Derrubios estratificados en la Sierra de Aitana, Alicante (España)

RESUMEN
Se analizan los derrubios estratificados de Aitana, Alicante (España), desde varias perspectivas: se señala su relación con las formas estructurales del relieve derivadas de la tectónica de fractura, su significado morfológico, así como sus características granulométricas y morfométricas, comparada con otros tipos de depósitos de ladera e indicando las relaciones con determinados aspectos genéticos.

RÉSUMÉ
Grèzes litées dans la Sierra de Aitana. Alicante (España).- On analyse dans cet article les grèzes litées de la Sierra de Aitana selon différents points de vue: leur relation avec les formes structurales du relief dérivées de la tectonique de fracture, leur signification morphologique, ainsi que leurs caractéristiques granulométriques et morphométriques, qui sont comparées à d'autres types de dépôts de pente, en signalant leurs relations avec certains aspects génétiques.

I INTRODUCCIÓN
El objeto del presente trabajo se inscribe en una temática general relativa a los derrubios o depósitos de ladera. Éstos, lejos de poseer una naturaleza homogénea, presentan una gran variedad que deriva, sobre todo, de la diversidad de procesos que han intervenido en su génesis. Es, precisamente éste, el criterio que se ha utilizado en la individualización de las formas de modelado que se analizan, si bien, en su singularización, se harán referencias precisas a los depósitos de ladera sensu lato en el mismo espacio; ambos, estudiados en otra ocasión (Marco Molina, 1989).

Los objetivos son varios: el primero señalar las relaciones entre las formas estructurales del relieve y los depósitos, de manera que se pone de manifiesto el marco de control de las primeras sobre los segundos, es decir, que estas formas del modelado aparecen subordinadas a aquellas; y, con ello, a tenor de su situación, indicar cuál es la significación de las mismas en el relieve; por último, resaltar los rasgos fundamentales de la estructura sedimentaria, así como las características granulométricas...
cas y morfométricas, de modo que queden perfectamen-
te marcadas las diferencias entre grèzes liées o derru-
bios estratificados, y el resto de las acumulaciones de la-
dera. Distingo que resulta de gran interés como punto de
referencia.

Derrubios estratificados o grèzes liées han sido se-
ñalados para sectores relativamente próximos, tanto en el
conjunto de las montañas valencianas, como en el ámbi-
to bélico (GÍNESESCUDER y MATEUBELLÉS, 1977; GA-
RCIAROSSELL y PEZZI, 1977; CALVOCASES, 1987),
región estructural en la que se incluye Aitana. Sin em-
Bargo, estas formas están citadas como algo puntual, casi
excepcional; por ello, los motivos que instan a que este
aspecto del modelado de Aitana sea uno de los primeros
en ver la luz son, no sólo la «abundancia» de este tipo
de depósitos, así como su espesor, sino, sobre todo, al-
gunos aspectos de su morfología de detalle, que les con-
fieren gran espectacularidad y valor científico-didáctico.

II
LITOLOGÍA Y RASGOS
MORFOESTRUCTURALES

El relieve de Aitana, como ya se ha destacado en
ocasiones precedentes (MARCLASSOMINA, 1990), presenta
un marcado carácter tectónico derivado, ante todo, de
una intensa fracturación; es pues, un claro ejemplo de
relieve fallado sobre una cobertura esencialmente terciá-
ria que, en los casos que nos ocupan, está representada
por unas litofacies de naturaleza claramente contrastada.

1. NATURALEZA DE LAS LITOFACIES

Desde un punto de vista morfográfico, los depósitos
objetos de estudio se vinculan a laderas de tipo cantil-tal-
dud; es decir, colinas en los que vargas en materiales
cálcareos dominan taludes de dimensiones variables en
materiales predominantemente margosos. Concretamen-
mente hay que señalar el talud cenomaniense, constituido
por una alternancia de margas y margocalizadas, junto con
alguna capa de calcarrentitas que, hacia el muro, es una
ritmita; siendo esta última la que forma el talud de las
calizas turonienses en el caso del depósito del Port de
Confrides\(^1\). En efecto, dominando un talud relativamen-
te corto en esta litofacies blanda cenomaniense, están
las calizas de edad Turoniense con un espesor que oscila
entre 100 y 200 m (ALMELASAMPER, 1975), que deter-
minan el cantil o fuente de alimentación de los depós-
titos de ladera.

