phytoplankton light absorption coefficients (PhytopAbsortCoeff.xls)

Phytoplankton light absorption coefficients $[a_{ph}(\lambda), m^{-1}]$ were determined by filtering seawater volumes of 1 to 4 litres through 25 mm Whatman GF/F filters. The optical density spectra of concentrated material were measured on a Kontron UVIKON 860 dual-beam spectrophotometer at 1 nm bandwidth from 400 to 750 nm using a wet GF/F filter as a blank. Phytoplankton pigments were extracted in methanol (Kishino et al. 1985) and the optical density of non-algal material retained on the filters was determined in the same way. Absorbance at 750 nm was subtracted from all other wavelengths in the spectra. The correction for pathlength amplification on filters was done following the methodology of Arbones et al. (1996).

Photosynthesis-irradiance relationships (FotoParam.xls)

Fourteen subsamples collected in 75 ml Corning tissue culture flasks were inoculated with 3.70 x 10^5 Bq (10 µCi) of ¹⁴C-labelled bicarbonate and placed in linear incubators illuminated by tungsten-halogen lamps (50 W, 12 V) of a known light spectra. The flask at the end of the incubator was covered with aluminium foil and used to check dark carbon fixation. A digital temperature refrigeration unit was used to maintain the samples at ambient temperature. The PAR (E_{PAR}) at the position of each bottle in the incubators was measured with a Li-Cor cosine sensor LI-190SA. After 2 h of incubation, samples were filtered through 25 mm Whatman GF/F filters. The filters were exposed to concentrated HCl fumes for 12 h to eliminate unincorporated ¹⁴C. The external standard and the channel ratio methods were used to calculate disintegrations per minute (dpm).

Because photoinhibition was not observed, the broadband photosynthetic parameters, P_m^B [mg C (mg Chl)⁻¹ h⁻¹] and α^B [mg C (mg Chl)⁻¹ h⁻¹ (µmol m⁻² s⁻¹)⁻¹] were estimated by fitting the data to the model of Webb et al. (1974):

$$P_z^B = P_m^B \left[1 - \exp(-\alpha^B \cdot E_{PAR} / P_m^B) \right]$$
(1)

where P_z^B [mg C (mg Chl)⁻¹ h⁻¹] is the Chl-specific rate of photosynthesis at each sampled depth.

The spectral quality of the incident light did not change along the incubators (Figueiras et al., 1999) and therefore the spectral irradiance $E_q(\lambda)$ at each location in the incubators was deduced by multiplying the normalised spectra of the tungsten-halogen lamp $E_N(\lambda)$ by the corresponding E_{PAR} at each location:

$$E_q(\lambda) = E_N(\lambda) \cdot E_{PAR}$$
(2)

where

$$E_N(\lambda) = E(\lambda) / \int_{\lambda} E(\lambda) d(\lambda)$$
 (3)

The light absorbed by phytoplankton (E_{PUR} , µmol photons m⁻³ s⁻¹) at each position in the incubators was calculated following Dubinsky (1980):

$$E_{PUR} = \int_{400}^{700} a_{ph}(\lambda) \cdot E_q(\lambda) d(\lambda)$$
(4)

The maximum quantum yield of carbon fixation $[\phi_m \mod C \pmod{photons}]$ absorbed)⁻¹] was estimated by fitting the photosynthetic rates P (mg C m⁻³ h⁻¹) to the photosynthetic radiation absorbed by phytoplankton E_{PUR} (µmol photons m⁻³ s⁻¹):

$$P_{z} = P_{m} \left[1 - \exp(-\phi_{m}^{'} \cdot E_{PUR} / P_{m}) \right]$$
(5)

where $\phi_m = 0.0231 \cdot \phi'_m$. The factor 0.0231 converts milligrams of carbon to moles, µmol of photons to moles and hours to seconds.

From equation (1) the spectral light saturation parameter for light absorbed by phytoplankton $[E_{kPUR} = P_m/\phi'_m$, (µmol photons m⁻³ s⁻¹)], is analogous to the saturation parameter for PAR radiation $[E_{kPAR} = P_m^B/\alpha^B$, (µmol photons m⁻² s⁻¹)] derived from broad band photosynthesis – irradiance relationships.

Primary production (PrimaryProd.xls)

Primary production (PP) was integrated to the depth of 1% of surface irradiance $(Z_{1\%})$:

$$PP = D \int_{0}^{Z_{1_{v_{a}}}} Chl(z) \cdot P_{m}^{B}(z) \cdot \left[1 - \exp(-E_{PUR}(z) / E_{kPUR}(z))\right] dz$$
(6)

where D is the daylength.

Gross phytoplankton growth rates (GrowthRates.xls)

Gross phytoplankton growth rates $(\mu + r, day^{-1})$ were calculated as:

$$\mu + r = \ln \left[1 + \frac{dC/dt}{C} \right] \tag{7}$$

where dC/dt is the daily integrated primary production (mg C m⁻³ d⁻¹) at each depth:

$$dC/dt = D \cdot Chl \cdot P_m^B \left[1 - \exp(E_{zPUR} / E_{kPUR}) \right]$$
(8)

and C (mg C m⁻³) is the phytoplankton carbon estimated from the slope of the linear regression (model II) between particulate organic carbon POC and Chl.

