

# Varied nutritional impact of the global food price crisis

## Alessandro De Matteis<sup>\*</sup>

University of East Anglia, UK

Received: 21 July 2014 Revised: 26 September 2014 Accepted: 4 October 2014

#### Abstract

Two crises among the worst experienced since the start of the modern era have marked the global scene during recent years. The first crisis was characterized by a sudden and dramatic rise in food prices and developed into the second one which was mainly of a financial nature. Food price rises typically erode the purchasing power of those at the lower end of the income scale in particular, working therefore as a driver of economic and social inequalities. This paper assesses the implications of the surge in international food price in terms of food availability and access to food in low- and middle-income countries. The estimation of long-term elasticities has revealed a varied perspective, characterized in some cases by a worsening food deficit even in conditions of improved food availability.

*Keywords*: food price crisis, access to food, poverty, undernourishment *JEL Classification Codes*: G01, I30, O10

## 1. Introduction

The steep rise in food prices experienced during the recent few years has led to economic difficulties for the poor and contributed to increasing the poverty gap in many countries, working as a driver of economic and social inequality (Ivanic *et al.*, 2011). At least 33 countries saw violent food riots, demonstrations, or social unrest as a result of rising food prices. These dramatic events raised a great deal of interest in soaring food prices on the global market and their impact on the welfare of citizens in developing countries. A rise in food prices may impact on poverty differently according to the predominance of net food sellers or consumers among the poor (FAO *et al.*, 2011). A recent analysis has even found evidence that in the long run higher food prices may reduce poverty and inequality (Headey, 2014). Therefore, although the causes of food inflation and its impact on poverty have been extensively researched (Ivanic and Martin, 2008; De Janvry and Sadoulet, 2010; Ivanic *et al.*, 2011), the discussion is still open. In particular, there is a dearth of research on its effect on

<sup>\*</sup> E-mail: a.de-matteis@uea.ac.uk.

Citation: De Matteis, A. (2014) Varied nutritional impact of the global food price crisis, *Economics and Business Letters*, 3(3), 166-176.

food security and particularly on calorie intake (Brinkman *et al.*, 2010; Tiwari and Zaman, 2010). The aim of this article is to contribute to filling this gap by considering the nutritional implications of the food price crisis.

In their review of the literature von Braun and Tadesse (2012) claim that a rising mediumterm price trend has triggered dramatic short-term price spikes and increased volatility. Regional studies have probed the extent to which international price volatility is transmitted to regions and countries. For example, Minot (2013) estimates that the average volatility of African grain prices is almost double international volatility. Lanchovichina *et al.* (2012) have looked at the transmission of higher food prices to countries in the Middle East and North Africa and estimate that on average a one percent increase in world prices increases domestic food prices by some 0.2 - 0.4 percent, with a certain amount of cross-country variation.

Consumption smoothing is a typical reaction to price rises; however the ability of the poorest groups to trim the negative effect of high food prices on food consumption is limited, as they are already spending a large share of their income on food (Tiwari and Zaman, 2010; Helbling and Roache, 2011; Skoufias et al., 2011). As a consequence, the crisis generated by the rise in food prices may also lead to long-term, irreversible nutritional damage, especially among children. Robles and Torero (2010) estimated important reductions in calorie intakes at both the national level and within vulnerable households across several Latin American countries. In all countries, poorer households that were already consuming at levels below the calorie adequacy threshold showed greater reductions in calorie intakes. This reduction in calorie consumption is likely to be combined with even bigger reductions in diet quality, inducing long-term health effects that are especially detrimental to already vulnerable populations. Green et al. (2013) investigate the impact of higher food prices in a systematic review of the literature, estimating that a one percent increase in cereal prices results in a 0.61 percent reduction in cereal consumption in low-income countries versus a 0.43 percent reduction in high-income countries. Anriquez et al. (2013) analyzed the short-term effect of staple food price increase on household undernourishment in eight countries and found out that food price spikes not only reduce food consumption, but also reduce diet diversity. Tiwari and Zaman (2010) looked at the effect of price volatility on undernourishment rates in all developing regions. Assuming a partial (80 percent) price transmission from international to national markets, they suggest that the dramatic rise in food prices in 2008 may have increased the total global undernourished population by some 63 million.

Very often global food price increases are not passed on to local markets on a one-to-one basis. Factors such as import dependency, the availability of domestic substitutes, and trade restrictions, tariff and price subsidies determine the rate of price transmission from global to local markets (De Janvry and Sadoulet, 2010). In addition to various forms of social protection targeting the most vulnerable groups, authorities can take different measures to contain price transmission and counter its impact. These measures include the reduction in duties applied to essential food commodities, the introduction of a single composite levy instead of customs duties and other applicable taxes on essential food items at the point of importation, and the imposition of a maximum retail and wholesale price for different categories of food commodities. Nevertheless, even when such measures are able to protect the local economy by reducing the degree of transmission from global to local food prices, their effectiveness is reduced in case of high exposure on the global market. This is inevitably the case in countries with a high domestic cereal (and food, more generally) deficit. Since such countries are forced to rely on cereal imports to fill their domestic supply gap, they are in a weak position to avoid any direct or indirect consequences of any price rises occurring on the international scene. Even if their set of measures to contain price transmission is reasonably successful, high prices on the global market may require a reduction in the quantities that can be imported, particularly in the case of countries with a stringent national



budget as is the case of low income food deficit (LIFD) countries.<sup>1</sup> Such cases of reduced food availability induced by a global price rise which is not reflected in a domestic price rise – or where the price transmission is reasonably contained – may be less evident but not less dramatic in terms of their nutritional implications.

The present study takes the lead from the case just described and considers the nutritional consequences of the global rise in food prices. Attention is focused on the experience of LIFD countries compared to that of other low income and middle income countries.