En el resto de los ejemplos analizados, los materiales
que desempeñan el papel de resalte morfográfico (var-
ga) son las calizas nummulíferas ecocenas, cuyo espesor
se estima próximo a los 150 m (ALMELASAMPER, 1975).
Infrayacentes a éstas, en el talud, se hallan las arcillas
verdosas del Eoceno, no siempre visibles, y la serie
alternante paleocena de calizas y margas en la que pre-
dominan estas últimas. En definitiva, se trata, tanto en el
caso de los materiales cretáceos, como en el de los pa-
leógenos, de litofacies de naturaleza claramente contras-
tada, si bien, los derrubios estratificados, por razones
purasmente estructurales, se asocian de forma más direc-
ta a los materiales terciarios, como en los depósitos del
frente oriental de Aitana y de Font dels Xorrets.

\(1\) No es un contrasentido, sino que, como se indicará más adelante, se trata
de un contacto anormal y claramente mecánico.

2. LA IMPORTANCIA DEL RELIEVE FALLADO

No obstante, y a pesar del contraste señalado, la
existencia de laderas del tipo cantil-talud no es una
cuestión meramente erosiva o resultado de la erosión
diferencial; por el contrario, su presencia está determinada
por unos hechos de raigambre estructural que son, en
definitiva, los principales determinantes de la comparti-
mentación del relieve.

En efecto, el análisis morfoestructural demuestra que
son los accidentes del tipo de las fallas los responsables
más directos de la actual estructuración del relieve, de
manera que Aitana, como morfoestructura, merece la
conceptuación de horst complejo, siendo Aitana propria-
damente dicha, un horst cresta dispuesto de oeste a este
que, en su culminación, alcanza 1.558 m de altitud; lo
cual convierte a dicho elemento del relieve en el más
destacado del sur valenciano y culminación del extremo
oriental peninsular del dominio externo bélico. Éste es
el primero de los hechos, de raigambre estructural, a te-
ner en cuenta para comprender la importancia que ad-
quieren los depósitos periglaciers heredados, en este
caso grèzes liées o derrubios estratificados, en el ámbi-
to del macizo de Aitana.

Y si esta referencia a la altitud en su culminación ya
es expresiva, es preciso recordar que dicho bloque prin-
cipal o de Aitana sensu stricto es un horst cresta consti-
tuido por la serie terciaria señalada, inclinada hacia el
sur, cuyo frente norte (umbría) es una ladera de tipo
cantil-talud, con una longitud algo superior a los 10 Km,
y que en esa distancia, la mayor parte del territorio está por encima de los 1.300 m de altitud.

Pero, además, este escarpe de falla (que lógicamente ha retrocedido) domina una extensa escaleria de fallas contrarias que afecta a la misma serie paleógena (inclinada hacia el sur), de forma que los bloques eocenos se hunden hacia el norte, pero a altitudes que oscilan entre los 1.260 y los 1.050-1.000 m, con lo que determina un dilatado espacio a considerable altitud, en el que son abundantes los cantiles orientados al norte o noreste (en realidad escarpes de falla), si bien hay que singularizar el frente externo de los escalones, como el de mayor importancia morfoográfica y paisajística.

Por otra parte, es preciso señalar que esta articulación del relieve es propia del frente septentrional, mientras que el oriental, conceptuado como pseudo cierre perisinclinal (MARCO MOLINA, 1990), se compone, tan sólo, por una cresta fallada constituida por la varga, en las calizas eocenas, y el talud de arcillas verdes lutecianas y la serie alternante paleocena, ya que en este caso la escalera de fallas afecta a los materiales ciudados en último lugar o, a lo sumo, doblando el frente en las calizas eocenas levantadas a altitudes algo superiores a los 1.000-1.100 m.

Es evidente que, en este ámbito, la actuación de la crioclastia u otros fenómenos de clima frío, son fenómenos que están subordinados al relieve, es decir, a la existencia de espacios situados a altitudes considerables; condición que, como se ha señalado, obedece claramente a la actuación de la tectónica de fractura. Es, pues, el relieve, en cuanto hecho estructural, el que determina, junto a las condiciones climáticas, la presencia de los depósitos objeto de estudio.

Sin embargo, no acaban ahí las relaciones (subordinaciones, mejor) de éstos últimos respecto de los hechos estructurales, pues ya se ha señalado que, los cantiles
son, en realidad, escarpes de falla más o menos frescos que, como áreas de alimentación, presentan los rasgos propios de los mismos. En especial destaca la intensa tectonización, reflejada en una densa red de diaclasamiento y fracturación condigna de las franjas de trituración, paralelas al teórico plano de las fallas; aspecto de gran interés por lo que respecta a los procesos de disgregación de las calizas.

