
For hydrocarbon (simplified in this model to
just CH4) concentrations of 1.4 mmol/kg, the
maximum W/R is 64, assuming 100% conver-
sion of CO2 to CH4 and an initial (but high)
CO2 concentration of ~4000 ppm in the base-
ment rocks (37) (fig. S2). This W/R is at the low
end of those predicted from the Sr and Nd
isotopic compositions of LCHF serpentinites
(37); however, the samples from seafloor out-
crops almost certainly have a reaction history
different from that of the rocks directly supply-
ing the present-day fluids at Lost City. More
typical and lower initial basement rock CO2

concentrations would yield lower W/Rs. On the
basis of a system constrained by a 400-ppm
CO2 concentration in the basement rocks (27)
and a conversion of ~50% (as suggested by the
He and CO2 data), we posit that the fluids
feeding the LCHF have reacted with rocks in a
W/R of less than 5 (fig. S2).

Lost City may be just one of many, as yet
undiscovered, off-axis hydrothermal systems.
Hydrocarbon production by FTT could be a
common means for producing precursors of life-
essential building blocks in ocean-floor environ-
ments or wherever warm ultramafic rocks are in
contact with water.
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Prioritizing Climate Change Adaptation
Needs for Food Security in 2030
David B. Lobell,1,2* Marshall B. Burke,1 Claudia Tebaldi,3 Michael D. Mastrandrea,4

Walter P. Falcon,1 Rosamond L. Naylor1

Investments aimed at improving agricultural adaptation to climate change inevitably favor some
crops and regions over others. An analysis of climate risks for crops in 12 food-insecure regions
was conducted to identify adaptation priorities, based on statistical crop models and climate
projections for 2030 from 20 general circulation models. Results indicate South Asia and Southern
Africa as two regions that, without sufficient adaptation measures, will likely suffer negative
impacts on several crops that are important to large food-insecure human populations. We also
find that uncertainties vary widely by crop, and therefore priorities will depend on the risk attitudes
of investment institutions.

Adaptation is a key factor that will
shape the future severity of climate
change impacts on food production

(1). Although relatively inexpensive changes,
such as shifting planting dates or switching to
an existing crop variety, may moderate neg-
ative impacts, the biggest benefits will likely
result from more costly measures including

the development of new crop varieties and
expansion of irrigation (2). These adaptations
will require substantial investments by farm-
ers, governments, scientists, and development
organizations, all of whom face many other
demands on their resources. Prioritization of
investment needs, such as through the identifi-
cation of “climate risk hot spots” (3), is there-

fore a critical issue but has received limited
attention to date.

We consider three components to be es-
sential to any prioritization approach: (i) selec-
tion of a time scale over which impacts are most
relevant to investment decisions, (ii) a clear
definition of criteria used for prioritization, and
(iii) an ability to evaluate these criteria across a
suite of crops and regions. Here, we focus on
food security impacts by 2030: a time period
most relevant to large agricultural investments,
which typically take 15 to 30 years to realize
full returns (4, 5).

We consider several different criteria for
this time scale. First is the importance of the
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crop to a region’s food-insecure human pop-
ulation [hunger importance (HI)]. Second is
the median projected impact of climate change
on a crop’s production by 2030 (indicated by
C50), assuming no adaptation. For this anal-
ysis, we generate multiple (i.e., 100) projec-
tions of impacts based on different models of
climate change and crop response, in order to
capture relevant uncertainties. The projections
are then ranked, and the average of the 50th
and 51st values are used as the median. A third
criterion is the fifth percentile of projected im-
pacts by 2030 (where C05 indicates the fifth
value of the ranked projections), which we
use to represent the lower tail or “worst case”
among the projections. Finally, we consider
the 95th percentile of projected impacts by
2030 (where C95 indicates the 95th value of
the ranked projections), which we use to rep-
resent the upper tail or “best case” among the
projections.

We first identified 12 major food-insecure
regions, each of which (i) comprise groups
of countries with broadly similar diets and
agricultural production systems and (ii) con-
tain a notable share of the world’s malnour-
ished individuals as estimated by the Food
and Agriculture Organization (FAO) (Table 1;
see fig. S1 for details on regions). For each
region, we computed the HI value for each
crop by multiplying the number of malnour-
ished individuals by the crop’s percent contri-
bution to average per capita calorie consumption
[see supporting online material (SOM) Text
S1 and table S1]. A hunger importance rank-
ing (HIR) was then generated by ranking the
HI values for all crop-by-region combinations.
Rice, maize, and wheat contribute roughly
half of the calories currently consumed by the
world’s poor and only 31% of the calories
consumed by those in sub-Saharan Africa, il-
lustrating the importance of considering ad-
ditional crops in food security assessments.
The use of projected malnourished popula-
tions in 2030 rather than current population
values had a very small influence on the rank-
ings (table S2).