### 2. Methodology

In order to optimize the analysis of individual countries and take account of their characteristics and contexts, this study follows a time-series approach. In order to study the interdependence of price time series between the dependent variable in country i and the food price in the domestic and international markets respectively, we can refer to a linear relationship of the type:

$$y_{it} = \theta_1 + \theta_2 p_{it} + \theta_3 p_{jt} + u_t$$
(1)

where:

| ${\cal Y}_{it}$ | represents the dependent variable referred to country <i>i</i> at time <i>t</i> ;  |
|-----------------|------------------------------------------------------------------------------------|
| $p_{it}$        | represents the food price prevalent in country <i>i</i> at time <i>t</i> ;         |
| $p_{jt}$        | represents the food price prevalent on the international market at time <i>t</i> ; |
| $u_t$           | represents the error term.                                                         |

Once the condition of stationarity of the series and their co-integration are verified, the use of vector autoregression models allows to analyse the interaction of several time series through the use of the Error-Correction Model:

$$\Delta y_t = \mu + \alpha \theta' p_{t-1} + \sum_{i=1}^{n-1} \Gamma_i \Delta p_{t-i} + u_t$$
(2)

where:

 $\Delta y_t$  is the difference between  $y_t$  and  $y_{t-1}$ ;  $\Delta p_t$  is the difference between  $p_t$  and  $p_{t-1}$ , where  $p_t$  is a multi-dimensional vector whose components are the food prices prevalent on the domestic (*i*) and international (*j*) markets at time *t*; is the speed of adjustment metric.

- $\alpha$  is the speed of adjustment matrix;
- $\theta$  is a matrix whose columns are linearly independent co-integrating vectors with  $\theta' p_{t-1}$  representing the long-run equilibrium errors.

<sup>&</sup>lt;sup>1</sup> The classification of a country as LIFD, used for analytical purposes by FAO, is traditionally determined by three criteria. First, a country should have a per capita gross national income below the historical ceiling used by the World Bank to determine eligibility for assistance or financing. The second criterion is based on the net food trade position of a country averaged over the preceding three years for which statistics are available. Third, the self-exclusion criterion is applied when countries that meet the above two criteria specifically request to be excluded from the LIFD category. In 2001 an additional factor was introduced to avoid countries changing their LIFD status too frequently. This factor, called 'persistence of position', postpones the exit of a country from the list until the change in its status has been verified for three consecutive years. See www.fao.org/countryprofiles/lifdc/en/



The number of linearly co-integrating relationships, *r*, lies between 0 and K-1, where K is the number of dependent variables. Furthermore, *r* is the rank of  $\alpha \theta'$ .

Since our analysis is focused on the influence of international food prices on food availability in country *i*, our parameter of interest is  $\theta_j$ . In particular, we are interested to know how much change in  $y_i$  can be ascribed to a change in  $p_j$ . Therefore, estimates of  $\theta_j$  for individual countries are tested against the Granger causality test and are retained only if clear causality from  $p_j$  to  $y_i$  is confirmed.

#### 3. Data

The data used in this study are drawn from the FAOSTAT dataset published by the Food and Agriculture Organization (FAO). Estimates of caloric supply and of food deficit have been used as dependent variables. They reflect two dimensions of food security: while the former, average dietary energy supply (DES), is an indicator of food availability, the latter, depth of food deficit (FD), is an indicator of access to food.<sup>2</sup> The independent variables, domestic and international food price indices, again reflect access to food.<sup>3</sup> Finally, to take into account their different exposure to the global food market, countries have been arranged according to their cereal import dependency ratio (CID) which is within the stability dimension of food security.<sup>4</sup>

The variables DES and FD are expressed as number of kilocalories per person per day and therefore we can use a logarithmic transformation to interpret the results as elasticities. The same applies to the price indices.

Data availability informed the sample selection. The countries in the sample are grouped as LIFD and non-LIFD. The group of LIFD countries is composed of: Bangladesh, Benin, Burkina Faso, Burundi, Cambodia, Cameroon, Chad, Congo, Cote d'Ivoire, Egypt, Ethiopia, Gambia, Ghana, Indonesia, Kenya, Laos, Lesotho, Madagascar, Malawi, Mali, Mauritania, Mongolia, Mozambique, Nepal, Nigeria, Philippines, Rwanda, Senegal, Sierra Leone, Sri Lanka, Tanzania, Togo, Uganda, Yemen, Zambia and Zimbabwe. The non-LIFD group is composed of: Argentina, Armenia, Bolivia, Botswana, Brazil, Chile, China, Colombia, Ecuador, Gabon, India, Iran, Jordan, Kazakhstan, Korea, Malaysia, Mexico, Morocco, Namibia, Pakistan, Paraguay, Peru, Saudi Arabia, South Africa, Swaziland, Syria, Thailand, Tunisia, Turkey, Uruguay, Venezuela and Viet Nam. Descriptive statistics for all variables are in Table A.1 in the Appendix.

Data are expressed as annual averages, and this study covers the period 1991–2013. Data on the CID ratio remain fairly stable over time, and in this case the CID values for 2005 are used to summarize countries' cereal import dependency.

<sup>&</sup>lt;sup>4</sup> The CID ratio is estimated as the ratio between cereal imports and the algebraic sum of cereal production and cereal imports minus cereal exports. See FAO, 2014.



 $<sup>^{2}</sup>$  DES is an estimate of the national average energy supply. FD is an estimate of the average intensity of food deprivation of the undernourished and measures how many calories would be needed to lift them from this status, everything else being constant. See FAO, 2014.

<sup>&</sup>lt;sup>3</sup> The domestic food price level index is calculated by dividing the food purchasing power parity by general purchasing power parity, thus providing an index of the price of food in the country relative to the price of the generic consumption basket. It allows the comparison of the relative price of food over time and across countries. See FAO, 2014.