3. LOCALIZACIÓN DE LOS DEPÓSITOS EN LA ESTRUCTURA FALLADA

Con la consideración individualizada de cada uno de los perfiles analizados, se pretende marcar de forma más precisa la relación entre las formas de modelado y el soporte estructural sobre el que se localizan; no obstante, el análisis de las mismas, como formas, abarca un número mayor de ejemplos que los que posteriormente se estudian como sedimentos. No se debe olvidar que, precisamente por sus características granulométricas, estos materiales suelen utilizarse como firme de pistas y carreteras, de ahí que su descubrimiento dependa, sobre todo, de los desmontes en caminos o de su extracción. De hecho, dos de los sectores estudiados son de muy reciente manifestación: Font dels Xorrets y Font del Molf; mientras que otro, el del Port de Confrides, desgraciadamente, ha sufrido notables modificaciones con respecto al perfil que mostraba en la fecha en que se obtuvieron las muestras (1987), pues, buena parte del mismo se ha extraído con motivo de las obras de mejora y ampliación de la carretera comarcal 3313.

Este último, al que llamaremos «perfil del Port de Confrides» (Fig. 1), se sitúa al SO del mismo, en una ladera orientada al norte: a la altura oscila entre los 1.100 m de la culminación y los 960 m del subsomentado puerto. Como estructura, se trata de parte de un bloque cenomaniense levantado, constituido por la ritmita (inclinada hacia el norte) que aparece en el norte de este periodo, gancheada hacia la falla que da en contacto con las calizas turonienses, hundidas respecto de la ritmita. Sin embargo, son las calizas turonienses las que destacan respecto de la litofacies blanda cenomaniense, de manera que este hecho implica la concurso de la erosión diferencial, que ha vaciado el bloque levantado en su parte meridional (donde está constituido por la ritmita); y ha invertido parcialmente la disposición estructural, dejando en resalte la cresta turoniense, aunque con desniveles inferiores a 100 m, en un característico escarpe de falla opuesto, que es el que, en definitiva, ha actuado como área de alimentación (cantil), mientras que el talud lo conforma la ritmita citada. Es al pie de este escarpe de falla opuesto donde se localiza el primero de los depósitos considerados, Port de Confrides.

El segundo de los perfiles, del que se consideran únicamente los rasgos morfológicos, es el denominado Font dels Xorrets (Fig. 1), situado inmediatamente al este de la misma. Este sector se caracteriza porque la escarera de fallas que se desarrolla al norte del bloque principal de Aitana, si bien afecta a las calizas eocenas, lo hace en poca extensión. En efecto, al pie de Penyó Alta (denominación del bloque culminante en este tramo), sólo hay dos escalones hundidos, constituidos por las calizas; estos bloques son el de Penyó de Partagat, cerca de 300 m más bajo que el culminante, y el del Penyó Repel, algo más bajo respecto al anterior. Se trata de dos fallas contrarias (la serie terciaria buza al sur) que han hundido las calizas eocenas, mientras que una tercera, también contraria, afecta a la serie alternante paleocena del bloque más bajo (el del Penyó Repel), levantándose respecto de los materiales paleocenos que, escalonadamente, son la solución de continuidad con la fosa del Guadalest. Es precisamente en estos últimos donde se encuentran los derrubios estratificados, es decir, el escarpe de la última de las fallas contrarias, el cual está constituido por el cantil en las calizas eocenas, y el talud en las arcillas verdes luteienses, y la serie alternante paleocena que, lógicamente, ha retrocedido, es el soporte estructural, junto con el labio hundido en los materiales paleocenos, sobre el que se desarrollan los derrubios estratificados que denominamos de la Font dels Xorrets, a altitudes comprendidas entre los 1.100 m, en la culminación, y los 900 m, en la misma línea de falla.

La situación del perfil del frente oriental de Aitana —Font del Molf (Fig. 1)— con respecto a la estructura, como en los otros casos, es un escarpe de falla; en esta ocasión el de la falla contraria que ha levantado escalonadamente la serie terciaria sobre sí misma y, sobre la fosa del Guadalest. Se trata, pues, de un escarpe que ha retrocedido, y que determina la presencia de una cantil de calizas eocenas, y el talud en arcillas verdosas y la serie alternante paleocena, a altitudes comprendidas entre los 1.000-1.100 m y los 800-900 m.

III

SIGNIFICADO MORFOLÓGICO Y MORFOGRAFÍA

Los derrubios estratificados o grès liètes, al igual que otros depósitos de solifluido (derrubios asistidos),
y el resto de los depósitos de ladera en un sentido muy amplio, tienen un rasgo en común, ya que, como formas de modelado, son formas encargadas de la regularización de las laderas, es decir, tienden a normalizar las pendientes reduciéndolas, y a amortiguar desniveles o un relieve bastante más anfractuoso, preexistente a su formación. Son, pues, elementos de naturaleza muy variada que, morfográficamente, merecen consideraciones semejantes.

No obstante, de dicha naturaleza derivan suficientes matrices que permiten diferenciar el modelado ocasionado por cada uno de los tipos de depósitos. En esta ocasión, son las consecuencias morfológicas de los derrubios estratificados las que interesan, si bien, para una mejor distinción, se toma como referencia la morfología de depósitos de ladera de origen bien contrastado.