References

- Kishino M., Takahashi N., Okami N., Ichimura S. (1985). Estimation of the spectral absorption coefficients of phytoplankton in the sea. Bulletin of Marine Science 37, 634-642.
- Arbones B., Figueiras F.G., Zapata M. (1996) Determination of phytoplankton absorption coefficients in natural sea water samples: evidence of a unique equation to correct for pathlength amplification on glass fibre filters. Mar Eco Prog Ser 137:293-304.
- Webb W.L., Newton M., Starr D. (1974). Carbon dioxide exchange of Alnus rubra: A mathematical model. Oecologia. 17, 281-291.

Dubinsky Z. (1980). Light utilization efficiency in natural phytoplankton communities. In: Falkowski PG (ed) Primary productivity in the Sea. Plenum Press, New York and London, p 83-97.

10. PHYTOPLANKTONIC DOC AND POC PRODUCTION METHODS

Xosé Anxelu G. Morán, Marta Estrada (Instituto Español de Oceanografía, Xixón-Gijón, Spain) (Instituto de Ciencias del Mar, Barcelona, Spain <u>xelu.moran@gi.ieo.es</u>, <u>marta@icm.csic.es</u>

Time-course incorporation of carbon into the dissolved and particulate fractions was measured by the ¹⁴C-technique (Steeman-Nielsen, 1952). Water for incubations was collected from surface (5 m depth), and at some stations also from 10-15 m depth, in 12 l Niskin bottles attached to a rosette sampler. Aliquots (70 ml) were introduced in sterile polystyrene tissue culture bottles (Corning). The bottles were inoculated with 0.3 to 0.7 MBq (8.4 to 19 μ Ci) of ¹⁴C-bicarbonate and incubated under constant light conditions. Surface samples were incubated under 90-100 μ mol photons m⁻² s⁻¹ except for samples from stations 8, 17 and 29, which were incubated under 50 μ mol photons m⁻² s⁻¹. In both cases saturation was achieved. Samples from 10-15 m depth were incubated under 9 μ mol photons m⁻² s⁻¹ to match the decreased irradiance at these depths (on average 7% ± 4% of surface values, Figueroa et al., 2002). Incubations were made in controlled-temperature baths fixed at *in situ* temperature (± 0.5°C). Part of the bottles (dark bottles) were covered with aluminium foil.

We used Whatman GF/F filters for separating the particulate and dissolved fractions of primary production. Four dark bottles (time-zero bottles) were processed immediately at the beginning of the experiment, in the same way as the dark bottles of the subsequent sampling times. In these samplings, aliquots of 5 ml were taken from two light and two dark bottles for determination of total labelled organic carbon (TOC) and the remaining 65 ml were filtered on GF/F filters for determination of total labelled POC. Aliquots of 5 ml from the remaining two light and two dark bottles were also filtered on GF/F filters and the filtrate collected for determination of labelled DOC. The remaining 65 ml were filtered on Nuclepore polycarbonate 0.8 μ m or 2 μ m filters (data not shown). Filtration through GF/F filters for DOC sampling was made by gravity. In the other cases, filtration pressure did not exceed 100 mm Hg. Filters were treated with concentrated HCl fumes for ca. 12 h before addition of 4.5 ml of ReadySafe liquid scintillation cocktail. Liquid samples (with labelled TOC or DOC) were acidified with 1 ml HCl 6M

and left open in an orbital shaker for 12 h before adition of 15 ml of scintillation cocktail. Radioactivity was measured in a Beckman LS6000LL liquid scintillation counter. The time-zero values were subtracted from all subsequent samples for correction of abiotic incorporation. Dark bottle values after time-zero blank substraction were on average $4\% \pm 1\%$ (SE) of the light bottle values for POC measurements, $24\% \pm 4\%$ of those for DOC and $16\% \pm 3\%$ of those for TOC, and did not increase appreciably during the experiments. These dark bottle values were not subtracted, following the recommendation of Watanabe (1980). In each experiment, the radioactivity of the ¹⁴Cbicarbonate solution added to the incubation bottles was determined in 20 µl aliquots. *Carbon exchange model and compartmental analysis*

A simple 3-compartment carbon exchange model for obtaining steady-state rates of production of POC and DOC was used. The equations defining the rates of change of carbon in the compartments are:

$dC_1/dt = -k(2,1) C_1 + k(1,2) C_2 - k(3,1) C_3$	(1)
$dC_2/dt = k(2,1) C_1 - k(1,2) C_2 + k(2,3) C_3$	(2)

$$dC_3/dt = k(3,1) C_1 - k(2,3) C_3$$
(3)

where C_i is the carbon concentration in pool i and k(i,j) is the fractional rate constant of flux from C_j to C_i . k(2,1) is the constant of particulate carbon production and would reflect only photosynthetically produced carbon. k(1,2) is considered the constant of respiration of synthesized POC, inferred from its influence on PO¹⁴C kinetics. k(3,1) is the constant of dissolved carbon production. No distinction is possible between active excretion by phytoplankton and other sources of labelled DOC release, such as cell lysis. k(2,3) is the constant of heterotrophic assimilation of recently released DOC. The inverse of the rate constant k(2,3) is the turnover time of the photosynthetically produced DOC pool (Lancelot, 1979).

The performance of alternative 3-compartment carbon exchange models was first evaluated by the residual sum of squares (RSS) after fitting to data, as a measure of the remaining unexplained variance. The model which minimized the average RSS for all experiments was chosen. Least-squares non-linear fitting of the model to actual measurements of DO¹⁴C and PO¹⁴C was made with a computer program especially designed for such compartmental analysis (SAAM II, SAAM Institute, Washington). Data were weighted by the inverse of the standard deviation of duplicates. These analyses yielded estimates of the rate constants of flux between compartments (k(i,j), in units h^{-1}) and of their variance and total remaining unexplained variance. Once the model was fitted to a set of data, it was possible to derive the DOC and POC production rates (mg C m⁻³ h⁻¹) from the estimates of the rate constants and the concentration of dissolved inorganic carbon (DIC) at each sampling site. No isotopic discrimination factor was considered for the conversion of dpm to carbon units. Percent extracellular release (PER) was calculated as the ratio of DOC production rate to the sum of POC and DOC production rates.