#### 4. Findings

Values of  $\theta_j$  are presented in Table 1, and for ease of visualization they are reported in Figures 1 and 2 for DES and FD respectively. Countries are grouped as LIFD and non-LIFD and in both cases are arranged according to their CID reference value.

Countries whose data do not satisfy the Granger causality test between international prices and the dependent variable have been dropped. This does not necessarily mean that in such countries international prices have not influenced the local supply of or access to food. It means rather that in such cases any relationship between food price and food availability and access was mainly of a national or local nature. In other words, even if any domestic rise in food prices was originally induced by the global rise in food prices, it had developed its own national dynamics due to the peculiarities of the domestic environment.

|              | LII                     | FD               |               | non-LIFD |              |              |       |               |         |     |  |  |  |  |
|--------------|-------------------------|------------------|---------------|----------|--------------|--------------|-------|---------------|---------|-----|--|--|--|--|
| country      | CID                     | $\theta_{j DES}$ | $	heta_{jFI}$ | country  | CID          | $	heta_{jD}$ | ES    | $	heta_{jFl}$ | 00      |     |  |  |  |  |
| Congo        | go 92.9 -0.96 * 2.23 ** |                  | Jordan        | 97.7     | 1.14         | **           | -5.46 | **            |         |     |  |  |  |  |
| Yemen        | 83.7                    | -0.49 *          | ** 3.04       | ***      | Botswana     | 87.9         | -1.61 | ***           | 9.52    | *** |  |  |  |  |
| Mongolia     | 69.8                    |                  | 7.60          | ***      | Malaysia     | 84.2         | -1.90 | ***           |         |     |  |  |  |  |
| Senegal      | 56.3                    | 0.99 *           | *             |          | Swaziland    | 78.0         |       |               | -5.98   | **  |  |  |  |  |
| Mozambique   | 43.6                    | -3.47 *          | ** 2.26       | ***      | Korea        | 73.8         | 0.49  | **            | -10.35  | *** |  |  |  |  |
| Sri Lanka    | 40.6                    | 0.93 *           | ** 2.16       | ***      | Saudi Arabia | 72.7         | 2.41  | **            |         |     |  |  |  |  |
| Ghana        | 36.5                    | -1.26 *          | ** 9.97       | ***      | Tunisia      | 56.9         | -0.24 | *             |         |     |  |  |  |  |
| Egypt        | 32.8                    | -1.39 *          | * 73.81       | ***      | Colombia     | 55.4         | -1.07 | ***           | 3.28    | *** |  |  |  |  |
| Cameroon     | 32.2                    | -1.12 *          | * 6.76        | ***      | Armenia      | 55.1         | -2.12 | ***           | 19.89   | *** |  |  |  |  |
| Burundi      | 27.2                    |                  | 10.42         | ***      | Peru         | 49.9         | -2.19 | ***           | 11.96   | *** |  |  |  |  |
| Zimbabwe     | 25.9                    | -0.35 *          | *             |          | Venezuela    | 39.8         | -7.08 | ***           | 24.66   | *** |  |  |  |  |
| Benin        | 23.5                    | 5.53 *           | * -8.91       | ***      | Mexico       | 38.5         | 1.19  | ***           |         |     |  |  |  |  |
| Kenya        | 22.6                    | 1.27 *           | ** -4.73      | ***      | Ecuador      | 37.7         | -1.00 | ***           | 4.75    | *** |  |  |  |  |
| Philippines  | 22.1                    | -0.72 *          | ** 3.04       | ***      | Chile        | 37.6         | -3.73 | ***           |         |     |  |  |  |  |
| Rwanda       | 21.2                    |                  | 4.33          | ***      | Morocco      | 36.8         | -0.92 | ***           |         |     |  |  |  |  |
| Uganda       | 20.9                    | 0.55 *           | ** 6.48       | *        | Syria        | 33.1         | 2.07  | **            | -32.33  | **  |  |  |  |  |
| Togo         | 20.8                    | -1.71 *          | ** 7.44       | ***      | Bolivia      | 22.9         |       |               | 1.30    | *** |  |  |  |  |
| Sierra Leone | 19.8                    | -1.14 *          | ** 3.25       | ***      | Iran         | 16.8         | -0.46 | ***           | -29.67  | *** |  |  |  |  |
| Zambia       | 16.1                    | -1.00 *          | ** 5.24       | ***      | Uruguay      | 16.1         | 0.85  | ***           | -8.54   | *** |  |  |  |  |
| Tanzania     | 14.8                    | -0.23 *          | 12.42         | ***      | Thailand     | 10.2         | 4.54  | ***           | -23.06  | *** |  |  |  |  |
| Indonesia    | 12.2                    | -0.31 *          | * 3.32        | ***      | Paraguay     | 8.5          |       |               | -6.41   | *** |  |  |  |  |
| Madagascar   | 11.6                    | -0.62 *          | ** 2.34       | **       | Viet Nam     | 6.9          | -1.21 | ***           |         |     |  |  |  |  |
| Bangladesh   | 10.0                    | 0.22 *           | *             |          | Turkey       | 4.0          |       |               | 14.00   | *** |  |  |  |  |
| Burkina Faso | 8.5                     | 0.75 *           | **            |          | China        | 3.8          | 3.34  | ***           | 3.00    | *** |  |  |  |  |
| Malawi       | 8.4                     | 1.93 *           | *             |          | Pakistan     | 3.1          | -1.02 | ***           | 9.03    | *** |  |  |  |  |
| Chad         | 6.1                     | -1.47 *          | 18.09         | ***      | Kazakhstan   | 1.9          | -3.90 |               | -26.22  | **  |  |  |  |  |
| Laos         | 2.7                     |                  | 6.23          | ***      | India        | 1.1          | 1.61  |               | 3.33    | *** |  |  |  |  |
| Cambodia     | 2.3                     | 1.02 *           | ** 2.05       | **       | Argentina    | 0.3          | 0.97  |               | <u></u> |     |  |  |  |  |

Table 1. Influence of international food prices on dietary energy supply and food deficit

significance: \*\*\* = 0.01 \*\* = 0.05 \* = 0.1

Source: Author's analysis of data from FAOSTAT



Figure 1 shows that the influence of international food prices on national food availability is varied. A majority of both LIFD countries (63%) and non-LIFD countries (58%) are below the horizontal axis. This means that the larger share of both groups is penalized by a price increase, at least in terms of food availability. For each country the sign of  $\theta_j$  depends on whether the country is mainly a food exporter or a food importer, and therefore whether or not it is able to take advantage of an international rise in food prices. It is easy to understand how the former is more likely to be the case of countries within the non-LIFD group.