1. DERRUBIOS DE LADERA VULGARES

Con el fin de destacar el papel que desempeñan dichos depósitos, se toma como punto de partida el análisis del perfil de La Condomina, compuesto por lo que denominamos «depósitos de ladera vulgares»; entendidos éstos, como los materiales aportados, tanto por gravedad como por la escorrentía difusa, sin descartar la crioclastia y la carstificación como procesos generadores de derrubios, en un contexto en el que es fundamental la preparación tecónica de los materiales afectados, pues no se debe olvidar su relación con un relieve fallado.

Para ello se ha seleccionado un ejemplo bien expresivo de la significación de los depósitos de ladera en el relieve en su grado máximo, pues dicha labor de regularización de las laderas, ha conducido prácticamente a la fosilización del salto de una falla de la estructura en escalera del frente septentrional del macizo de Aitana.

En efecto, en este sector de La Condomina, los bloques ecocenos fallados se escalonan hacia el pueblo de Confrides y, en uno de ellos, gracias a la trinchera del camino, se puede apreciar tanto el depósito como el espejo de falla contraria. El labio levantado culmina a 1.000 m, con un desnivel (salto en este caso) de 120 m. respecto del labio hundido que está inmediatamente al oeste de Confrides. Entre los dos bloques hay un talud que, en superficie, constituyen depósitos de ladera sin encostar, mientras que, por debajo, sí lo están, determinando, en conjunto, un plano inclinado con una pendiente de 17° aproximadamente. El hecho más destacable es que en el tramo donde el camino discurre paralelo a la línea de falla, sobre estas acumulaciones de ladera, el espejo de dicha falla sólo queda al descubierto un metro aproximadamente, reduciéndose incluso su afloramiento de norte a sur, cuando, en realidad, las dimensiones del espejo deben coincidir con el espesor de las calizas ecocenas afectadas, pero está fosilizado y atenuado por los depósitos señalados. Como punto de referencia que sirva para ponderar debidamente hasta qué punto estos depósitos se encargan de suavizar las pendientes, basta con comparar la inclinación actual de la ladera (17°), y la del espejo de falla (64°), sensiblemente más fuerte (muestras 11 a 13) (Fig. 1).

En el recorrido del camino indicado anteriormente, hacia la Font de l’Arbre, hay varios ejemplos similares en los que se puede apreciar el contraste entre la pendiente actual de la ladera (20°) y la inclinación del espejo de falla (55°); ejemplos que, de forma nítida, expresan el carácter de formas de regularización de las laderas, tendentes a suavizar las pendientes de la primitiva estructura fallada, moderando, pues, un relieve considerablemente más enérgico que el actual.

En los casos referidos, al igual que en los canchales actuales o subactuales, las características de los taludes resultantes, dejando al margen las cuestiones relacionadas con una mayor o menor remoción basal de los depósitos, se acercan de forma muy evidente a la definición de laderas cantil-talud en las que, este último, presenta una marcada tendencia a tener un perfil de trazado completamente recto. A lo que, y como consecuencia de la evolución de la ladera mediante sucesivos taludes de perfil recto, se pueden señalar perfiles recto-cónicos, e incluso casi completamente cónicos cuando las circunstancias estructurales y la remoción basal, prácticamente nula, así lo determinan.

2. DERRUBIOS ESTRATIFICADOS

En cambio, si la significación morfológica de grêzes litées es comparable al resto de los derrubios de ladera, es preciso señalar aquellos rasgos que los singularizan y permiten individualizarlos; por ello, conviene describir sucintamente cuáles son las características de los perfiles analizados. Así, en el Port de Confrides se encuentra un depósito con un espesor visible que supera los 8 m., compuesto por una sucesión de lechos muy inclinados hacia el norte (igual que la ladera), en los que el porcentaje de la fracción fina aumenta y disminuye de forma alternante. Otro rasgo condigno a estos depósitos es que los estratos en los que el predominio de la fracción gruesa es manifiesto (open work), presentan una cementa-
ción parcial, sin llegar a constituir brechas propiamente dichas. Y, por último, otra característica del mismo es la curvatura que presenta en la parte terminal, donde las estratificaciones, inclinadas hasta ese punto hacia el norte, se incurren, están horizontales, e incluso, pasan a estar inclinadas hacia el sur, describiendo un arco cóncavo hacia arriba; levantándose, pues, este sector, el más alejado, del cantil, debido al deslizamiento que han experimentado; si bien este rasgo morfológico desapareció con motivo de la obra de mejora de la carretera C-3313, señalada anteriormente. De este perfil se han analizado seis de los lechos que componían estos derrubios estratificados (muestras 1 a 6).

