
Abstract To investigate copepod nauplii ingestion

rates on phytoplankton, we have adapted the tradi-

tional gut fluorescence technique as it can be used with

lower gut pigment concentrations. With the improved

technique, laboratory experiments were performed to

estimate functional responses for nauplii of Calanus

helgolandicus and Centropages typicus. Nauplii were

raised from eggs to copepodites and the experiments

were performed with stages NIV-NV. Gut evacuation

rates and ingestion rates were measured on Isochrysis

galbana at different concentrations. Specific ingestion

rates ranged between 0.038–0.244 lg C lg–1 nauplii C

d–1 for C. typicus and 0.041–1.412 lg C lg–1 nauplii C

d–1 for C. helgolandicus. Both species showed a type III

functional response, reaching a saturation concentration

at around 600 lgC l–1 for C. typicus and 800 lgC l–1

for C. helgolandicus.

Introduction

Copepods are keystone intermediates in the flow of

energy and matter through pelagic food webs and

copepod nauplii are arguably the most numerous forms

of metazoans on the planet (Björnberg 1984). Due to

the widespread use of 200 lm nets for sampling me-

sozooplankton, information about nauplii, and also

small copepodites, is relatively scarce. However, when

appropriate mesh sizes are used, naupliar abundance

can vastly outnumber older copepodite and adult

stages (Turner 1982; Chisholm and Roff 1990; Turner

and Roff 1993). Despite their high abundance, our

knowledge of the ecological role of copepod nauplii is

limited. Although important numerically, their contri-

bution to the total community in terms of biomass is

usually small and this may be the reason for the lack of

research on copepod nauplii. However, recent studies

have shown their possible importance. Lonsdale et al.

(1996) found weight-specific ingestion rates to be three

to four times higher than those of adults, and thus

nauplii may play an important role in the food web.

Also, as nauplii can ingest pico- and nanophytoplank-

ton (Uye and Kasahara 1983; Berggreen et al. 1988) as

well as some forms of bacterioplankton (Turner and

Tester 1992; Roff et al. 1995) they may act as a trophic

link between the microbial and classical food webs

(Turner and Roff 1993).

On the other hand, technical difficulties when

working with these small zooplankters may also ex-

plain the scarcity of information on their feeding hab-

its. Abundance and distribution can be estimated but

effective methods to quantify their in situ feeding rates

are lacking. Work on laboratory rearing of copepods,

fed on unialgal cultures (e.g. Klein Breteler et al. 1982;

Fryd et al. 1991; Torres and Escribano 2003), demon-

strates that nauplii feed efficiently on cells over a large

size range. However, our knowledge of their ingestion

rates is derived from incubation experiments, most of
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them using phytoplankton cultures as food (e.g. Pa-

ffenhöfer 1971; Berggreen et al. 1988; Bonnet and

Carlotti 2001; Rey et al. 2001) providing results difficult

to extrapolate to natural conditions. In the cases when

natural food assemblages have been used, experiments

were usually carried with nauplii of the largest species

of copepods (e.g. the studies of Calanus spp. nauplli by

Hansen et al. 2000, Turner et al. 2001 and Irigoien et al.

2003), making these results only representative of the

feeding of naupliar communities where Calanus spp. is

the dominant species. Exceptions are the studies by

Tackx et al. (1990), White and Roman (1992) and Uitto

(1996) involving incubation experiments with small

nauplii and radio labeled phytoplankton.

The gut fluorescence method (Mackas and Bohrer

1976) is one of the most widely used methods when

studying ingestion of phytoplankton by adult cope-

pods. The method provides information on in situ

feeding rates immediately prior to collection. With this

technique, one avoids problems associated with

lengthy incubations (Roman and Rublee 1980) and

studies of diel variations in feeding rates are simple to

conduct, as is investigation of the in situ feeding impact

of herbivorous zooplankton on a phytoplankton

assemblage. Up to now, this technique has not been

used with nauplii and small copepodites due to tech-

nical problems. Their small size and low gut fluores-

cence require adaptations of the original methodology.

The first goal of this study was the improvement of

the gut fluorescence technique to measure feeding

rates of nauplii and small copepodites, using a high

efficiency chlorophyll-a fluorometric analysis. Once the

new protocol was established, feeding and gut evacu-

ation experiments were performed with nauplii of two

species of copepods. The validity of the improved

technique was tested by comparing our results with

literature data and also indirect calculation based on

naupliar metabolism.

Another goal of this study was to determine the

functional responses for both species. It is crucial to

know zooplankton functional responses to understand

the zooplankton-phytoplankton trophic link as a basis

for models. In spite of this, experimental studies sup-

porting a particular type of functional response are

extremely scarce (reviewed in Gentleman et al. 2003).