Several options exist for evaluating climate
change impacts across a suite of crops and
regions (SOM Text S2). We used data sets on
historical crop harvests (6), monthly tempera-
tures and precipitation, and maps of crop lo-
cations to develop statistical crop models for
94 crop-region combinations spanning the 12
study regions (see SOM Text S3; results sum-
marized in Table 1). Of these combinations, 46%
(43) exhibited a statistically significant model
(P < 0.05), and 22% (21) had a model R2 of at
least 0.3. As seen in the examples for wheat in
South and West Asia (fig. S3), in some cases
the model’s strength came primarily from a
(typically negative) temperature effect on yield,
whereas, in other cases, a (typically positive)
rainfall effect provided most of the explanatory
power.

The crop temperature sensitivities estimated
by the statistical models were compared with
corresponding values from previous studies that
relied on established process-basedmodels within
the same regions (SOM Text S4). Our statistical
estimates generally overlapped the lower end of
the range of previous estimates, indicating that
impacts estimated by the statistical models may
be considered conservative but in reasonable
agreement with estimates from process-based
approaches.

To project climate changes for the crop re-
gions, along with their uncertainties, we used out-
put from 20 general circulation models (GCMs)
that have contributed to the World Climate
Research Programme’s Coupled Model Inter-
comparison Project phase 3 (WCRP CMIP3) (7).
Median projections of average temperature change
from 1980–2000 to 2020–2040 were roughly

1.0°C in most regions, with few models project-
ing less than 0.5°C warming in any season and
some models warming by as much as 2.0°C
(Fig. 1A). In contrast to the unanimous warm-
ing, models were mixed in the direction of
simulated precipitation change. All regions had
at least one model with positive and one model
with negative projected precipitation changes,
with median projections ranging from about
–10% to +5% (Fig. 1B). Some relevant ten-
dencies of current GCMs, as noted in (8), are
toward precipitation decreases during Decem-
ber to February (DJF) in South Asia and Cen-
tral America, precipitation decreases in June to
August (JJA) in Southern Africa, Central Amer-
ica, and Brazil, and precipitation increases in DJF
in East Africa.

We estimated a probability distribution of
production changes for 2030 (the average from

Table 1. Regions evaluated in this study and selected summary statistics. Countries within each
region are indicated in the SOM.

Region Code
Malnourished

Crops
modeled

Crops with
significant model*Millions

of people
World

total (%)

South Asia SAS 262.6 30.1% 9 7
China CHI 158.5 18.2% 7 2
Southeast Asia SEA 109.7 12.6% 7 4
East Africa EAF 79.0 9.1% 10 2
Central Africa CAF 47.6 5.5% 8 0
Southern Africa SAF 33.3 3.8% 8 6
West Africa WAF 27.5 3.2% 8 2
Central America and Caribbean CAC 25.4 2.9% 5 2
Sahel SAH 24.9 2.9% 7 7
West Asia WAS 21.9 2.5% 10 4
Andean region AND 21.4 2.5% 9 3
Brazil BRA 13.5 1.6% 6 4
Total ALL 825.3 94.7% 94 43
*A model was judged significant if it explained more than 14% of variance in yield or production (R2 > 0.14). This threshold
was based on the 95th percentile of the R2 statistic from a Monte Carlo experiment, which computed 1000 multiple regression
models for a randomly generated 42-year time series with two random predictor variables.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

CHI
SAS
SEA
WAS
WAF
SAH
CAF
EAF
SAF
BRA
AND
CAC

−30 −20 −10 0 10 20 30

−30 −20 −10 0 10 20 30

CHI
SAS
SEA
WAS
WAF
SAH
CAF
EAF
SAF
BRA
AND
CAC

Temperature Change (°C) Precipitation Change (%)

A B

Fig. 1. Summary of projected (A) temperature (°C) and (B) precipitation (%) changes for 2030 (the
averages from 2020 to 2039 relative to those from 1980 to 1999) based on output from 20 GCMs and three
emission scenarios. Gray boxes show DJF averages and white boxes show JJA averages. Dashed lines extend
from 5th to 95th percentile of projections, boxes extend from 25th to 75th percentile, and the middle
vertical line within each box indicates the median projection.
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2020 to 2039 relative to that from 1980 to 1999)
for each crop using a Monte Carlo procedure
that propagated both climate and crop uncertain-
ties (9). To facilitate comparison between crops
and regions, we expressed production changes
for all crops as a percentage of average values for

1998 to 2002. The impact projections are sum-
marized in Fig. 2.