Al igual que en el caso anterior, la identificación del depósito de la Font dels Xorrets como grèzes litièes no ofrece dudas, al tiempo que es posible señalar rasgos semejantes a los apuntados en el perfil del Port de Confrides, ya que la ondulación de los lechos en la parte más distante del cantil es manifiesta, e incluso de mayores dimensiones que la que existía en el anterior2.

Pero, si en alguno de los casos son de resaltar las dimensiones, es en el perfil del frente oriental de Aitana, en el que el espesor visible del depósito es de aproximadamente 20 m. En él se repiten los rasgos señalados, es decir, sucesión de lechos en los que alterna un mayor o menor porcentaje de matriz fina, inclinados hacia el ENE (orientación de la ladera), pero que en la parte más alejada del cantil, se incurvan en sentido contrario y describen un arco cóncavo hacia arriba (Fig. 2). Un aspecto que aparece más acentuado en que en los casos anteriores, es la fuerte cementación de los lechos en los que hay un claro déficit de fracción fina (open work); prácticamente constituyen una brecha, de manera que, sobre todo, se procedió a la cata de los lechos que no presentaban tal cementación (muestras 7 a 10).

En esta descripción, además de avanzar algunos puntos sobre la estructura sedimentaria de estos depósitos, se esbozan ya algunas consideraciones sobre la morfología de los perfiles resultantes; aspecto en el cual se apoya, en gran medida, la distinción entre los depósitos de ladera vulgares y los derrubios estratificados, puesto que si en los primeros se destacó anteriormente su relación con laderas o secciones de las mismas con un perfil preferentemente recto, en los segundos el trazado no presenta formas tan simples, aunque también las hay, sino que en éstos se pueden marcar tramos rectos a pie de cantil, seguidos de una notoria concavidad y, por último, una convexidad. El resultado es pues una ladera en la que son llamativas las continuas rupturas de pendiente entre las que destaca, coincidiendo con el tramo cóncavo, la existencia de un relleno, cuando no de una pequeña depresión (Fig. 2 y Fig. 3-V).

Y si éste es uno de los rasgos que diferencian a este tipo de depósitos, lo que no es tan evidente es que ello derive de su naturaleza, de los procesos implicados en
su génesis. Por el contrario, aún valorando esta posibilidad, todo parece indicar que la interpretación más verosímil apunta a un movimiento en masa posterior a su sedimentación. Interpretación en la que, como se señalará, son aspectos esenciales estructura, litofacies y circulación de aguas hipógéas y subaéreas.

Sin embargo, y a pesar de que esta hipótesis puede ser válida tanto para el perfil del frente oriental de Aitana como para el de la Font dels Xorrets, es en este último en el que mejor se identifican todos estos aspectos.

3. EVOLUCIÓN DEL DEPÓSITO DE LA FONT DELS XORRETS

Interesa recordar la localización de la Font dels Xorrets en la estructura fallada del frente septentrional de Aitana, las litofacies afectadas por la misma y las consecuencias sobre la circulación de las aguas.

El depósito se encuentra al pie del bloque eoceno calizo más hundido de este sector; bloque que, como se ha señalado, se identifica con el denominado Penyó Repel, constituido, y esto es de gran interés, por las calizas eocenas suprayacentes a las arcillas verdes lutecienses y a la serie alternante paleocena predominantemente margosa. Se trata, pues, de mojones calizos tallados, hundidos, triturados y carstificados que por su posición estra-tigráfica y morfológica, en relación con la morfoestructura, están confinados por materiales impermeables tanto por la base, como en el contacto con el bloque de la culminación (hacia el sur), constituyendo pequeños acuíferos cada uno de estos bloques. Sistemas acuíferos que deben su singularidad a las determinaciones estructurales, sobre todo, a la inclinación de los materiales. Como escala de fallas contrarias hacia el norte, cuyos bloques (peldaños) buzan hacia el sur, cada conjunto de calizas es un colador en el que se almacena agua, que tiene en su frente el punto o los puntos de salida del sistema, puesto que las arcillas lutecienses y los materiales paleoenos, con su disposición, son los que aíslan y determinan el nivel de las surgencias en la base de las calizas del Penyó Repel, de manera que se define un depósito subterráneo de sección aproximadamente triangular; triángulo rectángulo cuyo vértice, definido entre la hipotenusa (nivel teórico de almacenamiento) y el cateto mayor (contacto entre calizas y arcillas), marca la ubicación de la surgencia, en este caso de la Font dels Xorrets (Fig. 3).