11. PROKARIOTIC PRODUCTION AND ABUNDANCE METHODS

Carlos Pedrós-Alió (Inst. Ciencias del Mar, CSIC, Barcelona, Spain) cpedros@icm.csic.es

Samples for determination of prokaryotic abundance (10 to 20 mL) were filtered through 0.2 μ m pore diameter black polycarbonate filters and stained with DAPI (1 μ g mL⁻¹ final concentration) for 5 min before sucking the filters dry (Porter and Feig 1980). Filters were then mounted on microscope slides with non-fluorescent oil (R.P. Cargille Lab., Inc.) and stored frozen until counted. Filters were counted by epifluorescence microscopy with a Nikon Diaphot microscope. About 200-400 prokaryotic cells were counted per sample.

Prokaryotic heterotrophic production was determined by ³H-leucine incorporation (Kirchman et al. 1985) as modified for micro-centrifugation by Smith & Azam (1992). Aliquots of 1.2 mL were dispensed into 2 mL microcentrifuge tubes with a step pipette. Control tubes received 133 µL of 50% TCA and were vortexed. Next, 48 μ L of a 1 μ M solution of ³H-leucine was added to the tubes providing a final concentration of 40 nM (which was found to be saturating in these waters). At least four replicates and two killed controls were incubated per sample. After vortexing, tubes were placed in whirl-pack plastic bags and these were incubated in the dark in a water bath, at temperatures close to in situ, for 2 to 4 hours. Incubations were stopped with 133 µL of 50% TCA and vortexing. Next, tubes were spun in a microcentrifuge for 10 min at 16000 g. Liquid was aspirated with a Pasteur pipette connected to a vacuum pump, taking care not to leave any droplets, especially around the cap. Pellets were rinsed with 1.5 mL of 5% TCA, vortexed and spun again. Supernatant was sucked again and 0.5 mL of scintillation cocktail were added. The tubes were counted within standard 20 mL scintillation vials in a Beckman scintillation counter on board. Counts were repeated after 48 hours of adding cocktail. These second sets of counts were less variable and had lower blanks than the initial counts. Dpm were calculated by the instrument using the H number.

Prokaryotic heterotrophic production (PHP) was calculated from leucine incorporation (Leu) according to the equation

$$PHP = Leu*CF$$

Where CF is a conversion factor expressed in KgC mol⁻¹. These conversion factors were empirically derived for different samples (see below). From these estimates of production and those of prokaryotic biomass, specific growth rates (μ) were calculated as

$$\mu = [Ln (1 + PHP/PB)] / t$$

Where PB is prokaryotic plankton biomass and t is the time over which the PHP is considered.

12. FLAGELLATES, PROTOZOA AND BACTERIVORY METHODS

Dolors Vaqué (Instituto de Ciencias del Mar, Barcelona, Spain) dolors@icm.csic.es

Prokaryotes and nanoflagellate abundance and biomass

Six samples of 100 ml (preserved with glutaraldehyde, 1% final concentration) for prokaryotes and nanoflagellates were taken from surface to below the deep chlorophyll maximum (DCM) at 10 -20 m intervals in each one of the indicated stations (Fig. 1). Water subsamples of 10 - 20 ml for prokaryotes and 30-50 ml for nanoflagellates were filtered throughout 0.2 μ m and 0.6 μ m polycarbonate filters respectively, and stained with DAPI (4, 6 - diamidino-2- phenylindole, Porter and Feig 1980), at a final concentration of 5 μ g ml⁻¹ (Sieracki et al. 1985). Abundance of these microorganisms was determined by epifluorescence (Nikon Optiphot) microscopy. Nanoflagellate showing red-orange fluorescence, and /or plastidic structures, were considered phototrophic forms (PNF), while colorless nanoflagellates were counted as heterotrophic (HNF).

Prokaryotic size was determined after measurement of approximately 300 cells from two stations from Bransfield Strait and Bellingshausen Sea with an image analysis system attached to the microscope. We custom modified the software NIH -image to prokaryotic size. The characteristics of the system, the calibration with latex beads and the choice of filters to process the images are detailed in Massana et al. (1997). Prokaryotic biomass was calculated using the carbon to volume relationship derived by Norland (1993) from the data of Simon and Azam (1989).

pg C cell⁻¹ = 0.12 x (
$$\mu m^3$$
 cell⁻¹)0.7

Nanoflagellate size was determined measuring lengths and widths under the epifluorescence microscope, with a calibrated micrometric eyepiece. From 50 to150 cells (heterotrophic plus phototrophic) were measured per sample. Cell volumes were estimated by assuming the nearest geometrical figure. Carbon content was estimated using a literature volume to carbon factor of 0.22 pg C