Two conceptual models (Lam and Frost 1976; Lehman

1976) pointed out that a type III functional response

(Holling 1965) is the one that maximizes the net gain of

energy. Both of them include a critical food concen-

tration below which the energy expenditure of the

feeding process is higher than the gain from the

assimilation of the food collected. In this case an ani-

mal may reduce its feeding activity to minimize the

energy loss or even cease it. Therefore, the most

profitable functional response for suspension feeding

zooplankters would be a sigmoidal type 3 or one type 2

with a feeding threshold at low food concentrations.

Materials and methods

Adaptation of the gut fluorescence technique

Prior to sample analysis, a series of tests were carried

out to examine the influence of various factors on the

experimental procedure. A Turner Designs TD700

fluorometer with a detection limit of 0.05 lg l–1 of

chlorophyll-a (chl-a) and 0.06 lg l–1 of phaeophytin-a

(pheo-a) in a solution of 90% acetone was used. To

increase the sensitivity of pigment analysis an adapter

kit for 75–250 ll borosilicate cuvettes was used, en-

abling a small number of nauplii per sample to be

analyzed. The fluorometer was calibrated at high sen-

sitivity, using the Raw Fluorescence Calibration, multi-

optional Mode. During the calibration, the instrument

range was manually adjusted. The optimal scale for

nauplii gut content analysis was the one that assigned a

value of 800 fluorescence units (fsu) to a concentration

of about 10 lg chl-a l–1. The relationship between chl-a

concentration and fluorescence was linear within the

range of measured concentrations. The EPA Method

445.0 (Arar and Collins 1997) for chl-a and pheo-a

determination was followed.

As the blank fluorescence of individual cuvettes

could vary when working at such high sensitivity levels,

the fsu values for 30 different empty cuvettes were

measured. Each cuvette was measured three times and

a one-way ANOVA with a Cochran’s C-test was car-

ried out to verify the homogeneity of variances. Sig-

nificant differences in the cuvette fluorescence

(F14,45 = 8.81, p < 0.05) were detected. The blank flu-

orescence variance within cuvettes (std = 3.4 fsu) was

much lower than between cuvettes (std = 8.5 fsu). To

correct the error due to cuvette variability, a blank

solution reading was taken with each cuvette prior to

reading the sample. Then, using a Pasteur pipette, the

blank solution was removed from the cuvette and the

sample was introduced.

To establish the minimum number of nauplii needed

to obtain a valid gut fluorescence measurement, sam-

ples (n = 60) with different numbers of individuals (5,

10, 20, 30) were analyzed. Nauplii were collected at

three stations near Cudillero off the north coast of

Spain (Central Cantabrian Sea) during January-March

2003. Plankton net tows (27 cm ring diameter and

53 lm mesh) were made from 50 m depth to the
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surface. Tows were performed at low speed (0.5 m s–1)

and nets were not washed before removing the cod

ends to avoid including in the sample, the most stressed

and damaged nauplii from the net. The cod end con-

tents were filtered through a 200 lm mesh to remove

mesozooplankton and filtered onto a 30 lm mesh.

Mesh filters with the nauplii were frozen immediately

in liquid nitrogen and kept frozen until analysis. All the

filtering process prior to freezing was carried out in a

very short period of time to avoid gut evacuation

(around 1 min.). For the gut fluorescence analyses, the

filters were thawed and washed with filtered seawater

to recover the nauplii. Working continually under dim

light, nauplii were isolated with a micropipette (0.5–

10 ll) and transferred to a petri dish with filtered

seawater so that their bodies were washed to remove

any adhering phytoplankton cells. Only nauplii without

apparent damage were chosen. Afterward, groups of

nauplii were picked with the micropipette, without

regard to species or developmental stage. Each group

was collected in a volume of 4 ll (nauplii and filtered

seawater) and placed into cuvettes with 125 ll 90%

acetone. The cuvettes were sealed with parafilm to

avoid acetone evaporation. Pigments were extracted

for 24 h at 4�C in the dark. Samples were not

homogenized, as Morales et al. (1990) found that this

procedure does not significantly affect copepods gut

content measurements. Fluorescence was measured

before and after acidification with HCl (Parsons et al.

1984) and gut pigment content was calculated as chl-a

equivalent (chl-a eq = chl-a + 1.51 · pheo-a) as sug-

gested by Båmstedt et al. (2000). Data were not cor-

rected for background fluorescence and pigment

degradation. During the period January–March 2003

very different values of mean individual gut contents

were found, ranging between 0.0062 and 0.0791 ng chl-

a eq nauplii–1. These values corresponded to 1.3–

27.6 fsu nauplii–1. Bearing in mind these results and the

variability found in the cuvette readings (variance

within cuvettes), samples with at least 20 nauplii were

picked out to ensure that the fluorometer errors were

not significant.