Figure 1 suggests a negative relationship between CID and the value of  $\theta_j$ . This supports the hypothesis that cereal import dependency may affect the impact of international food prices on domestic food availability. However, as shown in Table 2, such a link between CID and  $\theta_j$  is not statistically significant for either group of countries alone or for the two groups combined<sup>5</sup>. In other words, in this case the value of CID is irrelevant with respect to the sign and value of  $\theta_j$ .

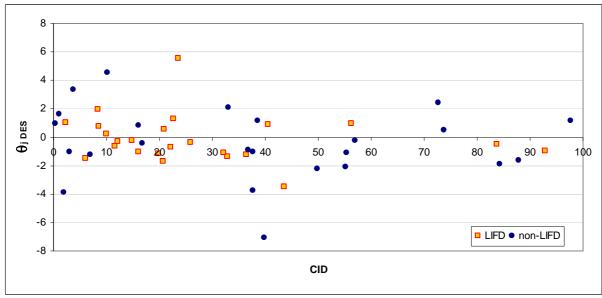



Figure 1. Impact of international food price changes on DES in individual countries

Source: Table 1

Table 2. Relationship between  $\theta_i$  and cereal import dependency

|                       | ]                 | DES               |                  | FD                   |
|-----------------------|-------------------|-------------------|------------------|----------------------|
| CID                   | -0.012<br>(0.011) | -0.012<br>(0.012) | 0.032<br>(0.093) | 0.051<br>(0.089)     |
| LIFD                  | (01011)           | 0.158 (0.631)     | (0.070)          | 10.217 **<br>(4.865) |
| constant              | 0.141<br>(0.486)  | 0.042 (0.629)     | 2.138<br>(3.894) | -3.935<br>(4.729)    |
| N. obs.               | 48                | 48                | 43               | 43                   |
| <b>R</b> <sup>2</sup> | 0.025             | 0.026             | 0.003            | 0.102                |

significance: \*\* = 0.05

standard errors in brackets

Source: author's analysis of data from FAOSTAT

<sup>5</sup> Table 2 is only aimed at assessing the discriminatory power of CID, while the analysis of the determinants of  $\theta_j$  is beyond the scope of this study.



Figure 2 focuses on the access-to-food dimension of food security. Two ways in which a global price surge can affect access to food can be identified. At the macro level a price surge negatively affects the balance of trade, with consequent reduction of both national and personal income in net importing countries. At the micro level the reduced purchasing capacity due to the reduction in income per capita is worsened by the transmission of the rise in food prices from the international to the domestic scene. This combination reflects the case in LIFD countries well. In fact, while the non-LIFD countries are more or less equally split into two sub-groups according to the sign of  $\theta_j$  – i.e. with either an increase or reduction of the food deficit – for more than 90% of the countries within the LIFD group an increase of the international food price increases their food deficit. In Table 2 the coefficient of the dummy variable highlights how the impact of any price rise is significantly stronger for LIFD countries than for the other group.

Even in this case, the data do not show a significant relationship between the CID ratio and the value of  $\theta_j$ . In other words, greater exposure on the global market determined by higher cereal import dependency cannot be associated with any greater impact of a global rise in food prices on the domestic food deficit.

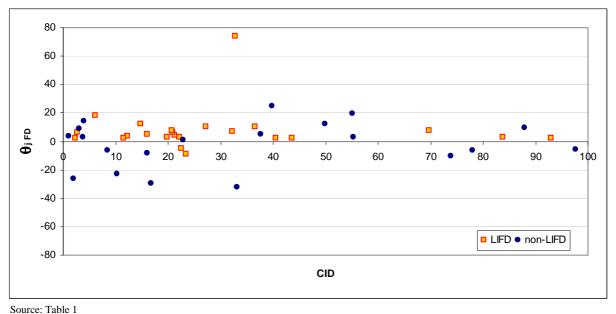



Figure 2. Impact of international food price changes on FD in individual countries

Source: Table 1

## 5. Conclusions

The repeated surges in food prices experienced since the mid-2000s had different implications for different countries. The main criterion of this variation is countries' different roles on the international scene, mainly with regard to international food trade. Changes in international food prices may be transmitted, at different rates and speeds, to domestic food prices, inevitably affecting local economies and livelihood. Such price changes on the international market can have an impact at the local level even when the rate of transmission is low. For net food-importing countries a price rise makes both the national trade balance and individual purchasing capacity worse, resulting in reduced food availability and access respectively.

This study has assessed the nutritional implications of changes in international food prices in LIFD and other developing countries through the estimation of long-term elasticities of food price changes on food availability and food deficit. The results show that the



implications of a surge in international food prices are diverse in both LIFD and non-LIFD countries in terms of domestic food availability. However, almost all LIFD countries are penalized by a surge in food prices in terms of access to food. This means that the global food price surges experienced during the past decade have hit the poorest deciles of population hard, particularly in LIFD countries, independently of any change in national food availability.

Acknowledgements. Comments on an earlier version of this article were received from the Guest Editor, Lucio Esposito, and from an anonymous referee and are gratefully acknowledged. Usual disclaimers apply.