For simplicity, we consider three general
classes of projections. First, several projections
(e.g., Southern Africa maize and wheat) are
consistently negative, with an estimated 95%

or greater chance that climate changes will
harm crop production in the absence of adap-
tation (C95 < 0). These cases generally arise
from a strong dependence of historical pro-
duction variations on temperature, combined
with projected warming large enough to over-
whelm the uncertain impacts of precipitation
changes.

Second, there are many cases with large
uncertainties, with model impacts ranging from
substantially negative to positive (e.g., South
Asia groundnut, Southern Africa sorghum). These
cases usually arise from a relatively strong de-
pendence of historical production on rainfall,
combined with large uncertainties in future pre-
cipitation changes. More precise projections of
precipitation would therefore be particularly
useful to reduce impact uncertainties in these
situations. Large uncertainties also arise in some
cases (e.g., cowpea in East Africa) from an es-
timated production response to historical tem-
perature that is strongly negative but also highly
uncertain.
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Fig. 2. Probabilistic projections of production impacts in 2030 from climate change
(expressed as a percentage of 1998 to 2002 average yields). Red, orange, and yellow
indicate a HIR of 1 to 30 (more important), 31 to 60 (important), and 61 to 94 (less

important), respectively. Dashed lines extend from 5th to 95th percentile of
projections, boxes extend from 25th to 75th percentile, and the middle vertical line
within eachbox indicates themedianprojection. Region codes are defined in Table 1.

Table 2. Crop priority lists based on different criteria. C05 = 5th percentile of projected impacts
(5th lowest out of 100 projections); C50 = 50th percentile (median); C95 = 95th percentile. Results
are shown only for the HIR = 1 to 30 and HIR = 31 to 60 categories.

HIR value Criterion Crops

1 to 30 C05 < –10% South Asia millet, groundnut, rapeseed; Sahel sorghum; Southern
Africa maize

C50 < –5% South Asia rapeseed; Southern Africa maize
C95 < 0% South Asia wheat; Southeast Asia rice; Southern Africa maize

31 to 60 C05 < –10% Southeast Asia soybean; West Asia rice; Western Africa wheat, yams,
groundnut; Sahel wheat; East Africa sugarcane; Southern Africa wheat,
sugarcane; Brazil wheat, rice; Andean Region wheat; Central America rice

C50 < –5% Southeast Asia soybean; West Asia rice; Western Africa yams, groundnut;
Sahel wheat; Southern Africa wheat, sugarcane; Brazil wheat

C95 < 0% Western Africa groundnut; Sahel wheat; Southern Africa wheat; Brazil
wheat, rice; Central America wheat, rice
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Finally, there are many cases characterized
by a narrow 90% confidence interval of im-
pacts within ±5% of zero. In a few cases, such
as wheat in West Asia, this reflects a strong
effect of historical rainfall variations (fig. S1),
combined with a relatively narrow range of
rainfall projections during the growing season
(Fig. 1; West Asia wheat is grown in DJF). In
most cases, such as cassava in West Africa,
the narrow confidence intervals result from a
relatively weak relationship between historical
production and growing-season climate. There-
fore, we can only say that the likely impacts
appear small, given the current data sets and
models used to describe crop responses to cli-
mate. In cases with low model R2, approaches
other than the FAO-based regression models
used here may be more appropriate.

Based on the above projections, we iden-
tified a small subset of crops that met differ-
ent prioritization criteria (Table 2). First, crops
were separated into groups of “more impor-
tant” (HIR = 1 to 30), “important” (HIR = 31
to 60), and “less important” (HIR = 61 to 94).
Within each category, we identified crops be-
low three thresholds: the first corresponding to
instances where at least 5% of the models
predicted greater than 10% loss of production
(C05 < –10%), the second to where at least
half the models projected greater than a 5%
production loss (C50 < –5%), and the third to
where at least 95% of the models predicted
some production loss (C95 < 0%).

Although several crops met more than one
of these criteria, such as maize in Southern
Africa and rapeseed in South Asia, the vary-
ing estimates of uncertainty for different crops,
in general, resulted in noticeable differences
when prioritizing crops on the basis of the
three different thresholds (Table 2). For exam-
ple, a relatively weak relationship was found
between values at the two tails of the projec-
tion distributions—C05 and C95—across all
crops (fig. S4). This result indicates a need to
explicitly consider uncertainty and risk atti-
tudes when setting priorities, which is an issue
that has received limited attention (10).