To test the effect of exposure to light during sorting,

the fluorescence values obtained for nauplii samples

that had been exposed under dim microscope light for

different periods of time were compared: immediately

after washing (approximately after 2 min under the

microscope) and 10 min later. Nauplii of Calanus hel-

golandicus and Centropages typicus from laboratory

cultures were used to minimize variance between

samples. ‘‘Before’’ and ‘‘after’’ 10 min, measurements

were compared using paired-samples t test. We did not

find any difference between their fluorescence (n = 13,

t12 = 1.372, p = 0.195), although we observed that

longer exposure times did result in decreases in fluo-

rescence, so it is advisable to work as quickly as pos-

sible.

Gut fluorescence measurements

Once the new protocol was established, feeding and

gut evacuation experiments were performed with

nauplii from laboratory cultures.

Rearing of nauplii

Copepods were collected from net tows made off

Plymouth (English Channel) between 15 June and 15

August 2004 with a 200 lm mesh net. The cod end

contents were transferred to the lab in surface seawater

in less than 2 h. Adult female C. helgolandicus and C.

typicus (approximately 200 for each species) were

placed in 2 egg-separation tubes in 5 l beakers with

filtered seawater. After 24 h, females were removed

and eggs were allowed to develop. Nauplii were kept in

5 l beakers at 15�C and with excess Isochrysis galbana

(approximately 850 lg C l–1). Phytoplankton concen-

tration in the beakers was checked everyday, and it was

adjusted by addition or dilution of the cultures. When

most of the nauplii reached NIV-NV, the gut evacua-

tion and ingestion experiments were carried out.

Gut evacuation experiments

Approximately 1,500 NIV-NV of each species were

selected from the copepod cultures, and fed for several

hours with excess I. galbana (similar concentration as in

the cultures). After this period they were removed with

a 53 lm mesh and rinsed into 5 l beakers filled with

0.45 lm filtered seawater. Groups of at least 100 nauplii

were removed at 0, 2, 4, 6, 8, 10 and 15 min intervals,

and immediately frozen with liquid nitrogen. Gut pig-

ment content was measured for groups of 20 nauplii.

For each time point, 8–10 groups of C. helgolandicus

and 4–8 of C. typicus nauplii were analysed, depending

on the abundance of nauplii on the filter. To estimate

gut evacuation rate we used the following equations:

Gt ¼ G0 � exp �k� tð Þ

assuming that a constant percentage of the gut content

is evacuated per unit time (Baars and Oosterhuis 1984;

Kiørboe et al. 1985; Christoffersen and Jespersen

1986). In the equation, k is the gut clearance coeffi-

cient, and Go and Gt are the gut contents at times

0 and t.
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Ingestion experiments at different concentrations

Groups of approximately 150 NIV-NV from the cul-

tures were incubated in 1 l beakers filled with filtered

seawater and an I. galbana suspension at different

concentrations. They were allowed to feed for 4 h, and

then the water in the containers was filtered through

30 lm mesh and the nauplii retained were immediately

frozen with liquid nitrogen. Gut pigment contents were

measured as above and ingestion rates (I) were calcu-

lated with the following equation:

I ¼ k�G

Initial concentration and size of phytoplankton cells

in the water was measured with a Coulter� Multisizer.

Final concentrations were not used to calculate inges-

tion rates with the ‘‘clearance method’’ as incubation

time was too short and concentration of cells too high to

get significant differences. To obtain chl-a concentra-

tion, 100 ml of water from each bottle was filtered onto

GF/F filters and measured with a Turner Designs 10

AU fluorometer. We assumed a C content for I. galbana

of 7.43 pg cell–1 (Rey et al. 2001) and a C/chl-a ratio of

40.5 was obtained for the phytoplankton culture.

Functional responses

The equations for the different types of functional re-

sponses (Holling 1965) were fitted by the least-squares

criterion to the ingestion data. For the type I fit (rec-

tilinear model) we followed the procedure by Roth-

haupt (1990) to calculate where the deflection point

should be, and then we obtained the fit for the com-

bination of the two linear regressions:

I ¼ a� C ;

when

C � Cd

I ¼ Imax ;

when

C > Cd

where I is the specific ingestion rate (lg C lg–1

nauplii C d–1), a is a constant, C is the phytoplankton

concentration (lg C l–1), Cd is the C at the deflection

point and Imax is maximum I, calculated as the I

average value for C > Cd.

For type II we used the Ivlev (1961) equation:

I ¼ Imax � 1� exp �a� C=Imaxð Þ½ �

where I is the specific ingestion rate, Imax is asymp-

totic maximum I, a is a constant and C is the phyto-

plankton concentration.

And the logistic equation for type III model:

I ¼ Imax= 1þ exp Kc� Cð Þ=a½ �ð Þ

where Imax is asymptotic maximum I, C is the phyto-

plankton concentration, Kc is a constant defined as the

food concentration for I = Imax/2, and a is a constant.