μm⁻³ (Børsheim and Bratbak 1987). *Ciliate and large dinoflagellate biomass*

Ciliate and large dinoflagellate abundance and biomass was examined in single 1 l samples which were preserved in a 1% final concentration of acidic Lugol solution. One liter sample was settled down for 48 h., then, the supernatant was gently removed until reaching 200 ml. This concentrate was sedimented in 100 ml chambers for at least 48 hours before enumeration, at 200x or 400x magnification, using an inverted microscope attached to a video camera. Enumeration and sizing was performed from the images recorded in the videotape. Ciliate and dinoflagellate average size was determined after measuring all cells recorded per sample (from 44 to around 400 cells) using the software NIH-Image. Ciliate volume was measured by adjusting each cell to the nearest geometric shape. To avoid the probable underestimation of cell volume due to fixation with Lugol's solution (Leaky et al. 1994a, Stoecker et al. 1994), the average cell volume for each identified group was converted to carbon equivalents using the factor experimentally derived for Lugol's fixed marine oligotrichs, 0.2 pg C μm^{-3} (Putt and Stoecker 1989). Carbon weight for tintinnids was estimated using the experimentally determined factor of 0.053 pg C μm^{-3} (Verity and Langdon, 1984). Grazing, prokaryotic

Water samples were collected at one depth (coinciding with the depth of maximal chlorophyll *a* concentration) in representative selected stations. Estimates of grazing on prokaryotes by protists (HNF, ciliates, dinoflagellates....) were determined by disappearance of fluorescent minicells (*E. coli* strain X-1488, Genetic Stock Center, Yale University), following the Pace et al. (1990) technique. In each determination, 4 1 samples were taken from the surface (5 m to 20 m), and divided in two parts. 2 l were filtered through 0.8 μ m polycarbonate filters (to avoid prokaryotic predators, and used as controls) and the other 2 l through 50 μ m net mesh (to eliminate predators larger than 50 μ m, e.g. naupliae). Fluorescent minicells were added to the corresponding samples at 20 % -30 % of natural prokaryotic concentrations. Average volume of the used minicells was 0.065 μ m³, rather similar to the average volume of natural prokaryotes (0.054 μ m³). Incubations were run in the dark at *in situ* temperature, which ranged from -1.19 to 2.5 °C and for 48 h. Minicell, natural prokaryotes, HNF, ciliate and large dinoflagellate abundance and biomass were determined at the beginning of the experiment and at 48 hours by epifluorescence microscopy.

Calculations of consumed prokaryotes $l^{-1} d^{-1}$ was obtained following the mathematical model of Salat and Marrasé (1994):

$$g = -(1/t)* Ln (Mit/Mi_0);$$

g: grazing rate d^{-1} ; t: incubation time; Mi_t: number of minicells at final time; Mi₀: number of minicells at initial time.

$$a = (1/t) * Ln (PN_t/PN_0)$$

a: net growth rate d^{-1} ; t: incubation time; PN_t: Prokaryotic number at the end of the experiment, PN₀: Prokaryotic number at the beginning of the experiment.

$$G = (g/a)^* (PN_t - PN_0)$$

G: Total grazing (Prokaryotes consumed $l^{-1} d^{-1}$)

Grazing was expressed as grazed biomass with total grazing plus the averaged biomass of "in situ" prokariotes.

13. MESOZOOPLANKTON ABUNDANCE, BIOMASS, GUT CONTENT AND GRAZING METHODS

Jesús A. Cabal, Ricardo Anadón (Universidad de Oviedo, Oviedo, Spain) jacabal@correo.uniovi.es, ranadon@correo.uniovi.es

Zooplankton samples were collected by 200-0 m vertical tows of a modified triple-ring WP2 net with 0.125 m² mouth area and 200 μ m mesh size. Cod end contents were immediately fractionated into three size fractions, 200-500 (small), 500-1000 (medium), and >1000 μ m (large), using sieve cups equipped with Nitex screens

Samples for taxonomic analysis were preserved in 2-4% sodium borate-buffered formalin, and later examined under a stereomicroscope to assess the species composition and abundance. We did not include Actinopoda and Foraminifera in our taxonomic analysis, in spite of their high densities in some stations, because our sampling method was not adequate for these groups. Similarly, the abundance data of large size zooplankton (Euphausiids and Salps) must be considered with caution because of potential net avoidance or extremely aggregated distributions. Samples for biomass analysis were rinsed with 0.2 μ m filtered seawater, filtered onto pre-combusted (450 °C, 24 h), pre-weighed Whatman GF/A filters and dried at 60 °C during 24 h; their dry weight was measured with a Sartorius microbalance. After grinding each sample in a mortar, the CNH content of a subsample was measured with a Perkin Elmer CNH 2400-II analyzer.

José Luis Acuña, Mario Quevedo and Ignacio Huskin (Universidad de Oviedo, Oviedo, Spain)

acuna@correo.uniovi.es , mquevedo@correo.uniovi.es , ihuskin@correo.uniovi.es

For the analysis of gut pigment contents, zooplankton from the different size fractions was rinsed by immersion in filtered (0.2 μ m) seawater, filtered onto 45 mm diameter sharkskin filters (Head, 1986), and stored at -60 °C in the dark. The whole procedure was completed in less than 5 min. Animals for gut evacuation experiments were collected using a WP2 net equipped with closed, soft plastic cod ends. Cod end contents were size fractionated as above and introduced in a cooler filled with filtered

seawater from the same station. Subsamples were filtered and stored (as above) during 45 min for copepods and 3 h for euphausiids. Sampling interval was 5 min during the first 30 minutes for both groups, with additional sampling at 45 min for copepods and at 45, 60, 90, 120 and 180 min for euphausiids.