Because attitudes toward risk differ, and
given that impact projections for some crops
are more uncertain than those for other crops,
various institutions might derive different pri-
orities from the results in Table 2. For exam-
ple, one set of institutions might wish to focus
on those cases where negative impacts are
most likely to occur, in order to maximize the
likelihood that investments will generate some
benefits. By this criterion (C95 < 0%), South
Asia wheat, Southeast Asia rice, and Southern
Africa maize appear as the most important crops
in need of adaptation investments.

Others might argue that adaptation activities
that do not account for worst-case projections
will be inadequate in the face of low-probability,
high-consequence climate impacts: that is to say,
investments should target those crops and re-

gions for which some models predict very nega-
tive outcomes. A different subset of crops is
identified for this criterion (C05 < –10%), with
several South Asian crops, Sahel sorghum, and
(again) Southern Africa maize appearing as the
most in need of attention.

Either of these risk attitudes could be applied
with an explicit regional focus. For a sub-
Saharan African institution interested in invest-
ing where negative impacts are most likely to
occur [where median impact projections are sub-
stantially negative (C50 < –5%) or where most
climate models agree that negative impacts are
likely to occur (C95 < 0%)], priority investments
would include SouthernAfricamaize, wheat, and
sugarcane, Western Africa yams and groundnut,
and Sahel wheat.

Despite the many assumptions and un-
certainties associated with the crop and cli-
mate models used (SOM Text S5), the above
analysis points to many cases where food
security is clearly threatened by climate change
in the relatively near-term. The importance of
adaptation in South Asia and Southern Africa
appears particularly robust, because crops in
these regions appear for all criteria consid-
ered here (Table 2). The results also highlight
several regions (e.g., Central Africa) where
climate-yield relationships are poorly captured
by current data sets, and therefore future work
in this regard is needed to inform adaptation
efforts.

Impacts will likely vary substantially with-
in individual regions according to differences
in biophysical resources, management, and other
factors. The broad-scale analysis presented here
was intended only to identify major areas of
concern, and further studies at finer spatial
scales are needed to resolve local hot spots
within regions. Consideration of other social
and technological aspects of vulnerability, such
as the existing adaptive capacity in a region or
the difficulty of making adaptations for spe-
cific cropping systems, should also be inte-
grated into prioritization efforts. Although we
do not attempt to identify the particular adap-
tation strategies that should be pursued, we
note that, in some regions, switching from high-
ly impacted to less impacted crops may be one
viable adaptation option. In this case, the iden-
tification of less impacted crops is another val-
uable outcome of a comprehensive approach
that simultaneously considers all crops relevant
to the food-insecure.
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Text S1) Calculation of hunger importance rankings 
The hunger importance (HI) was derived by multiplying estimates of the number 

of malnourished in each country within a region by the average per capita calories 
derived from each crop in that country, and then aggregating to the regional level (data 
from FAOSTAT, http://faostat.fao.org).  Livestock products such as milk and meat were 
omitted.  To ensure that crops in each region were of local origin (i.e. that produced crops 
were not exported, nor consumed crops imported), we generated a similar list of 
important crops using data on average per capita production volumes by country, and 
added to the original regional crop lists those crops unique to the production list – a step 
that rarely proved necessary.  

Although using country-level average diets to represent the diets of the poorest 
ignores potentially large differences in diet composition across income classes – for 
example, diets of the poor in a given country are often richer in higher-starch, lower-
value staples than their wealthier counterparts – to our knowledge no systematic data 
exist on consumption by region, crop, and income class.  Nevertheless, the data suggest 
that even average diets exhibit large variation across regions.  For example, in the Central 
Africa region, we calculate that the average calories derived from cassava are more than 
twice rice, wheat, and maize combined; in Southeast Asia, in contrast, rice alone accounts 
for roughly 60% of total calories consumed.  Thus while the generated crop lists could 
misrepresent diets of the poorest, they pick up many of the crops traditionally associated 
with the poor, many of which have not been included in previous climate impact 
assessments. At the global level, the three main cereals (rice, maize, and wheat) account 
for only half of total calories consumed by the food insecure, while for Sub-Saharan 
Africa, where one-third of the population lives in chronic hunger, they account for just 
31% of total calories (see Table S1). 