We tested the significance of differences in variances

among regressions by a two-tailed F test on the mean-

square error (Mullin et al. 1975; Rothhaupt 1990).

Stage duration and growth rates

A sample of at least 25 nauplii was taken from the

cultures every 12 h for cohort analysis, and stage

durations were estimated using the method of ‘‘median

development time’’ (Peterson and Painting 1990).

Gross growth efficiency (GGE) was calculated for

NIV-NV to check if the ingestion rates found were

adequate to sustain naupliar growth. We used the

formula:

GGE ¼ G=I

where G is daily growth and I is daily ingestion rate,

both expressed in C units.

To calculate GGE, the same nauplii used for the

cohort analysis were measured. To calculate dry weight

we used the relationship between length and weight

found by Klein Breteler et al. for C. typicus (1982).

Since we could not find a formula for C. helgolandicus

nauplii, the one by Klein Breteler et al. (1982) for

Pseudocalanus sp was used. Dry weight was converted

to C weight using ratios given by Gorsky et al. (1988).

To calculate daily growth we divided the difference in

weight between NV and NIV by the duration of stage

NIV. The ingestion rates used were those obtained at

862 lg C l–1, as nauplii in the cultures were grown

under similar concentrations.

Results

Development times and growth rates

The duration of development stages is presented in

Table 1 Development from egg to CI lasted for
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12.7 days in C. helgolandicus and for 14.3 days in

C. typicus. Length, weight and growth rate observa-

tions for stages NIV and NV reared in our experi-

mental conditions are presented in Table 2.

The gross growth efficiency calculated for NIV-NV

C. helgolandicus was 0.12 ± 0.05 (mean ± s.d.) and

0.28 ± 0.006 for NIV-NV C. typicus.

Gut evacuation rates

Despite the high variance within each group of repli-

cate samples, we observed a trend of gut pigment

content decreasing during each experiment and least-

squares exponential fits were obtained for both evac-

uation experiment (Fig. 1.).

Ingestion rates at different concentrations

For both species, gut contents showed an increasing

trend with increasing phytoplankton concentration

(Figs. 2, 3), with a saturation response at around

600 lgC l–1 for C. typicus, and at a slightly higher

concentration for C. helgolandicus. Evacuation rates

found in the previous experiments were used to cal-

culate ingestion rates. Specific ingestion rates ranged

between 0.038–0.244 lg C lg–1 nauplii C d–1 for C.

typicus and 0.041–1.412 lg C lg–1 nauplii C d–1 for C.

helgolandicus.

Functional responses

The three types of fits for functional responses were

tried. Using minimization of the mean square variance

as the criterion for goodness of fit, the type III model

was best in both cases (Table 3). However, for

C. typicus, we did not find significant differences in

explained variance between type I, type II and type III

models (results not shown). With C. helgolandicus it

was not possible to obtain a valid outcome for the type

II fit, and the type I did not reach the saturation con-

centration with our data. When comparing the type I

and type III responses in C. helgolandicus, we did not

find significant differences in explained variance either.

Table 1 Duration, in days, of development stages in the cultures at 15�C

Species Egg NI NII NIII NIV NV NVI Cumulative
duration

Calanus helgolandicus 1.3 1 1.6 3.8 1.5 1.5 2 12.7
Centropages typicus 1.45 1.25 1.55 2.1 4 1.9 2.05 14.3
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Fig. 1 Gut contents during gut evacuation experiments. Lines
represent exponential least-squares fits. C. helgolandicus
(G0 = 0.19, k = 0.058, r2 = 0.25, p < 0.001). C. typicus
(G0 = 0.03, k = 0.032, r2 = 0.19, p < 0.01)

Table 2 Body length of nauplii stages NIV and NV (lm, mean ± SD, calculated from 25 values), dry weight (lg) calculated following
Klein Breteler et al. (1982) and growth between NIV and NV expressed as lg C day–1. Dry weight was transformed to C weight
following Gorsky et al. (1988)

Species Body length Dry weight Growth

NIV NV NIV NV

C. helgolandicus 405 ± 16.7 467 ± 12.2 1.414 ± 0.061 1.627 ± 0.044 0.064
C. typicus 166.4 ± 8 206.1 ± 5.2 0.560 ± 0.028 0.689 ± 0.018 0.012
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We assumed a type III functional response because it

was the model that better fit the data.

Discussion and conclusions

The exploratory analysis of the improved technique

applied to the analysis of gut fluorescence, provides a

basis for further investigation of nauplii feeding rates

in the laboratory and in the field.

The gut fluorescence technique has some weak-

nesses: it is limited to ingestion of phytoplankton, there

are difficulties in obtaining reliable evacuation rates,

and there is a possibility of pigment destruction in

copepod guts to non-fluorescent compounds.