#### References

- Anriquez, G., Daidone, S. and Mane, E. (2013) Rising food prices and undernourishment: a cross-country inquiry, *Food Policy*, 38, 190–202.
- Brinkman, H.J., de Pee, S., Sanogo, I., Subran, L. and Bloem, M.W. (2010) High food prices and the global financial crisis have reduced access to nutritious food and worsened nutritional status and health, *The Journal of Nutrition*, 140(1), 153-161.
- De Janvry, A. and Sadoulet, E. (2010) The global food crisis and Guatemala: what crisis and for whom?, *World Development*, 38(9), 1328–1339.
- FAO (2014) Statistics. Food Security Indicators, available at <u>http://www.fao.org/economic/ess/ess-fs/ess-fadata/en/#.U80lndIW3Ic</u> (accessed June 2014).
- FAO, IFAD and WFP (2011) The state of food insecurity in the World. How does international price volatility affect domestic economies and food security?, Rome: Food and Agriculture Organization.
- Green, R., Cornelsen, L., Dangour, A.D., Turner, R., Shankar, B., Mazzocchi, M. and Smith, R.D. (2013) The effect of rising food prices on food consumption: systematic review with meta-regression, *British Medical Journal*, 346, f3703.
- Headey, D. (2014) *Food prices and poverty reduction in the long run*, Discussion Paper 1331, Washington, DC: International Food Policy Research Institute.
- Helbling, T. and Roache, S. (2011) Rising prices on the menu. Higher food prices may be here to stay, *Finance and Development*, 48(1), 24–27.
- Ivanic, M. and Martin, W. (2008) *Implications of higher global food prices for poverty in low-income countries*, Policy Research Working Paper, Washington, DC: World Bank.
- Ivanic, M., Martin, W. and Zaman, H. (2011) *Estimating the short-run poverty impacts of the* 2010–11 surge in food prices, Policy Research Working Paper 5633, Washington, DC: World Bank.
- Lanchovichina, E., Loening, J. and Wood, C. (2012) *How vulnerable are Arab countries to global food price shocks?*, Policy Research Working Paper 6018, Washington, DC: World Bank.
- Minot, N. (2013) *How volatile are African food prices?*, Research Brief 19, Washington, DC: International Food Policy Research Institute.
- Robles, M. and Torero, M. (2010) Understanding the impact of high food prices in Latin America, *Economia*, 10(2), 117-164.



- Skoufias E., Tiwari, S. and Zaman, H. (2011) Can we rely on cash transfers to protect dietary diversity during food crises? Estimates from Indonesia, Policy Research Working Paper 5548, Washington, DC: World Bank.
- Tiwari, S., and Zaman, H. (2010) *The impact of economic shocks on global undernourishment*, Research Working Paper 5215, Washington, DC: World Bank.
- von Braun, J., and Tadesse, G. (2012) *Global food price volatility and spikes: an overview of costs, causes, and solutions,* Discussion Papers on Development Policy 161, Bonn: Zentrum für Entwicklungsforschung (ZEF).



| Table A.1. Summary values of relevant variables for individual cou | intries |
|--------------------------------------------------------------------|---------|
| •                                                                  |         |