A hunger importance ranking (HIR) was generated by ranking the HI values for 
all crop-by-region combinations. Using current data to construct the HIR raises the 
question of whether potential socioeconomic or agronomic shifts over the next 25 years 
might alter the diets or location of the global malnourished, and thus render the HI an 
implausible basis on which to formulate food security priorities for 2030.  Various 
studies, for instance, predict that in coming decades Africa will account for a larger share 
of the global malnourished (S1), suggesting a ranking based on current hunger estimates 
could bias attention away from where it is most warranted.   However, constructing an 
HIR based on FAO projections of regional malnourishment in 2030 under the assumption 
of no major shifts in diets yielded a 2030 HIR only slightly different from the 2003 
ranking (see Table S2).  Furthermore, our impact analysis is conducted and reported for 
all members of the HIR, and thus a simple re-ranking would be possible given preferred 
forecasts of regional shifts in hunger.   
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Text S2) Limitations of Crop Modeling Approaches 
One approach to assessing crop impacts would be to synthesize existing studies 

(S2 S3); however they span a limited range of crops and regions, and many studies do not 
provide sufficient information to evaluate criteria (ii)-(iv). For example, many studies 
project impacts using a single GCM (S4, S5), thus neglecting a major source of 
uncertainty.  

A second option would be to apply process-based crop models to evaluate impacts 
of climate change scenarios for the desired combinations of crops and regions (S6). 
However, the substantial time, data, and expertise needed to calibrate these models for 
particular locations (S7,S8) and the lack of process-based models for many minor crops, 
limit the utility of this approach.  

A third option, which we employ here, is to develop statistical models of crop 
responses to climate change, based on historical datasets of crop and climate variables.  
Statistical crop models are prone to several deficiencies that should be understood when 
interpreting model results. First, our models rely on statistics for national area and 
production since 1961 produced by the Food and Agriculture Organization of the United 
Nations (FAO), which likely contain numerous errors, especially for minor crops. 
Second, it relies on gridded monthly climate data (S9) that may contain sizable errors in 
regions with relatively few weather stations. Errors in the climate variables - which are 
predictor variables in the statistical model - will tend to bias estimates of their effects 
toward zero, a phenomenon known as regression dilution (S10). 
  Third, yields and production have changed substantially since 1961 for most crops 
in most regions because of technological advances, such as the use of new varieties and 
greater application of fertilizers and irrigation, and expansion or contraction of harvested 
area. These technological and area trends can dominate the influence of other factors in 
determining long-term yield trends, and therefore analyses of climate effects must make 
some assumptions about the nature of these more gradual changes. Here, we use the 
common approach of converting all time series to first differences by subtracting the 
value from the prior year for each year from 1962-2002, which effectively dampens the 
influence of slowly varying factors (S11).  

Fourth, building a statistical model from 43 years of data (1961-2002) necessitates 
the selection of relatively few predictor variables and model parameters to avoid model 
over-fitting. In the current study, we use a multiple linear regression (MLR) model with 
two climate variables: average temperature (T) and precipitation (P) for the crop’s 
growing season. This procedure ignores the influence of climate variables other than 
growing season averages, such as rainfall in particular months or extreme rainfall or heat 
events. It also ignores potential non-linear effects of T or P on crop production (although 
including terms for the square of T and P did not significantly change results). In cases 
where these other climate variables are important, the relationship between growing 
season average T and P may be weak despite a real influence of climate on crop yields or 
production. Thus, as with regression dilution, there is a risk that model mis-specification 
will obscure climate effects that actually exist. 

Fifth, statistical models are inherently limited to the range of conditions over 
which they are trained. For example, they cannot be extrapolated to predict production 
impacts for future temperatures that are higher than any historical year, without 
assumptions about the linearity of crop responses outside of the historical range. While 



 4

this is a strong argument for using process-based models for end of 21st-century 
projections, extrapolation is less of an issue for 2030 when average projected 
temperatures are typically well below the warmest historical growing season (S12). 

Despite these limitations, statistical models based on imperfect data represent, in 
our opinion, the best currently available means to evaluate the criteria outlined above for 
many crops and regions. As shown in the results, we find that these models can provide 
useful constraints on production responses to climate variations for many crop-region 
combinations. Where possible, we have also evaluated this approach by comparing model 
predictions with existing studies (Text S4). 
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Text S3) Data and Methods for Crop Models 
A growing season for each crop in each region, defined as the months between 

planting and harvest of a given crop for those countries contributing the bulk of 
production in a given region, was derived from available sources (S13-S17) (See Figure 
S2) Sensitivity of results to the definition of growing season is discussed in the results 
section and shown in Figure S5. 