The gut evacuation rate calculated in our experi-

ments (k = 0.058 min–1 for C. helgolandicus and

k = 0.032 min–1 for C. typicus) is quite similar to that

obtained with the equation of Dam and Peterson

(1988) that relates gut clearance rate to temperature

(k = 0.038 min–1 at 15�C). This equation has been

generally accepted and employed for adult copepods

and it seems it could be used for copepod nauplii as

well, although more experiments should be done under

different conditions and with different species and

stages. This would suggest a lack of relation between

gut evacuation constant and copepod size (or in this

case developmental stage) and is consistent with the

results obtained by Morales et al. (1990). In their re-

view of the gut fluorescence method, they found a

relationship between the gut evacuation constant and

temperature, but no relation with copepod body size.

In the estimation of ingestion rates we have assumed

that gut evacuation rates obtained would not change

with food concentration, although some authors have

found that food concentration influences this rate

(Dagg and Walser 1987; Pasternak 1994). Irigoien

(1998), in a review of literature data, found differences

in the gut clearance constant for pre-fed animals and

animals collected directly from the environment, indi-

cating that the practice of pre-feeding animals before

evacuation experiments could produce biased results

due to higher initial gut contents. However, the dif-

ferences Irigoien (1998) found for both relations were

quite low (k = 0.05 min–1 at 15�C for pre-fed animals

and k = 0.04 for animals from the environment). Thus,

although it seems that k changes with food concen-

tration, a possible error created by using the same

constant for all the experiments could not be high, and

it would not significantly affect the ingestion rates ob-

tained.

Several authors have pointed out that one of the

main weaknesses of the method is the uncertainty
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Fig. 2 Gut contents at different I. galbana concentrations
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about pigment destruction during digestion to non-

fluorescent compounds. Previous studies have reported

highly variable degradation rates, ranging from 0 to

100% (reviewed in Dam and Peterson 1988). There is

no general agreement about the extent of pigment

destruction in copepod guts, as is discussed in Paster-

nak (1994) and Båmstedt et al. (2000). In any case,

studies comparing the gut fluorescence technique with

other techniques usually obtain similar results (Dagg

and Grill 1980; Kiørboe et al. 1982; Baars and Franz

1984; Baars and Oosterhuis 1984; Kiørboe et al. 1985;

Ishii 1990; Peterson et al. 1990), and results presented

here are in the same range as those found by other

authors using different methodology (see below). This

suggests that high degradation rates are not the rule,

and it is possible that in the cases when authors have

found values as high as 80–100%, results have been

influenced by artifacts in the experimental or analytical

techniques. Although, further investigation is neces-

sary to understand the processes involved in pigment

degradation to know how accurate the gut fluorescence

technique is, the method is still very useful to estimate

in situ copepod ingestion rates on phytoplankton. It

could be even more useful with copepod nauplii, as

their small size and low ingestion rates make it difficult

to perform bottle incubations with them in the field.

The naupliar feeding rates we measured should be

considered as approximations as diel feeding period-

icities have not been studied. Diel periodicities have

been described by many authors for copepods (re-

viewed in Mauchline 1998) and not having taken them

into account could imply a significant error in the

extrapolation to daily ingestion, although it is not yet

clear whether naupliar feeding also exhibits a diel cy-

cle.

In spite of this, when compared with other data

found in the literature (Table 4 and plotted in Fig. 4),

our data are in the same range as most of the others.

The C. helgolandicus ingestion rates on I. galbana are

not very different from those found by Rey et al.

(2001) under similar conditions. The C. typicus inges-

tion rates are lower than the rates found by Bonnet and

Carlotti (2001), but differences in the experiments

could explain this. Although the culture conditions

were quite similar, in Bonnet and Carlotti (2001) both

phytoplankton concentration and cell size were higher

and there were differences between nauplii too,

involving different stages, larger size and faster devel-

opment in their case (11.55 versus 14.3 d from egg to

CI). The main differences are found with the results of

Paffenhöfer (1971) which are much higher than ours.

Fernández (1979) considered that Paffenhöfer (1971)

had underestimated the nauplii carbon content, and

this would result in higher specific ingestion rates.

Another point is that our results could be influenced by

the size of the algal species chosen. Irigoien et al.

(2003) found that C. finmarchicus nauplii fed on quite

large cells from the natural assemblage. I. galbana used

in our study was probably too small to be efficiently

captured. Previous studies have found that I. galbana

size is near the lower end of the size spectrum available

for some species. Harris (1994) reported poor capture

efficiency by C. helgolandicus feeding on the similarly

sized cell, Emiliania huxleyi. Fernández (1979) found

that the lower size for C. pacificus nauplii was between

2 and 4 lm. In his experiments, NV and NVI C. paci-

ficus never ingested I. galbana in amounts sufficient to

support maintenance metabolism. Frost (1972) has

suggested that the minimum size on which copepods

graze efficiently increases with the size of the copepod.