Animals were picked from the frozen filters, within 1 year of collection, under a dim light stereomicroscope. The number of copepods picked varied between 1 and 50, and was typically greater than 10. When the number was large enough, duplicate samples were taken. Euphausiids were analysed independently, except for a few small animals which were pooled in groups. No attention was paid to species or development stage, but carnivorous species were avoided. Animals were placed in 25 ml glass vials with 5 ml of 90 % acetone and pigments were extracted overnight, in the dark, at 4 °C. Fluorescence was measured in a Turner Designs II fluorometer before and after acidification (Mackas and Bohrer, 1976). Pigment concentration was estimated as chlorophyll a equivalents (Chl a). No correction for background fluorescence or pigment destruction was applied.

We used the gut pigment technique (Mackas and Bohrer, 1976) to measure grazing rates of herbivorous crustacean zooplankton. Individual ingestion rate was calculated as

$I = GPC \times k$

where I is ingestion rate (ng Chl a ind⁻¹ day⁻¹), GPC is individual gut pigment content (ng Chl a ind⁻¹) and k (d⁻¹) is the gut evacuation rate, represented by the slope of the exponential decay in gut contents with time obtained in the gut evacuation experiments (Mackas and Bohrer, 1976). Population grazing rates of each zooplankton category were calculated as individual ingestion (calculated by equation above) times population densities. Chlorophyll a values were converted into C using a C:Chl factor of 60.

CRUISE: 1 stands for first cruise (3 December 1995 to 5 January 1996) 2 stands for second cruise (17 January 1996 to 5 February 1996)

GRP: 1, 2 and 3 stand for the 3 groups of stations defined according to the community structure

sta: each number represents one station

rep: In some stations, we sampled several times consecutively to examine diel variations. Each each number represents the position within a series of samples corresponding to a diel cycle station

con1000: individual gut contents in > 1000 μ m zooplankton. Units: ng chla indv⁻¹

con500: individual gut contents in 500-1000 μ m zooplankton. Units: ng chla indv⁻¹

coneuf: individual gut contents in euphausiids. Units: ng chla indv⁻¹

con200: individual gut contents in 200-500 μ m zooplankton. Units: ng chla indv⁻¹

gpt1000: Gut passage time of >1000 μ m zooplankton. Units: days

gpt500: Gut passage time of 500-1000 µm zooplankton. Units: days

num200: areal density of 200-500 μm zooplankton. Units: indv.m⁻²

num1000: areal density of >1000 μ m zooplankton. Units: indv.m⁻²

num500: areal density of 500-1000 μm zooplankton. Units: indv.m⁻²

numeuf: areal density of euphausiids. Units: indv.m⁻²

- **pin200**: Total ingestion rate of 200-500 μ m zooplankton. Calculated as individual content times nareal density divided by gut passage time. Units: ng Chla m⁻² day⁻¹
- **pin1000**: Total ingestion rate of >1000 μ m zooplankton. Calculated as individual content times nareal density divided by gut passage time. Units: ng Chla m⁻² day⁻¹
- **pin500**: Total ingestion rate of 500-1000 μm zooplankton. Calculated as individual content times nareal density divided by gut passage time. Units: ng Chla m⁻² day⁻¹
- **pineuf**: Total ingestion rate of euphausiids. Calculated as individual content times nareal density divided by gut passage time. Units: ng Chla m⁻² day⁻¹

chla: areal chlorophyll concentration. Units: mg Chla m⁻²

Prodint: Integrated primary production. Units: mgCm⁻² day⁻¹

%CLH: daily chlorophyll percent removal by the zooplankton community (all fractions summed).

- **%PP**: daily primary production percent removal by the zooplankton community (all fractions summed).
- **%clh200**: daily chlorophyll percent removal by the 200-500 μm zooplankton size fraction.
- **%clh500**: daily chlorophyll percent removal by the 500-1000 μm zooplankton size fraction.
- **%clh1000**: daily chlorophyll percent removal by the >1000 μm zooplankton size fraction.
- %clheuf: daily chlorophyll percent removal by euphausiids.
- **%pp200**: daily primary production percent removal by the 200-500 μm zooplankton size fraction.
- **%pp500**: daily primary production percent removal by the 500-1000 μm zooplankton size fraction.
- **%pp1000**: daily primary production percent removal by the >1000 μm zooplankton size fraction.

%ppeuf: daily primary production percent removal by euphausiids.

14. DOWNWARD PARTICLE FLUXES METHODS

Ricardo Anadón (Universidad de Oviedo, Oviedo, Spain) ranadon@correo.uniovi.es

Drifting sediment traps were deployed during diel cycles as part of the FRUELA 95 (spring) and FRUELA 96 (summer) cruises. The trap array consisted in four individual MULTITRAP baffled and unscreened collectors (60 mm diameter mouth and 640 mm long). The traps were placed at a depth of between 60 and 65 m, and filled with filtered (Whatman GF/F) seawater, supplemented with NaCl (5 g L⁻¹) to avoid losses of materials due to turbulence. The salt solution was sterilised after the NaCl addition and filtered through Whatman GF/F filters right before deployement. In the present data, swimmers were not removed. Nevertheless, visual observation of the bottom of the traps did not show the presence of meso- or macrozooplanktonic organisms. Preservatives to avoid degradation of sinking materials were not used. While, in a recent paper, Nodder and Alexander (1999) reported significant underestimates (> 60 %) of vertical carbon flux when traps were filled with concentrated brine (> 50 ‰), we used a less concentrate brine (39 ‰ aprox.) that was not expected to produce significant effects.

After gently shaking the sample to avoid particulate breakage (fecal pellets are particularly sensitive), the trapped material was split for different analyses. Half of the volume of each trap was filtered through Whatman GF/F filters and PC and PON measured using a Perkin-Elmer 2400 Elemental Analyser. Previously the filters were dried at 60 °C during 24 hours.