Average historical temperature and precipitation for the growing seasons were 
generated from the 0.5º x 0.5º gridded monthly datasets produced by the Climate 
Research Unit of the University of East Anglia (CRU TS2.1), which spans 1901-2002 
(S9). The CRU data were averaged temporally over the growing season months and 
spatially according to the geographic distribution of crop area from Leff et al. (S18), who 
generated maps for 18 major crops. In this manner, the temperature and precipitation 
specific to the location where and time of year when each crop is grown was obtained, an 
important step in building accurate statistical models (S19). 

National data on total production and harvested area for 1961-2002 from FAO’s 
Statistical Databases (S20) were summed for each study region to provide regional time 
series of production, area, and yield (computed as production divided by area). For South 
Asia, rice data for 2002 appeared anomalously low and was omitted from the analysis. 
The crop and climate time series were then combined to generate a statistical model for 
each crop as follows: (1) a first-difference time series was computed for each variable; 
(2) a MLR model was computed with crop production as the response variable and 
temperature and precipitation as predictors; (3) a corresponding MLR model was 
computed with crop yield as the response variable; (4) the model with the higher R2 was 
selected for the crop. We did not choose a priori a model based on production or yield 
because different situations were suited to different variables. In particular, yield was 
more appropriate in cases where production changes were often unrelated to climate due 
to large and often nonlinear shifts in crop area. In contrast, production was more 
appropriate in cases where area changes were closely tied to climate, such as in Southeast 
Asia rice where sown area is heavily influenced by ENSO-related rainfall (S21). 
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Text S4) Comparison of estimated temperature sensitivities with previous studies 
Table S3 compares temperature sensitivities estimated by the statistical models 

with corresponding values from previous studies that relied on established process-based 
models within the same regions. Comparisons were possible mainly for wheat, rice, and 
maize, given the lack of modeling studies for other crops. In cases where multiple 
previous studies were available for a single crop and location (e.g. rice or wheat in South 
Asia), considerable spread was evident between studies, demonstrating sizeable 
uncertainties in process-based model estimates themselves despite a failure of most 
modeling studies to quantify these uncertainties. 

For all crops, statistical estimates generally overlapped the lower end of the range 
of previous estimates. A notable exception was the estimate for maize in Southern Africa, 
which in the current study was roughly two standard deviations above an estimate from a 
previous study in Zimbabwe. However, this discrepancy is likely in part explained by a 
scale mis-match between the current and previous study, as Zimbabwe comprises only 
~3% of maize production in this region.   

Differences between the statistical and process-based model estimates may 
similarly be attributable to scale in other cases, but a lack of harvest records at fine scales 
or simulation studies at broad scales makes it difficult to evaluate this factor. In one study 
that did focus on the same scale, Lobell and Ortiz-Monasterio (S22) found that statistical 
and CERES-wheat model predictions of temperature response in Northwest Mexico 
agreed to within a few percent (note that the statistical model estimate for Central 
American wheat in the current study is substantially smaller.) The relatively small 
estimates from the statistical models are also likely due to regression dilution, as 
discussed above, with errors in the climate data or definition of growing seasons biasing 
the estimates toward zero. The impacts estimated by the statistical models may therefore 
be considered conservative, but in reasonable agreement with estimates from process-
based approaches.  
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Text S5) Caveats 
The statistical crop models developed in this study, in combination with the 

database of multi-model climate projections, allowed the evaluation of climate change 
impacts across a broad range of crops and regions in a systematic, probabilistic, and 
transparent way, which in turn provides a means to identify “hotspots” of climate impacts 
in 2030 that can guide adaptation efforts. However, projections are inherently tied to the 
assumptions of the underlying models, and the potential sensitivity of results to these 
assumptions is thus important to understand. We consider several such assumptions 
below: 

(i) The statistical crop models assume that growing season climate has been perfectly 
measured, whereas errors in CRU data and growing season definitions almost certainly 
exist. These errors will tend to result in overly-conservative estimates of impacts because 
of regression dilution (S9), and these effects will be strongest in regions with the poorest 
quality of climate data. To evaluate sensitivity to growing season definitions, the impact 
projections were repeated using three separate perturbations to the baseline growing 
season (see Figure S5 in supporting online material). The resulting changes were small 
for most crops, in particular those identified in Table 2. Therefore, our conclusions do not 
appear very sensitive to possible errors in growing season definition.  