However, in our experiments, although C. typicus

nauplii are smaller than those of C. helgolandicus, they

had lower specific ingestion rates, suggesting a less

efficient capture of I. galbana.

Our feeding experiments supported a type III

functional response, although differences with the

other types were not significant. The saturation con-

centrations found are somewhat higher than previously

reported in the literature. Berggreen et al. (1988)

found a saturation concentration for juvenile stages of

Acartia tonsa feeding on Rhodomonas baltica of

around 500 lg C l–1, and Frost (1972) found saturation

concentrations, for Calanus pacificus females feeding

on different species of phytoplankton, ranging between

100–300 lg C l–1. Frost (1972) also observed that the

saturation concentration decreased with increasing cell

volume, so the small size of the phytoplankton species

we used, could explain these differences.

Table 3 Parameters for the model fits and mean-square error (MSE) for the type I, type II and type III models. Cd and Kc (lg C l–1),
Imax (lg C lg–1 nauplii C d–1)

Species Type I Type II Type III

A Cd Imax MSE a Imax MSE a Kc Imax MSE

C. helgolandicus 9.79 · 10–4 – – 0.0487 – – – 162 544 1.08 0.0467
C. typicus 2.29 · 10–4 763 0.175 1.33 · 10–3 3.7 · 10–4 0.231 1.45 · 10–3 130 371 0.186 1.23 · 10–3

Mar Biol (2007) 150:893–903 899

123



Table 4 Summary of specific ingestion rates of copepod nauplii at different food concentrations found in the literature

Copepod species Stage Phytoplankton species Phytoplankton
concentration
(lg C l–1)

Specific ingestion
rate (lg C lg–1

nauplii C day–1)

Source

Calanus helgolandicus NIV-NV Isochrysis galbana (4 lm) 143 0.082 ± 0.031 This study
C. helgolandicus NIV-NV I. galbana (4 lm) 287 0.169 ± 0.064 This study
C. helgolandicus NIV-NV I. galbana (4 lm) 574 0.600 ± 0.239 This study
C. helgolandicus NIV-NV I. galbana (4 lm) 862 0.924 ± 0.393 This study
C. helgolandicus NIV-NV I. galbana (4 lm) 1,149 1.069 ± 0.184 This study
C. helgolandicus NIII Rhodomonas baltica