Sub-samples of different volumes were used to determine the concentration of photosynthetic pigments, to identify and count phytoplankton and fecal pellets and to measure carbon incorporation rates by heterotrophic prokaryotes and phytoplankton cells accumulated in the traps.

Chlorophyll *a* was measured after extraction with 90 % acetone using a 10.000 R Turner Design fluorometer.

The C assimilation of the sedimented phytoplankton cells was measured by the ¹⁴C method (see Varela et al., 2002), in short-term incubations (1 hour) at saturating light. This measurement was used as an estimate of the viability of the sedimented

primary producers. Absolute rates were normalised to total photosynthetic biomass in the traps by dividing them by the trap carbon concentration.

The microbial consumption of the sedimented carbon was measured as the rate of ³H-leucine incorporation in sub-samples of each trap enclosed in Eppendorf vials. A subsample of the filtered salt solution used to fill the traps before deployment was used as a control for the determination of prokaryotic activity, which was always statistically not different from 0. Leucine incorporation was converted to biomass production using the theoreticaly calculated conversion factor of 3.1 kg C mol leucine⁻¹ and a prokaryotic growth efficiency [BP/(BP+Resp)] of 33 %. The results were expressed as carbon processed per amount of carbon sedimented.

Albert Palanques Instituto de Ciencias del Mar, CSIC, Barcelona, Spain <u>albertp@icm.csic.es</u>

A mooring line equipped with two sequential sediment traps was deployed south of Livingston Island and west of Deception Island at 1000 m depth. One sediment trap was placed 30 meters above bottom (mab), and the other trap was installed in mid-depth waters, 500 mab.

The sediment traps used in this study were Technicap model PPS3. The traps' sample-collecting hull is cylindrical and has an inner diameter of 40 cm. These traps incorporate a carousel with 12 sampling bottles, which is controlled by a programmable motor to preset variable sampling intervals for each of the 12 sampling tubes (Heussner *et al.*, 1990). The sampling period comprised almost a complete year (345 days) from March 1st 1995 to February 15th 1996. In this experiment, the sample collecting interval was set to different time intervals: 60 days during late autumn-winter months (from April to September), 30 days in March and October and 15 days in spring and summer months (from November to February) in order to have a higher resolution during the spring and summer months.

Before the trap deployments, the sampling tubes were rinsed and filled with a 5% (~1.7 M) formalin solution prepared from Carlo Erba analytical grade 40% formaldehyde mixed with 0.2 μ m filtered seawater to avoid the degradation of organic matter in the trapped particles. The solution was buffered (7.5<pH< 8) with Carlo Erba analytical grade sodium borate. After the trap recovery, the pH was checked and it indicated that the solutions remained buffered.

The total sample was divided into several aliquots to obtain different subsamples for analyzing total mass flux, major constituents: organic carbon, calcium carbonate and nitrogen. Zooplankton organisms, also called "swimmers", were removed by hand picking under a dissecting microscope.

Sample dry weight was determined using three subsamples filtered onto 47 mm diameter, 0.45 μ m preweighed Millipore filters rinsed with distilled water and dried at 40° C for 24 hours. Total mass flux was calculated from the sample dry weight, the collecting trap area and the sampling interval.

For carbon and nitrogen analyses, four subsamples were filtered onto 47 mm diameter preweighed Whatman GF/F glass microfiber filters that had previously been combusted at 550°C for 24 hours. Two subsamples were used to determine the total carbon (TC) and nitrogen percentages in a LECO CN 2000 analyzer. Another two subsamples were digested with HCl in a LECO CC 100 digestor and the resulting CO₂ was analyzed in the same CN analyzer and assigned to inorganic carbon (IC) content, which is used to calculate the calcium carbonate (CaCO₃) percentage.

15. SEDIMENT ACCUMULATION RATES METHODS

Albert Palanques and Pere Masqué (Institut de Ciències del Mar, CSIC, Barcelona, Spain) (Universitat Autònoma de Barcelona, Bellaterra, Spain) <u>albertp@icm.csic.es</u>, <u>pmasque@einstein.uab.es</u>

Bottom sediments were collected using a multiple corer (Bowers and Connelly) designed to recover up to 8 replicates of 10 cm diameter. All studied samples presented a layer of clear sea water over the top of the sediment, thus indicating that very low, if any, disturbance of the samples were induced due to insertion of the tube. Three cores (A3, A6 and B2) were selected for 210Pb analysis. Sediment core lengths ranged from 34 to 40 cm. One core from each station was subsampled at 0.5 to 2-cm intervals from top to bottom and sections were stored and frozen in sealed plastic bags until analysis. The outer 2 mm ring was removed from each section to discard the sediment possibly smeared downward during core insertion. For each section, wet and dry masses were determined before and after drying samples at 40°C, and dry bulk densities were calculated. About half of the sample was homogenised to carry out carbon, nitrogen and radionuclide analyses, which included ²¹⁰Pb and gamma-emitters.

Radiometric analysis

210Pb analyses of the sediment samples were performed following the methodology described by Sanchez-Cabeza *et al.* (1998), by total digestion of 200-300 mg sample aliquots. 209Po was added to each sample before digestion as internal tracer. After digestion, samples were made 1 N HCl and 209Po and 210Po were deposited onto silver disks at 60-70 °C for 8 hours while stirring. Polonium isotopes were counted with á-spectrometers equipped with low background SSB detectors (EG&G Ortec). Due to the elapsed time span between sediment sampling and analyses, 210Pb was assumed to be in radioactive equilibrium with 210Po (half-life = 138 d) in the sediment samples.