Por otra parte, si se toma en consideración que los derrumbes estratificados, originariamente, se apoyaban en el contacto entre calizas y arcillas y, además, dichos materiales lutecienses son sumamente plásticos y expansivos, es lógico pensar que el posible deslizamiento de las arcillas infrayacentes, o la actuación de las mismas como material lubricante, son los factores que han de-
CUADRO I. Granulometría

<table>
<thead>
<tr>
<th>Número muestra</th>
<th>Fracción gruesa</th>
<th>Fracción grava</th>
<th>Fracción fina</th>
<th>Tamaño medio (cm)</th>
<th>Intervalo modal (cm)</th>
<th>% cantos de 1,01 a 3,00 cm</th>
<th>Arenas</th>
<th>Limos</th>
<th>Arcillas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60,4</td>
<td>16,5</td>
<td>23,0</td>
<td>2,78</td>
<td>1,01-2,00</td>
<td>83,7</td>
<td>21,2</td>
<td>38,2</td>
<td>40,5</td>
</tr>
<tr>
<td>2</td>
<td>43,4</td>
<td>29,3</td>
<td>27,2</td>
<td>2,74</td>
<td>1,01-2,00</td>
<td>86,8</td>
<td>58,6</td>
<td>17,9</td>
<td>23,4</td>
</tr>
<tr>
<td>3</td>
<td>78,4</td>
<td>17,0</td>
<td>4,5</td>
<td>2,91</td>
<td>2,01-3,00</td>
<td>82,3</td>
<td>35,6</td>
<td>39,0</td>
<td>25,3</td>
</tr>
<tr>
<td>4</td>
<td>18,1</td>
<td>27,1</td>
<td>54,7</td>
<td>2,66</td>
<td>1,01-2,00</td>
<td>87,7</td>
<td>30,5</td>
<td>41,6</td>
<td>27,9</td>
</tr>
<tr>
<td>5</td>
<td>64,5</td>
<td>26,1</td>
<td>9,3</td>
<td>2,75</td>
<td>2,01-3,00</td>
<td>87,2</td>
<td>34,2</td>
<td>34,2</td>
<td>31,5</td>
</tr>
<tr>
<td>6</td>
<td>59,8</td>
<td>18,1</td>
<td>22,0</td>
<td>2,95</td>
<td>1,01-2,00</td>
<td>74,8</td>
<td>34,2</td>
<td>36,8</td>
<td>28,9</td>
</tr>
<tr>
<td>7</td>
<td>37,3</td>
<td>23,4</td>
<td>39,2</td>
<td>2,74</td>
<td>1,01-2,00</td>
<td>87,7</td>
<td>18,4</td>
<td>50,4</td>
<td>31,1</td>
</tr>
<tr>
<td>8</td>
<td>24,7</td>
<td>33,9</td>
<td>41,3</td>
<td>2,60</td>
<td>1,01-2,00</td>
<td>87,4</td>
<td>38,4</td>
<td>37,0</td>
<td>24,5</td>
</tr>
<tr>
<td>9</td>
<td>82,3</td>
<td>14,0</td>
<td>3,7</td>
<td>2,85</td>
<td>2,01-3,00</td>
<td>82,8</td>
<td>27,7</td>
<td>56,9</td>
<td>15,3</td>
</tr>
<tr>
<td>10</td>
<td>57,6</td>
<td>26,6</td>
<td>15,7</td>
<td>2,83</td>
<td>2,01-3,00</td>
<td>84,2</td>
<td>23,1</td>
<td>40,0</td>
<td>36,8</td>
</tr>
<tr>
<td>11</td>
<td>57,3</td>
<td>5,3</td>
<td>37,3</td>
<td>3,62</td>
<td>2,01-3,00</td>
<td>77,1</td>
<td>11,9</td>
<td>51,3</td>
<td>48,7</td>
</tr>
<tr>
<td>12</td>
<td>29,0</td>
<td>4,0</td>
<td>66,9</td>
<td>3,00</td>
<td>2,01-3,00</td>
<td>77,7</td>
<td>9,7</td>
<td>60,7</td>
<td>29,5</td>
</tr>
<tr>
<td>13</td>
<td>54,2</td>
<td>6,5</td>
<td>39,3</td>
<td>3,12</td>
<td>1,01-2,00</td>
<td>68,3</td>
<td>19,2</td>
<td>64,3</td>
<td>16,5</td>
</tr>
</tbody>
</table>

Terminado el deslizamiento y rotación de los derrubios hasta adoptar la disposición que presentan en la actualidad; no parece algo enteramente casual la localización de la fuente y la disposición de los lechos de derrubios. Se trata, pues, de dos hechos íntimamente relacionados, y si el deslizamiento y rotación del depósito es posterior a la sedimentación, es porque las condiciones de clima frío restaban eficacia a la circulación de las aguas.