|               |      |      | DES       |      |      |      |      | FD        |     |     | CID  |        |           |     |     |      | Price index |           |       |       |  |  |
|---------------|------|------|-----------|------|------|------|------|-----------|-----|-----|------|--------|-----------|-----|-----|------|-------------|-----------|-------|-------|--|--|
|               |      |      | Standard  |      |      |      |      | Standard  |     |     |      |        | Standard  |     |     |      |             | Standard  |       |       |  |  |
| country       | Obs. | Mean | Deviation | Min  | Max  | Obs. | Mean | Deviation | Min | Max | Obs. | Mean   | Deviation | Min | Max | Obs. | Mean        | Deviation | Min   | Max   |  |  |
| LIFD          |      |      |           |      |      |      |      |           |     |     |      |        |           |     |     |      |             |           |       |       |  |  |
| Bangladesh    | 22   | 2306 | 154.354   | 2060 | 2480 | 22   | 160  | 64.353    | 107 | 276 | 18   | 9.378  | 1.818     | 6   | 12  | 20   | 1.545       | 0.040     | 1.480 | 1.620 |  |  |
| Benin         | 22   | 2473 | 164.496   | 2270 | 2890 | 22   | 94   | 29.563    | 34  | 138 | 18   | 22.300 | 8.233     | 12  | 37  | 22   | 2.308       | 0.316     | 1.930 | 2.970 |  |  |
| Burundi       | 22   | 1702 | 70.233    | 1630 | 1890 | 22   | 499  | 93.070    | 312 | 605 | 18   | 18.150 | 6.539     | 9   | 28  | 18   | 2.167       | 0.076     | 2.040 | 2.290 |  |  |
| Burkina Faso  | 22   | 2497 | 113.145   | 2330 | 2660 | 22   | 160  | 28.885    | 111 | 192 | 18   | 9.322  | 1.741     | 7   | 12  | 24   | 1.939       | 0.114     | 1.730 | 2.160 |  |  |
| Cambodia      | 22   | 2150 | 220.540   | 1870 | 2530 | 22   | 202  | 52.781    | 102 | 288 | 18   | 3.205  | 1.116     | 1   | 5   | 20   | 1.572       | 0.229     | 1.210 | 1.840 |  |  |
| Cameroon      | 22   | 2249 | 186.988   | 2030 | 2550 | 22   | 186  | 70.232    | 85  | 277 | 18   | 28.867 | 4.491     | 19  | 34  | 18   | 1.939       | 0.044     | 1.870 | 2.020 |  |  |
| Chad          | 22   | 2006 | 165.087   | 1740 | 2330 | 22   | 332  | 81.205    | 216 | 494 | 18   | 5.944  | 1.376     | 4   | 9   | 22   | 2.433       | 0.167     | 2.180 | 2.730 |  |  |
| Congo         | 22   | 2106 | 91.008    | 1970 | 2240 | 22   | 263  | 49.281    | 191 | 340 | 18   | 93.683 | 1.816     | 90  | 96  | 23   | 2.380       | 0.117     | 2.090 | 2.560 |  |  |
| Cote d'Ivoire | 22   | 2600 | 85.439    | 2460 | 2710 | 22   | 112  | 22.930    | 76  | 142 | 18   | 47.044 | 6.902     | 37  | 59  | 23   | 2.028       | 0.094     | 1.910 | 2.190 |  |  |
| Egypt         | 22   | 3303 | 76.044    | 3150 | 3430 | 22   | 10   | 1.726     | 8   | 13  | 18   | 35.650 | 1.776     | 32  | 38  | 24   | 1.904       | 0.085     | 1.690 | 2.030 |  |  |
| Ethiopia      | 19   | 1906 | 214.924   | 1550 | 2240 | 19   | 449  | 95.396    | 314 | 623 | 15   | 8.667  | 2.588     | 5   | 12  | 24   | 1.757       | 0.114     | 1.550 | 2.040 |  |  |
| Gambia        | 22   | 2391 | 102.367   | 2270 | 2630 | 22   | 123  | 22.115    | 74  | 154 | 18   | 45.844 | 6.109     | 38  | 55  | 23   | 2.563       | 0.143     | 2.350 | 2.790 |  |  |
| Ghana         | 22   | 2575 | 329.469   | 1970 | 3220 | 22   | 110  | 73.003    | 18  | 322 | 18   | 25.589 | 7.709     | 12  | 37  | 24   | 2.487       | 0.468     | 1.720 | 3.200 |  |  |
| Indonesia     | 22   | 2497 | 140.549   | 2300 | 2820 | 22   | 114  | 21.672    | 64  | 147 | 18   | 12.222 | 2.323     | 7   | 15  | 24   | 1.662       | 0.192     | 1.390 | 2.000 |  |  |
| Kenya         | 22   | 2067 | 69.856    | 1950 | 2180 | 22   | 209  | 26.373    | 166 | 249 | 18   | 23.450 | 4.987     | 14  | 36  | 23   | 1.891       | 0.226     | 1.610 | 2.380 |  |  |
| Laos          | 22   | 2176 | 137.205   | 2000 | 2400 | 22   | 272  | 51.902    | 195 | 343 | 18   | 2.639  | 0.652     | 2   | 4   | 17   | 2.058       | 0.088     | 1.930 | 2.210 |  |  |