Some dried and homogenised samples of each core were counted by gamma spectrometry in calibrated geometries for 2-3 105 seconds. This was done by using a high purity intrinsic Ge detector, surrounded by a 12 cm lead shield, lined with 1 cm copper and 2 mm cadmium, and linked to an 8K MCA. Spectra were analysed with a modified version of the SAMPO family of programs (Koskelo *et al.*, 1981). 226Ra activities were determined through 214Pb (351.92 keV) and 214Bi (609.4 keV) lines of

gamma emissions, assuming secular equilibrium with ²²⁶Ra. No ¹³⁷Cs was detected along the cores by gamma spectrometry, due to the combined effects of low concentrations and small amounts of sample available.

Filters containing SPM for ²¹⁰Pb and ²¹⁰Po analyses were digested using *aqua regia* after addition of ²⁰⁹Po, while precipitates were centrifuged in order to reduce volumes. All samples were made 1 N with HCl and the same procedure described for sediment samples was followed. As analyses were carried out within 3 months after sample collection, equilibrium between ²¹⁰Po and ²¹⁰Pb was not yet reached. One year after the first analyses, samples were reanalysed for ²¹⁰Po, present by *in situ* disintegration of ²¹⁰Pb, thus permitting us to determine both ²¹⁰Pb and ²¹⁰Po activities at the sample collection date after appropriate decay corrections.

Chemical recoveries of all radiochemical separations ranged from 85 to 100%. For each batch of 10 samples, a reagent blank analysis was also carried out and subtracted for activity determination.

Sediment accumulation rates

We used a one-dimensional advection-diffusion model (Goldberg and Koide, 1962) to calculate the sedimentation rate (S, in mm y⁻¹) and the mixing coefficient (D_B , in cm² y⁻¹) that describes the intensity of particle reworking:

$$\frac{\partial A}{\partial t} = D_B \frac{\partial^2 A}{\partial x^2} - S \frac{\partial A}{\partial x} - \lambda A \tag{1}$$

where A (Bq kg⁻¹) is the excess ²¹⁰Pb concentration at depth x (cm), and S and D_B are assumed to be constant. As D_B and S cannot be determined independently, a solution for D_B can be obtained if S is known or assumed to be negligible. Assuming steady state conditions and when mixing is not present, equation (1) can be solved under the boundary conditions of A = A₀ (x=0) and A \rightarrow 0 (x $\rightarrow \infty$), by means of the equation

$$A = A_0 e^{-\frac{\lambda}{S}x}$$
(2)

This is usually done by least-squares fitting of the logarithm of excess ²¹⁰Pb versus depth for the strata below the SML. Then, the sedimentation rate were calculated by using equation (2) to determine D_B , also using least-square fitting for the SML:

$$A = A_0 e^{\left(S - \sqrt{S^2 + 4\lambda D_B}\right)/2D_B \cdot x}$$
(3)

In this study we consider the ²¹⁰Pb profiles as a two layer system with an upper mixed layer extending to a distance L below the water-sediment interface (SML) and a second layer below L where no mixing takes place

Carbon and nitrogen

Total carbon (TC%) and nitrogen (N%) were measured in duplicate using a Leco CN 2000 analyser. Two subsamples were used to determine the total carbon percentage (TC%). Two other subsamples were digested with HCl in a LECO CC 100 digester and the resultant CO_2 was analysed in the LECO CN 2000 analyser and assigned to inorganic carbon content (IC%), which was used to calculate the calcium carbonate concentration (CaCO₃%). The difference between the two values was assumed to represent the percentage of organic carbon content (OC%).

16. FRUELA cruises REFERENCES

- Álvarez, M., Ríos, A. F. and Rosón, G. (2002) Spatio-temporal variability of Air-Sea fluxes of carbon dioxide and oxygen in the Bransfield and Gerlache Straits during Austral summer 1995-96. *Deep-Sea Research II*, 49(4-5): 643-662
- Anadón, R., Alvarez-Marqués, F., Fernández, E., Varela, M., Zapata, M., Gasol, J. M. and Vaqué, D. (2002) Vertical biogenic particle flux during Austral summer in the Antarctic Peninsula area. *Deep-Sea Research II*, 49(4-5): 883-901
- Anadón, R and Estrada, M. (2002) The FRUELA cruises. A carbon flux study in productive areas of the Antarctic Peninsula (December 1995-February 1996). *Deep-Sea Research II*, 49 (4-5): 567-584
- Bárcena, M. A., Isla, E., Plaza, A., Flores, J. A., Sierro, F. J., Masqué, P., Sánchez-Cabeza, J. A. and Palanques, A. (2002) Bioaccumulation record and paleoclimatic significance in the Western Bransfield Strait. The last 2000 yrs. *Deep-Sea Research II*, 49(4-5): 935-950
- Bode, A., Castro, C., Doval, M. D. and Varela, M. (2002) New and regenerated production and ammonium regeneration in the western Bransfield Strait region (Antarctica) during phytoplankton bloom conditions in summer. *Deep-Sea Research II*, 49(4-5): 787-804
- Cabal, J. A., Álvarez-Marqués, F., Acuña, J. L., Quevedo, M., R., G.-Q., Huskin, I., Fernández, D., Rodriguez del Valle, C. and Anadón, R. (2002) Mesozooplankton distribution and grazing during the productive season in the Northwest Antarctic Península (FRUELA cruises). *Deep-Sea Research II*, 49(4-5): 869-882
- Calvet, A. and Irigoien, X. (1997) Egg and faecal pellet production rates of the marine copepod Metridia gerlachei northwest of the Antarctic Peninsula. *Polar Biology*, 18, 273-279.
- Castro, C., Ríos, A. F., Doval, M. D. and Pérez, F. F. (2002) Nutrient utilisation and chlorophyll distribution in the Atlantic sector of the Southern Ocean during Austral summer 1995-96. *Deep-Sea Research II*, 49(4-5): 623-641
- Doval, M. D., Álvarez-Salgado, X. A., Castro, C. and Pérez, F. F. (2002) Dissolved organic carbon distributions in the Bransfield and Gerlache Straits, Antarctica. *Deep-Sea Research II*, 49(4-5): 663-674
- Figueroa, F. L. (2002) Bio-optical characteristics of Gerlache and Bransfield Strait waters during an Antarctic summer cruise. *Deep-Sea Research II*, 49(4-5): 675-691
- Figueroa, F. L., Blanco, J. M., Jiménez-Gómez, F. and Rodríguez, J. (1997) Effects of ultraviolet radiation on carbon fixation in Antarctic nanophytoflagellates. *Photochemistry Photobiology*, 66, 185-189.
- García, M. A., Castro, C., Ríos, A. F., Doval, M. D., Rosón, G., Gomis, D. and López, O. (2002) Water masses and distribution of physico-chemical properties in the Western Bransfield Strait and Gerlache Strait during austral summer 1995/96. Deep-Sea Research II, 49(4-5): 585-602
- Gomis, D., García, M. A., López, O. and Pascual, A. (2002) Quasi-Geostrophic 3D Circulation and Mass Transport in the western Bransfield Strait during Austral summer 1995/96. *Deep-Sea Research II*, 49(4-5): 603-621
- Guixa-Boixereu, N., Vaqué, D., Gasol, J. M., Sánchez-Cámara, J. and Pedrós-Alió, C. (2002) Viral distribution and activity in Antarctic waters. *Deep-Sea Research II*, 49(4-5): 827-845