Pero no acaban ahí los factores considerados; el carácter de formación superficial muy permeable de los derrubios estratificados, así como la existencia de una curso de agua (Barranc d’Alfafara) al pie del talud, son dos rasgos muy a tener en cuenta, ya que, por un lado, estos depósitos en su condición de auténtico «colador», permiten la afluencia de agua hasta las arcillas lutecientes (como litofacies más inestable o plástica) y, por otro lado, lo que es más importante, que el encajeamiento y dinámica del cauce del Barranc d’Alfafara ha podido determinar una remoción basal que, en suma, haya contribuido decisivamente en la génesis del deslizamiento.

IV. RASGOS GRANULOMÉTRICOS Y MORFOMÉTRICOS

Con estas consideraciones se pretende destacar aquellas características de los depósitos que contribuyen a conferirles singularidad y a individualizarles respecto de otros. Si el significado morfológico de los derrubios estratificados es común al del resto de las acumulaciones de ladera (a pesar de las matizaciones hechas), desde un punto de vista sedimentológico, es posible señalar algunas diferencias. No obstante, estas peculiaridades de orden morfométrico y granulométrico, además de tener interés en sí mismas, poseen un gran valor didáctico en la explicación de ciertos procesos, puesto que la diferenciación de tipos de depósitos de ladera y, en especial, de los derrubios estratificados, se hace efectiva durante los trabajos de campo: los análisis de laboratorio no son más que un medio de intentar justificar empíricamente y a través de criterios numéricos y gráficos una conceptualización realizada previamente.

1. CARACTERÍSTICAS GRANULOMÉTRICAS

Rasgo propio de la estructura sedimentaria de los derrubios estratificados, como su denominación indica, es la superposición de lechos cuya distinción deriva, básicamente, de la textura de cada uno de ellos, es decir, de la importancia relativa que posean la fracción gruesa o la fracción fina. De hecho, se ha insistido en la presencia de lechos de escasa representación de matriz (open work), alternando con otros en los que ésta es más abundante; sin embargo, en los primeros hay una imposibilidad física para su análisis, ya que, en ocasiones, forman una brecha, aspecto que es muy acusado en el perfil del frente oriental de Aitana. Por ello sólo se presentan análisis de este tipo de lechos en tres de las muestras (3, 5 y 9; y, en menor medida, habría que considerar la muestra 10); mientras que de signo completamente contrario destacan, sobre todo, las muestras 4 y 8 (Cuadro I).
De todos modos, de la estructura granulométrica general de los sedimentos, se comprueba que la importancia de las distintas fracciones es muy variable, si bien, y a pesar de la imposibilidad señalada, son más las muestras en las que el predominio corresponde a la fracción gruesa. Asimismo, resultan más expresivas de la aludida alternancia de lechos con mayor o menor contenido de matriz fina, las correspondientes al perfil del Port de Confrides, puesto que en este caso la cementación es incompleta.

Son, pues, los cantos la porción de los depósitos que más destaca y la que confiere rasgos esenciales a los mismos; común a todos ellos es el tamaño medio de los clastos, pues oscila entre 2,60 y 2,95: primera diferencia con las muestras de La Condomina, siempre por encima de tres, sobre todo si las comparamos con las del frente oriental de Aitana, donde las litofacies afectadas son las mismas. Por otro lado, se puede afirmar que esta fracción gruesa es bastante homométrica. Los derrubios entre 1 y 3 cm de eje mayor, por lo general, acaparan más del 80% del total; a partir de los 3 cm caen bruscamente los valores en todas las muestras, de manera que, los cantos que superan los 6 cm son muy escasos (Fig. 4). Con respecto al valor modal del tamaño de los mismos, se diferencian dos grupos: por un lado, las muestras en las que coinciden valores modales en el tamaño de los derrubios entre 1 y 2 cm, con los porcentajes más elevados de fracción fina (por encima del 20%); y, por otro, las muestras con valor modal en el intervalo de 2 a 3 cm y bajos contenidos en matriz (open work) (Fig. 4 y Cuadro I).

Otro aspecto a resaltar de estos depósitos es la importancia relativa de la fracción grava que, aunque no alcanza porcentajes considerables, si se puede destacar desde un punto de vista comparativo, puesto que en acumulaciones de ladera cuya génesis no se relaciona exclusivamente con un clima frío, los porcentajes de esta fracción son insignificantes, rara vez se supera el 10%, mientras que en los derrubios estratificados analizados el valor más bajo es el 14% de la muestra nº 9. Como referencia próxima, basta con observar los datos de los depósitos de ladera de La Condomina (muestras 11, 12 y 13 del Cuadro I).