(ii) Roughly half of the models were not statistically significant (Table 1), indicating 
situations where growing season climate was a poor predictor of crop production. Several 
regions (e.g., South Asia, Southern Africa, Sahel) possessed many crops with high R2, 
while in other regions relatively few crops were modeled well (e.g., East and Central 
Africa, Andean Region). These latter cases likely arise from some combination of poor 
harvest or climate data, importance of climate variables not highly correlated with 
growing season averages, and importance of factors not directly related to weather (e.g., 
prices, military conflicts, pest infestations). Thus, the statistical approach used here may 
be biased against regions with especially poor quality datasets or with especially high 
sensitivity to extreme climate events. The relatively small impacts projected for many 
crops in West, Central, and East Africa, for example, may result more from data and 
model errors than from actual low sensitivities to climate change, although it is difficult 
to distinguish these factors with the datasets used in this study. For crops with low model 
R2, additional assessments using local expertise, country literature, and/or validated 
process-based models would therefore be especially useful. 

(iii) Climate change uncertainty was represented by using equally weighted projections 
from 20 current GCMs. While this is a common approach, there is little theoretical basis 
for believing this accurately represents a true probability distribution. For example, some 
have argued that true uncertainties in rainfall projections are much larger than implied by 
the range of projections from current models (10). 

(iv) The statistical crop models assume no adaptation to climate change, beyond that 
which takes place in response to year-to-year weather variations. Each cropping system 
undoubtedly has some internal mechanisms that will help it respond to climate change in 
the absence of intervention (i.e. autonomous adaptation). This adaptive capacity likely 
varies between the crops and regions studied here, just as it varies widely between 
developed and developing countries (1). Therefore, in defining needs for future 
investment, one should consider autonomous adaptation in addition to projected impacts 
without adaptation. This is especially true when considering longer time scales (e.g., 
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2100) when systems will certainly recognize and respond to climate change, but may also 
be an important factor over the relatively short-term of the next few decades. 
 One aspect of adaptive capacity is the amount of research currently being 
conducted on the crop of interest. Several of the cases identified in Table 2 involve major 
commodities (i.e., wheat, maize, and rice) that benefit from major international research 
efforts on crop breeding and management improvement, including the maintenance of 
large gene banks. In contrast, other crops are relatively under-studied (i.e., millet, 
sorghum, rapeseed, groundnut) despite – or arguably because – of their unique 
importance to food insecure societies, which will diminish their adaptive capacity relative 
to the major crops. Thus, we argue that these less studied crops may require relatively 
more resources for adaptation. 

(v) The impact projections ignored potential fertilization effects of elevated 
atmospheric CO2 on crop yields. For the expected ~100 ppm increase from 1990 to 2030, 
a ~7% yield increase for crops with the C3 photosynthetic pathway can be expected (S11, 
S12). However, these effects will be similar for different C3 crops, and therefore should 
not affect relative priorities. In contrast, yields of C4 crops considered here (maize, 
sorghum, and sugarcane) will likely exhibit a negligible response to elevated CO2. Yield 
losses relative to C3 crops will therefore be greater than suggested in Figure 3, placing a 
relatively greater emphasis on adapting C4 crops. 
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Table S1) Average crop contribution to total calories consumed by food insecure populations. This was computed by multiplying the 
number of malnourished in each country by the percent contribution of the crop to total consumed calories in that country, and then 
summing these values for the entire world (left), Sub-Saharan Africa (middle), or South  Asia (right). All data was obtained from the 
FAO (http://faostat.fao.org). 

 World  Sub-Saharan Africa South Asia 

Rank Crop % of Total 
Calories 

Cumulative 
%  Crop % of Total 

Calories 
Cumulative 

% Crop % of Total 
Calories 

Cumulative 
% 

1 rice 28.6% 28.6%  cassava 18.0% 18.0% rice 29.6% 29.6% 
2 wheat 18.7% 47.3%  maize 17.0% 35.0% wheat 23.9% 53.5% 
3 sugar cane 9.2% 56.5%  wheat 8.0% 43.0% sugar cane 15.1% 68.6% 
4 maize 7.3% 63.8%  sorghum 8.0% 51.0% palm nuts 3.7% 72.3% 
5 cassava 4.8% 68.6%  rice 6.0% 57.0% millet 3.1% 75.4% 
6 palm nuts 3.0% 71.6%  millet 4.0% 61.0% groundnuts 2.3% 77.7% 
7 soybeans 2.9% 74.5%  sugarcane 4.0% 65.0% maize 2.3% 80.0% 
8 sorghum 2.5% 77.0%  groundnuts 4.0% 69.0% sorghum 2.1% 82.1% 
9 groundnuts 2.4% 79.4%  palm nuts 4.0% 73.0% soybeans 1.8% 83.9% 
10 millet 2.0% 81.4%  beans 3.0% 76.0% rapeseed 1.7% 85.6% 
11 potatoes 2.0% 83.4%  plantains 2.0% 78.0% chickpeas 1.7% 87.3% 