| Lesotho       | 22   | 2355 | 41.944    | 2290 | 2440 | 22   | 107  | 4.780     | 97  | 116 | 18   | 67.800 | 7.623     | 55  | 85  | 23   | 2.181       | 0.373     | 1.620 | 2.710 |  |  |
| Madagascar    | 22   | 2095 | 48.963    | 2020 | 2200 | 22   | 195  | 19.803    | 152 | 231 | 18   | 9.411  | 2.579     | 6   | 13  | 24   | 2.027       | 0.056     | 1.920 | 2.160 |  |  |
| Malawi        | 22   | 2154 | 154.135   | 1880 | 2380 | 22   | 203  | 70.411    | 119 | 342 | 18   | 12.655 | 6.594     | 4   | 29  | 23   | 2.224       | 0.217     | 1.850 | 2.620 |  |  |
| Mali          | 22   | 2345 | 206.369   | 2140 | 2750 | 22   | 116  | 46.208    | 39  | 169 | 18   | 6.994  | 2.649     | 3   | 11  | 24   | 2.062       | 0.101     | 1.900 | 2.260 |  |  |
| Mauritania    | 22   | 2728 | 88.583    | 2560 | 2870 | 22   | 57   | 8.535     | 45  | 76  | 18   | 69.716 | 6.858     | 53  | 77  | 23   | 2.054       | 0.109     | 1.910 | 2.220 |  |  |
| Mongolia      | 22   | 2183 | 180.459   | 1850 | 2540 | 22   | 293  | 61.109    | 188 | 445 | 18   | 45.616 | 21.332    | 10  | 72  | 16   | 1.685       | 0.131     | 1.490 | 1.910 |  |  |
| Mozambique    | 22   | 1985 | 147.187   | 1700 | 2180 | 22   | 344  | 64.258    | 269 | 481 | 18   | 36.728 | 12.597    | 22  | 61  | 19   | 2.018       | 0.111     | 1.880 | 2.220 |  |  |
| Nepal         | 22   | 2305 | 102.247   | 2190 | 2530 | 22   | 153  | 17.189    | 112 | 174 | 18   | 1.650  | 0.869     | 1   | 4   | 23   | 1.551       | 0.048     | 1.490 | 1.660 |  |  |
| Nigeria       | 22   | 2610 | 130.036   | 2280 | 2760 | 22   | 62   | 23.011    | 40  | 133 | 18   | 11.405 | 4.821     | 4   | 20  | 23   | 2.539       | 0.176     | 2.320 | 2.880 |  |  |
| Philippines   | 22   | 2426 | 116.437   | 2250 | 2610 | 22   | 130  | 20.084    | 96  | 165 | 18   | 22.111 | 3.477     | 16  | 27  | 24   | 1.664       | 0.083     | 1.550 | 1.800 |  |  |
| Rwanda        | 22   | 1953 | 173.073   | 1710 | 2250 | 22   | 356  | 99.801    | 195 | 527 | 18   | 23.922 | 8.994     | 11  | 47  | 23   | 1.653       | 0.088     | 1.500 | 1.780 |  |  |
| Senegal       | 22   | 2304 | 85.727    | 2190 | 2470 | 22   | 141  | 24.731    | 94  | 177 | 18   | 49.639 | 7.058     | 39  | 61  | 23   | 2.024       | 0.050     | 1.910 | 2.090 |  |  |
| Sierra Leone  | 22   | 2095 | 75.198    | 1990 | 2260 | 22   | 281  | 36.294    | 209 | 333 | 18   | 38.155 | 10.731    | 20  | 51  | 24   | 2.496       | 0.575     | 2.100 | 4.060 |  |  |
| Sri Lanka     | 22   | 2339 | 105.618   | 2140 | 2520 | 22   | 242  | 17.467    | 200 | 262 | 18   | 38.683 | 2.593     | 34  | 44  | 24   | 1.742       | 0.066     | 1.620 | 1.860 |  |  |
| Tanzania      | 22   | 2094 | 59.325    | 2020 | 2210 | 22   | 250  | 26.800    | 180 | 291 | 18   | 10.800 | 3.715     | 4   | 15  | 24   | 2.001       | 0.170     | 1.850 | 2.430 |  |  |
| Togo          | 22   | 2268 | 139.213   | 2010 | 2530 | 22   | 163  | 41.287    | 98  | 255 | 18   | 17.961 | 3.834     | 11  | 24  | 23   | 2.819       | 0.873     | 2.060 | 4.330 |  |  |
| Uganda        | 22   | 2259 | 51.447    | 2170 | 2350 | 22   | 182  | 18.412    | 154 | 214 | 18   | 11.100 | 5.992     | 2   | 21  | 24   | 1.694       | 0.151     | 1.500 | 2.090 |  |  |
| Yemen         | 22   | 2055 | 27.207    | 2020 | 2140 | 22   | 199  | 16.721    | 168 | 220 | 18   | 77.566 | 5.366     | 68  | 85  | 24   | 1.432       | 0.205     | 1.130 | 1.830 |  |  |
| Zambia        | 22   | 1910 | 71.546    | 1810 | 2030 | 22   | 299  | 48.903    | 225 | 374 | 18   | 15.978 | 5.498     | 5   | 25  | 24   | 1.645       | 0.138     | 1.410 | 1.860 |  |  |
| Zimbabwe      | 22   | 2055 | 100.889   | 1930 | 2260 | 22   | 317  | 44.324    | 226 | 368 | 18   | 24.505 | 11.623    | 9   | 52  | 22   | 1.836       | 0.242     | 1.220 | 2.120 |  |  |