- Isla, E., Masqué, P., Palanques, A., Sánchez-Cabeza, J. A., Bruach, J. M., Guillén, J. and Puig, P. (2002) Sediment accumulation rates and carbon fluxes to bottom sediments in a high productivity area: Gerlache Strait (Antarctica). *Deep-Sea Research I*, 49(16) 3275-3287, 2002
- Lorenzo, L. M., Arbones, B., Figueiras, F. G., Tilstone, G. H. and Figueroa, F. L.
 (2002) Photosynthesis, primary production and phytoplankton growth rates in Gerlache and Bransfield Straits during austral summer: cruise FRUELA 95. *Deep-Sea Research II*, 49(4-5): 707-721
- Masqué, P., Isla, E., Sanchez-Cabeza, J. A., Palanques, A., Bruasch, J. M., Puig, P. and Guillén, J. (2002) Sediment accumulation rates and carbon fluxes to bottom sediments at the Western Bransfield Strait (Antarctica). *Deep-Sea Research II*, 49(4-5): 921-933
- Morán, X. A. G. and Estrada, M. (2002) Phytoplanktonic DOC and POC production in the Bransfield and Gerlache Straits as derived from kinetic experiments of ¹⁴C incorporation. *Deep-Sea Research II*, 49(4-5): 769-786
- Palanques, A., Isla, E., Puig, P., Sanchez-Cabeza, J. A. and Masqué, P. (2002) Annual evolution of downward particle fluxes in the Western Bransfield Strait (Antarctica) during the FRUELA experiment. *Deep-Sea Research II*, 49(4-5): 903-920
- Palanques, A., Isla, E., Masqué, P., Puig, P., Sánchez-Cabeza, J.A., Gili, J.M. and Guillén, J. (2002) Settling particle fluxes and sediment accumulation rates in the Western Bransfield Strait: implications for carbon cycle studies in antarctic marginal seas. Journal of Marine Research, 60-347-365, 2002
- Pedrós-Alió, C., Vaqué, D., Guixa-Boixereu, N. and Gasol, J. M. (2002) Prokaryotic plankton biomass and heterotrophic production in western Antarctic waters, during the 1995-96 austral summer. *Deep-Sea Research II*, 49(4-5): 805-825
- Rodríguez, F., Varela, M. and Zapata, M. (2002a) Phytoplankton assemblages in the Gerlache and Bransfield Straits (Antarctic Peninsula) determined by light microscopy and CHEMTAX analysis of HPLC pigment data. *Deep-Sea Research II*, 49(4-5): 723-747
- Rodríguez, J., Jiménez-Gómez, F., Blanco, J. M. and Figueroa, F. L. (2002b) Physical gradients and spatial variability of the size structure and composition of phytoplankton in the Gerlache Strait (Antarctica). *Deep-Sea Research II*, 49(4-5): 693-706
- Serret, P., Fernández, E., Anadón, R. and Varela, M. (in press) Trophic control of biogenic carbon export in Bransfield and Gerlache Straits, Antarctica. *Journal of Plankton Research*, 23 (12): 1345-1360
- Vaqué, D., Guixa-Bioxereu, N., Gasol, J. M. and Pedrós-Alió, C. (2002) Distribution of microbial biomass and importance of protist in regulating prokaryotic assemblages in three areas close to the Antarctic Península in Spring and summer 1995/96. Deep-Sea Research II, 49(4-5): 847-867
- Varela, M., Fernández, E. and Serret, P. (2002) Size-fractionated phytoplankton biomass and primary production in the Gerlache and South Bransfield Straits (Antartic Peninsula) in austral summer 95-96. *Deep-Sea Research II*, 49(4-5): 749-768