12 beans and 
cowpeas 1.3% 84.7%  cereals nec 2.0% 80.0% potatoes 1.6% 88.9% 

13 sweet 
potatoes 1.2% 85.9%  sweet 

potatoes 2.0% 82.0% pulses 1.3% 90.2% 

14 barley 1.0% 86.9%  barley 2.0% 84.0% coconuts 1.1% 91.3% 

15 rapeseed 0.9% 87.8%  yams 2.0% 86.0% beans and 
cowpeas 0.9% 92.2% 
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Table S2) Sensitivity of hunger importance ranking to projections of future number and  
locations of malnourished in 2030, which were derived from FAO (S15) by applying  
reported continent-wide or regional estimates of the percent change in number of hungry  
to each of our relevant smaller regions. Since no comprehensive region-level data exist  
on projected changes in diets to 2030, we assume no shifts in the diets of the hungry.  
Light blue indicates a fall in the hunger importance ranking by two places, dark blue a 
fall of more than five places, and red indicates increased hunger importance of at least 
two places. 
 

Country Crop 
HIR, 
2003 

HIR, 
2030 

South Asia rice 1 1 

Southeast Asia rice 2 3 

South Asia wheat 3 2 

China rice 4 5 

South Asia sugar cane 5 4 

China wheat 6 8 

Central Africa cassava 7 6 

East Africa maize 8 7 

Southern Africa maize 9 10 

West Asia wheat 10 9 

East Africa wheat 11 11 

China soybeans 12 18 

Southeast Asia sugar cane 13 19 

South Asia millet 14 14 

Southern Africa cassava 15 12 

East Africa cassava 16 13 

Southeast Asia wheat 17 27 

Central Africa maize 18 15 

Sahel sorghum 19 16 

East Africa sorghum 20 17 

Central America and Caribbean maize 21 23 

South Asia groundnuts 22 20 

China sugar cane 23 33 

South Asia maize 24 21 

South Asia sorghum 25 24 

China potatoes 26 39 

China sweetpotatoes 27 40 

South Asia soybeans 28 29 

China groundnuts 29 44 

South Asia rapeseed 30 32 
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Table S3. Comparison of estimated crop sensitivities to 1.0 ºC temperature increase in the current study and in previous modeling 
studies. 

Region Crop 
%Yield Change 

per 1.0 ºC, 
current study a 

Reference Model Used Location %Yield Change per 
1.0 ºC b 

South Asia Rice -4.0 ± 2.0 (S24) CERES-Rice NW India -10 
   (S25) CERES-Rice India -6 
   (S26) CERES-Rice India -10 - -2.5 
 Wheat -2.6 ± 0.7 (S24) CERES-Wheat NW India -13 
   (S27) CERES-Wheat NW India -9 – -3 
   (S28) CERES-Wheat Pakistan -17 - -7 
   (S29) CERES-Wheat India -15 
 Maize -4.8 ± 3.7 (S30) CERES-Maize India -8 

Southeast Asia Rice -1.4 ± 0.8 (S31) CERES-Rice Bangladesh -9 - -4 
   (S32) CERES-Rice Philippines -14 - -8 
   (S33) CERES-Rice Thailand -14 - -12 

Southern 
Africa Maize -21.4 ± 8.6 (S34) CERES-Maize Zimbabwe -7 - -4 

Central 
America Wheat -5.1 ± 1.8 (S22) CERES-Wheat NW Mexico -12 - -7 

 Maize -0.6 ± 1.9 (S35) CERES-Maize Mexico -5 
Brazil Wheat -7.1 ± 2.4 (S36) CERES-Wheat Brazil -16 - -9 

 Maize -2.4 ± 2.5 (S36) CERES-Maize Brazil -8 - -4 
 Soybean -4.5 ± 3.9 (S36) SOYGRO Brazil -6 - +3 

a coefficient for temperature in yield regression model (mean ± 1 standard deviation) 
brange shows values for different sites or management levels, when available 
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Figure S2) Growing seasons used for each crop. X-axis spans 24 months from January of year prior 
to harvest to December of harvest year.  
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Figure S3) First differences of wheat yields in South Asia (top) and West Asia (bottom) plotted 
against temperature and precipitation.  
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Figure S5) Sensitivity of impact estimates to definition of growing season. Points indicate 5th (red) 50th (blue) 
and 95th (green) percentile of projections when using baseline growing seasons (solid points) and other 
definitions of growing seasons (open points). Three alternatives were tested: shift growing season earlier by 
1 month, shift later by 1 month, or narrow growing season by removing first and last months. In most cases, 
the crops identified as most important do not appear very sensitive to exact growing season definition. 
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