#### Table A.1 (continued)

|                       |          |      | DES       |      |          |      | FD       |           |          |         |      |          | CID       |         |          |          |       | Price inde | ex    |      |
|-----------------------|----------|------|-----------|------|----------|------|----------|-----------|----------|---------|------|----------|-----------|---------|----------|----------|-------|------------|-------|------|
|                       | Standard |      |           |      | Standard |      |          |           |          |         |      | Standard |           |         | Standard |          |       |            |       |      |
| country               | Obs.     | Mean | Deviation | Min  | Max      | Obs. | Mean     | Deviation |          | Max     | Obs. | Mean     | Deviation | Min     | Max      | Obs.     | Mean  | Deviation  | Min   | Max  |
| non-LIFD              |          |      |           |      |          |      |          |           |          |         |      |          |           |         |          |          |       |            |       |      |
| Argentina             | 22       | 3067 | 107.720   | 2880 | 3240     | 22   | 13       | 6.384     | 6        | 26      | 18   | 0.544    | 0.322     | 0       | 1        | 24       | 1.334 | 0.059      | 1.230 | 1.45 |
| Armenia               | 20       | 2526 | 263.947   | 2220 | 2930     | 20   | 92       | 59.170    | 16       | 163     | 16   | 57.594   | 3.731     | 51      | 63       | 21       | 1.885 | 0.146      | 1.700 | 2.32 |
| Bolivia               | 22       | 2131 | 79.059    | 2030 | 2310     | 22   | 196      | 20.344    | 140      | 224     | 18   | 26.889   | 3.872     | 20      | 33       | 24       | 1.738 | 0.093      | 1.570 | 1.90 |
| Botswana              | 22       | 2173 | 46.740    | 2100 | 2300     | 22   | 228      | 28.664    | 163      | 265     | 18   | 87.800   | 5.950     | 78      | 99       | 24       | 1.928 | 0.066      | 1.810 | 2.06 |
| Brazil                | 22       | 2984 | 172.314   | 2760 | 3260     | 22   | 76       | 14.389    | 55       | 97      | 18   | 16.467   | 2.334     | 13      | 21       | 22       | 1.312 | 0.094      | 1.190 | 1.56 |
| Chile                 | 22       | 2830 | 111.119   | 2600 | 2960     | 22   | 32       | 9.449     | 22       | 59      | 18   | 37.228   | 8.689     | 19      | 53       | 24       | 1.444 | 0.094      | 1.300 | 1.64 |
| China                 | 22       | 2835 | 162.209   | 2510 | 3060     | 22   | 102      | 26.619    | 75       | 167     | 18   | 3.944    | 1.251     | 2       | 6        | 23       | 1.621 | 0.182      | 1.420 | 2.04 |
| Colombia              | 22       | 2630 | 95.419    | 2420 | 2810     | 22   | 94       | 14.978    | 70       | 135     | 18   | 50.700   | 9.943     | 26      | 61       | 24       | 1.689 | 0.082      | 1.590 | 1.89 |
| Ecuador               | 22       | 2233 | 57.585    | 2100 | 2350     | 22   | 134      | 16.938    | 106      | 173     | 18   | 32.939   | 7.647     | 19      | 41       | 24       | 1.633 | 0.068      | 1.500 | 1.77 |
| Gabon                 | 22       | 2648 | 74.382    | 2520 | 2760     | 22   | 42       | 6.745     | 35       | 56      | 18   | 82.155   | 2.375     | 78      | 87       | 23       | 2.165 | 0.131      | 1.980 | 2.49 |
| India                 | 22       | 2291 | 46.281    | 2220 | 2390     | 22   | 149      | 17.298    | 121      | 186     | 18   | 0.517    | 0.471     | 0       | 2        | 24       | 1.623 | 0.049      | 1.550 | 1.70 |
| Iran                  | 22       | 3137 | 33.436    | 3070 | 3230     | 22   | 28       | 8.652     | 15       | 41      | 18   | 27.255   | 6.844     | 17      | 41       | 23       | 2.408 | 0.100      | 2.180 | 2.62 |
| Jordan                | 22       | 2849 | 175.263   | 2620 | 3090     | 22   | 35       | 14.274    | 19       | 58      | 18   | 96.122   | 2.341     | 92      | 100      | 24       | 1.220 | 0.057      | 1.110 | 1.32 |
| Kazakhstan            | 20       | 3057 | 318.931   | 2400 | 3390     | 20   | 23       | 33.056    | 3        | 104     | 16   | 1.422    | 0.769     | 0       | 3        | 19       | 1.473 | 0.230      | 1.280 | 2.32 |
| Korea                 | 22       | 3090 | 84.992    | 2970 | 3240     | 22   | 9        | 2.108     | 6        | 13      | 18   | 71.861   | 2.646     | 65      | 75       | 24       | 1.832 | 0.092      | 1.660 | 2.03 |
| Malaysia              | 22       | 2851 | 57.759    | 2700 | 2940     | 22   | 19       | 4.206     | 11       | 27      | 18   | 79.494   | 3.327     | 73      | 84       | 24       | 1.472 | 0.097      | 1.280 | 1.62 |
| Mexico                | 22       | 3152 | 59.091    | 3060 | 3230     | 22   | 12       | 9.162     | 1        | 24      | 18   | 31.172   | 6.559     | 22      | 39       | 24       | 1.203 | 0.047      | 1.130 | 1.31 |
| Morocco               | 22       | 3126 | 115.657   | 2920 | 3270     | 22   | 37       | 5.378     | 31       | 48      | 18   | 42.061   | 9.638     | 27      | 60       | 24       | 1.598 | 0.035      | 1.520 | 1.69 |
| Namibia               | 22       | 2162 | 102.662   | 2010 | 2300     | 22   | 95       | 3.630     | 90       | 101     | 18   | 68.161   | 3.621     | 63      | 76       | 24       | 1.639 | 0.089      | 1.490 | 1.78 |
| Pakistan              | 22       | 2376 | 68.490    | 2280 | 2520     | 22   | 154      | 15.469    | 131      | 185     | 18   | 6.361    | 3.704     | 1       | 11       | 24       | 1.904 | 0.122      | 1.750 | 2.18 |
| Paraguay              | 22       | 2564 | 93.225    | 2400 | 2700     | 22   | 104      | 27.824    | 70       | 159     | 18   | 10.422   | 2.983     | 5       | 16       | 24       | 1.499 | 0.122      | 1.310 | 1.75 |
| Peru                  | 22       | 2370 | 158.098   | 2120 | 2670     | 22   | 145      | 36.479    | 76       | 212     | 18   | 52.594   | 5.666     | 45      | 61       | 24       | 1.660 | 0.107      | 1.540 | 2.00 |
| Saudi Arabia          | 22       | 3005 | 118.913   | 2760 | 3150     | 22   | 15       | 5.216     | 8        | 27      | 18   | 69.850   | 8.787     | 48      | 83       | 23       | 1.085 | 0.065      | 0.970 | 1.2  |
| South Africa          | 22       | 2924 | 104.996   | 2810 | 3180     | 22   | 26       | 5.933     | 13       | 34      | 18   | 18.767   | 3.806     | 13      | 25       | 23       | 1.325 | 0.120      | 1.060 | 1.50 |
| Swaziland             | 22       | 2281 | 98.363    | 2100 | 2440     | 22   | 143      | 50.739    | 92       | 262     | 18   | 61.367   | 15.705    | 37      | 80       | 19       | 1.565 | 0.277      | 1.170 | 2.17 |
| Syria                 | 22       | 3084 | 96.543    | 2920 | 3210     | 22   | 22       | 5.163     | 17       | 38      | 18   | 23.967   | 10.664    | 10      | 49       | 23       | 1.455 | 0.057      | 1.360 | 1.54 |
| Thailand              | 22       | 2610 | 281.289   | 2130 | 3010     | 22   | 155      | 102.704   | 40       | 353     | 18   | 8.167    | 1.362     | 6       | 11       | 23       | 1.646 | 0.132      | 1.450 | 1.9  |
| Tunisia               | 22       | 3258 | 72.829    | 3120 | 3340     | 22   | 5        | 0.869     | -0       | 6       | 18   | 57.805   | 11.884    | 31      | 80       | 24       | 1.664 | 0.040      | 1.590 | 1.7  |
| Turkey                | 22       | 3655 | 53.160    | 3580 | 3770     | 22   | 6        | 1.143     | 3        | 7       | 18   | 7.889    | 2.703     | 4       | 14       | 24       | 1.551 | 0.212      | 1.360 | 1.9  |
| Uruguay               | 22       | 2782 | 45.736    | 2660 | 2850     | 22   | 32       | 5.982     | 25       | ,<br>51 | 18   | 22.905   | 8.085     | 4<br>14 | 42       | 24       | 1.311 | 0.212      | 1.210 | 1.5  |
| Venezuela             | 22       | 2782 | 236.310   | 2360 | 3100     | 22   | 32<br>79 | 36.153    | 25<br>14 | 126     | 18   | 51.000   | 6.679     | 40      | 42<br>58 | 24       | 1.677 | 0.305      | 1.270 | 2.2  |
| Venezueia<br>Viet Nam | 22       | 2382 | 302.795   | 1900 | 2890     | 22   | 163      | 84.730    | 63       | 367     | 18   | 4.878    | 1.863     | 40<br>2 | 8        | 24<br>17 | 1.683 | 0.055      | 1.500 | 1.7  |

Source: author's analysis of data from FAOSTAT