(7–8 lm)
364 0.674 ± 0.061 Rey et al. (2001) a

C. helgolandicus NIII I. galbana (4–5 lm) 520 0.737 ± 0.358 Rey et al. (2001) a

C. helgolandicus NIII Prorocentrum micans
(26–27 lm)

505 2.969 ± 1.079 Rey et al. (2001) a

C. helgolandicus NIII Pleurochrysis carterae
(9–10 lm)

768 2.892 ± 0.548 Rey et al. (2001) a

C. helgolandicus NIII Thalassiosira weissflogii
(12–14 lm)

429 0.930 ± 0.289 Rey et al. (2001) a

C. helgolandicus NIV R. baltica (7–8 lm) 364 0.759 ± 0.117 Rey et al. (2001) a

C. helgolandicus NIV I. galbana (4–5 lm) 520 0.498 ± 0.014 Rey et al. (2001) a

C. helgolandicus NIV P. micans (26–27 lm) 505 1.704 ± 0.266 Rey et al. (2001) a

C. helgolandicus NIV P. carterae (9–10 lm) 768 1.375 ± 0.612 Rey et al. (2001) a

C. helgolandicus NIV T. weissflogii (12–14 lm) 429 0.907 ± 0.248 Rey et al. (2001) a

C. helgolandicus NV R. baltica (7–8 lm) 364 0.523 ± 0.107 Rey et al. (2001) a

C. helgolandicus NV I. galbana (4–5 lm) 520 0.224 ± 0.008 Rey et al. (2001) a

C. helgolandicus NV P. micans (26–27 lm) 505 1.102 ± 0.148 Rey et al. (2001) a

C. helgolandicus NV P. carterae (9–10 lm) 768 0.988 ± 0.044 Rey et al. (2001) a

C. helgolandicus NV T. weissflogii (12–14 lm) 429 0.836 ± 0.212 Rey et al. (2001) a

C. helgolandicus NVI R. baltica (7–8 lm) 364 0.241 ± 0.025 Rey et al. (2001) a

C. helgolandicus NVI I. galbana (4–5 lm) 520 0.209 ± 0.079 Rey et al. (2001) a

C. helgolandicus NVI P. micans (26–27 lm) 505 1.195 ± 0.196 Rey et al. (2001) a

C. helgolandicus NVI P. carterae (9–10 lm) 768 0.481 ± 0.066 Rey et al. (2001) a

C. helgolandicus NVI T. weissflogii (12–14 lm) 429 0.449 ± 0.096 Rey et al. (2001) a

C. helgolandicus N Mixture of cultures 120 1.289 ± 0.107 Meyer et al. (2002) b

Calanus pacificus NIV Lauderia borealis (19 lm) 49 0.9 Paffenhöfer (1971) c

C. pacificus NIV L. borealis (19 lm) 101 2.75 Paffenhöfer (1971) c

C. pacificus NIV L. borealis (36 lm) 36 3.55 Paffenhöfer (1971) c

C. pacificus NIV Gymnodinium splendens
(60 lm)

95 2.95 Paffenhöfer (1971) c

C. pacificus NV L. borealis (19 lm) 49 2.95 Paffenhöfer (1971) c

C. pacificus NV L. borealis (19 lm) 101 3.45 Paffenhöfer (1971) c

C. pacificus NV L. borealis (36 lm) 36 4.82 Paffenhöfer (1971) c

C. pacificus NV G. splendens (60 lm) 95 3.82 Paffenhöfer (1971) c

C. pacificus NV Thalassiosira fluviatilis
(12–17 lm)

177 1.57 Paffenhöfer (1971) c

C. pacificus NVI L. borealis (19 lm) 49 1.55 Paffenhöfer (1971) c

C. pacificus NVI L. borealis (19 lm) 101 2.05 Paffenhöfer (1971) c

C. pacificus NVI L. borealis (36 lm) 36 2.6 Paffenhöfer (1971) c

C. pacificus NVI G. splendens (60 lm) 95 1.9 Paffenhöfer (1971) c

C. pacificus NIII Different cultures 125 0.1–0.5 Fernández 1979) e

C. pacificus NIV Different cultures 125 0.06–0.87 Fernández (1979) e

C. pacificus NV Different cultures 125 0.04–1.3 Fernández (1979) e

C. pacificus NVI Different cultures 125 0.06–1.25 Fernández (1979) e

Calanus finmarchicus NIII-NV Natural assemblage 94.08 ± 87.36 0 Hansen et al. (2000) d

C. finmarchicus NIII-NIV Natural assemblage 177.6 ± 182.04 0.32 Hansen et al. (2000) d

C. finmarchicus NIV-NVI Natural assemblage 27.6–212 0.11–0.46 Irigoien et al. (2003)h

C. finmarchicus N Mixture of cultures 120 1.313 ± 0.064 Meyer et al. (2002) b

Calanus spp. N Natural assemblage 5–20 0.0087–0.012 Turner et al. (2001) f

Temora longicornis NII Oxyrrhis marina
(13.2 lm)

755 0.35 Klein Breteler et al. (1990) g

T. longicornis NIII O. marina (13.2 lm) 755 0.35 Klein Breteler et al. (1990) g

T. longicornis NIV O. marina (13.2 lm) 755 0.42 Klein Breteler et al. (1990) g

T. longicornis NV O. marina (13.2 lm) 755 0.48 Klein Breteler et al. (1990) g
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The gross growth efficiencies calculated for NIV-NV

C. helgolandicus and C. typicus are consistent with

literature data. Rey et al. (2001) found gross growth

efficiencies for C. helgolandicus nauplii feeding on

different diets ranging from 0.12 to 0.59. They observed

a strong dependence on the algal diets, implying dif-

ferential assimilation. Efficiencies determined in

experiments with copepods average about 0.33 (Kiør-

boe et al. 1985; Peterson 1988; Båmstedt et al. 1999).

The gross growth efficiencies we observed support the

validity of our method for estimating ingestion rates.

The much higher ingestion rates found by Paffenhöfer

(1971) are likely to be overestimates that would result

in low growth efficiencies. Using development times

reported by Paffenhöfer (1970), we calculate these

efficiencies to be 0.01–0.04 in his experiments.

We consider that the results presented in this paper

confirm the value of the gut fluorescence technique for

estimating feeding rates of copepod nauplii on phyto-

plankton. The preliminary tests, as well as data ob-

tained during an annual cycle in the Cantabrian Sea

(unpublished), have demonstrated that it can be used

with natural assemblages. Thus, it indicates promising

approaches for investigating the trophic activity of

copepod nauplii on autotrophic components of pelagic

ecosystems.
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Fig. 4 Specific ingestion rates as a function of phytoplankton
concentration. Extreme values have been plotted for the cases
that are presented in Table 4 as a range of data. + All data from
Table 4, open square C. pacificus (Paffenhöfer 1971), open
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filled triangle C. helgolandicus feeding on I. galbana (this study),
open circle C. typicus feeding on I. galbana (Bonnet and Carlotti
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Table 4 continued

Copepod species Stage Phytoplankton species Phytoplankton
concentration
(lg C l–1)

Specific ingestion
rate (lg C lg–1

nauplii C day–1)

Source

T. longicornis NVI O. marina (13.2 lm) 755 0.58 Klein Breteler
et al. (1990) g

Centropages typicus NIV-NV I. galbana (4 lm) 287 0.064 ± 0.018 This study
C. typicus NIV-NV I. galbana (4 lm) 574 0.148 ± 0.035 This study
C. typicus NIV-NV I. galbana (4 lm) 862 0.191 ± 0.040 This study
C. typicus NIV-NV I. galbana (4 lm) 1,149 0.175 ± 0.038 This study
C. typicus NVI I. galbana (6 lm) 1,539 0.48 ± 0.25 Bonnet and

Carlotti (2001) h

Acartia spp. N Natural assemblage 300–420 0.28–0.52 Tackx et al. (1990) i

Acartia spp. N Natural assemblage 180–1,620 0.79–2.8 White and
Roman (1992) j

Copepod nauplii assemblage N Natural assemblage 15–68 0.08–0.29 Uitto (1996) k

a24 h incubations. Initial and final concentrations measured with Coulter Counter. b24 h incubations. Initial and final pigment analysis
with HPLC. c1–38 h incubations. Initial and final concentrations measured with Coulter Counter. d24 h incubations. Chlorophyll
clearance method. e15–20 h incubations. Initial and final concentrations measured with Coulter Counter. f24 h incubations. Micro-
scopic counting and chlorophyll clearance method. g24 h incubations. Initial and final concentrations measured with Coulter Counter.
h24 h incubations. Initial and final concentrations counted under a microscope. iData taken from Uitto (1996).jShort incubations with
radio labelled natural phytoplankton. kAn aliquot of radio labelled phytoplankton cultures (Brachiomonas submarina and Pavlova
lutheri) was added to water collected in the study area. Ingestion was calculated with the clearance rates obtained for the before
mentioned species during short incubation experiments
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Table 3

Table 4. SpeciWc ingestion rates data from this study
are incorrect. The correct data are:

Species Type I Type II Type III

A Cd Imax MSE a Imax MSE a Kc Imax MSE

C. helgolandicus 5.63 £ 10¡4 – – 0.0173 – – – 162 544 0.623 0.0154
C. typicus 4.57 £ 10¡4 732 0.334 4.05 £ 10¡3 6.8 £ 10¡4 0.418 4.77 £ 10¡3 130 371 0.338 4.05 £ 10¡3

Copepod species Phytoplankton 
Concentration 
(�g C l¡1)

SpeciWc ingestion
rate (�g C �g¡1 
nauplii C day¡1)

C. helgolandicus 143 0.047 § 0.017
C. helgolandicus 287 0.097 § 0.037
C. helgolandicus 574 0.345 § 0.137
C. helgolandicus 862 0.532 § 0.226
C. helgolandicus 1,149 0.615 § 0.106
C. typicus 287 0.116 § 0.032
C. typicus 574 0.269 § 0.063
C. typicus 862 0.346 § 0.073
C. typicus 1,149 0.317 § 0.068
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Figure 4. Plotted data from this study would change in
the following way:
1 3


	Functional responses of copepod nauplii using a high efficiency gut fluorescence technique
	Abstract
	Introduction
	Materials and methods
	Adaptation of the gut fluorescence technique
	Gut fluorescence measurements
	Rearing of nauplii
	Gut evacuation experiments
	Ingestion experiments at different concentrations
	Functional responses
	Stage duration and growth rates
	Results
	Development times and growth rates
	Gut evacuation rates
	Ingestion rates at different concentrations
	Functional responses
	Tab1
	Fig1
	Tab2
	Discussion and conclusions
	Fig2
	Fig3
	Tab3
	Tab4
	Acknowledgments
	Fig4
	Tab4
	References
	CR1
	CR2
	CR3
	CR4
	CR5
	CR6
	CR7
	CR8
	CR9
	CR10
	CR11
	CR12
	CR13
	CR14
	CR15
	CR16
	CR17
	CR18
	CR19
	CR20
	CR21
	CR22
	CR23
	CR24
	CR25
	CR26
	CR27
	CR28
	CR29
	CR30
	CR31
	CR32
	CR33
	CR34
	CR35
	CR36
	CR37
	CR38
	CR39
	CR40
	CR41
	CR42
	CR43
	CR44
	CR45
	CR46
	CR47
	CR48
	CR49
	CR50
	CR51
	CR52
	CR53
	CR54
	CR55
	CR56
	LopezFunctioEcol07Erra.pdf
	Functional responses of copepod nauplii using a high eYciency gut Xuorescence technique
	Erratum to: Mar Biol DOI 10.1007/s00227-006-0387-0
	Results
	Development times and growth rates
	Ingestion rates at diVerent concentrations

	Discussion and conclusions


	LopezFunctioEcol07Erra.pdf
	Functional responses of copepod nauplii using a high eYciency gut Xuorescence technique
	Erratum to: Mar Biol DOI 10.1007/s00227-006-0387-0
	Results
	Development times and growth rates
	Ingestion rates at diVerent concentrations

	Discussion and conclusions




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