Una situación semejante se observa al valorar los datos concernientes a la fracción fina, pues, las arenas son siempre más abundantes en los derrubios estratificados que en las muestras de La Condomina (Cuadro I). El tamizado y pesado resulta igualmente útil para caracterizar las arenas de este tipo de depósitos. La representación de los resultados en histogramas de frecuencia reflejan una distribución por tamaños en la que se advierten dos picos: el principal se corresponde con las arenas...
gruesas, siendo el tamiz de 0 fi el que más veces se repite como valor modal; mientras, el pico secundario, se desplaza hacia las arenas más finas, concretamente al tamiz de 4 fi; si bien alguna muestra no presenta máximos bien marcados, prácticamente no existe ningún tipo de clasificación. Por contra, en depósitos como los de La Condomina, si bien los picos tienen idéntica posición, varía por completo el rango de los mismos, es decir, el máximo principal está en las arenas más finas (4 fi) y el secundario en las arenas gruesas (Fig. 5).

La consideración global de la fracción fina se ha abordado mediante la representación gráfica del porcentaje de cada uno de los tamaños de la misma en curvas acumulativas o de evolución granulométrica. El análisis de éstas y su comparación con las calculadas de forma teórica para determinar sus índices de evolución granulométrica mediante un método gráfico indica que, excepto la muestra nº 2, los sedimentos presentan índices medios superiores a la unidad, propios de las ilamadas facies ultraraparabólicas por Rivière (1977), relacionadas con las acumulaciones de ladera en general, caracterizadas por presentar curvas con una marcada convexidad hacia arriba. Éste es el diseño de las curvas del perfil de La Condomina (muestras 11 a 13), claramente diferenciado de las propias de los derrubios estratificados (Fig. 6).

Las diferencias entre estos grupos de curvas, en gran medida, derivan de la dispar importancia que tienen las arenas (especialmente las gruesas) en cada tipo de depósito. La abundancia de arena gruesa en las grèses litées llega a determinar, en la parte baja de la curva, una concavidad hacia abajo, mientras que en los limos y las ar- cillas se invierte el sentido de la misma.

2. ALGUNAS RELACIONES CON ASPECTOS GENÉTICOS

Para alguno de los rasgos morfométricos y granulométricos ya se ha citado su posible relación con la gelifracción como principal fuente de alimentación; así, G. Soutade, en derrubios estratificados actuales, se refiere a niveles en los que los elementos del tamaño de las gravas y las arenas proceden de la crioclastia (Soutade, 1974). De algún modo, estas cuestiones apuntan hacia la posibilidad de que la gelifracción (o, microgelifracción) continuada de los propios depósitos haya provocado una disminución progresiva de los clastos y que este proceso puede tender hacia una talla límite (Döcker, 1954); es decir, que la crioclastia haya afectado a los materiales una vez situados en el talud; sin que por ello se descarte la relación de alguno de estos aspectos con los fenómenos de lavado.
Estos últimos procesos, relacionados sobre todo con la fusión de la nieve, ya fueron destacados para los lechos con predominio de cantos (GUILLEIN, 1964; RAYNAL, 1960 y 1970); mientras que los lechos con abundancia de matriz serían los más susceptibles de estar relacionados con procesos soliflúidos (JOURNAUX, 1976), o de experimentar los efectos del hielo mediante la aparición de una superficie helada (verglas) indicados por Cailleux y Taylor (1954) de forma genérica para este tipo de depósitos. Consideraciones muy a tener en cuenta, pues los fenómenos señalados en último lugar han sido observados en este mismo ámbito, incluso en la actualidad, afectando a canchales (MARCO MOLINA, 1989).

3. MORFOMETRÍA Y MORFOSCOPIA DE LOS CANTOS

Para completar la caracterización de los depósitos se han utilizado técnicas de análisis para definir la morfometría y morfoscopía de la fracción gruesa. Para ello se ha procedido a la aplicación de índices de aplanamiento y desgaste, así como la observación de los derrubios con la lupa binocular, con resultados que animan a continuar la investigación por estas vías, pero que, hasta el momento, sólo sirven de primera aproximación a la cuestión.

En el primero de los aspectos se ha utilizado el índice de aplanamiento propuesto por Cailleux (BRIGGS, 1977) que, aun sujeto a factores locales como puedan ser litología y tectonización, depasa resultados interesantes. No obstante, la diferencia entre derrubios estratificados y otros depósitos de ladera no es muy acusada, si bien los primeros se relacionan con los índices medios más altos, 2,98 en el caso de muestra 3, mientras que en los otros depósitos los índices de aplanamiento medio son inferiores a 2,40 e, incluso, a los 2,00, como sucede con la muestra 13 (Cuadro II). La observación de los histogramas permite matizar algo más estas diferencias, puesto que frente a un máximo muy destacado en el intervalo 1,50-2,00 que constituye el valor modal en las muestras de La Condomina, en los de los derrubios estratificados éste no siempre es tan evidente, es sustituido por el intervalo 2,00-2,50 e, incluso, por el de 3,50 o más (Fig. 7).

Cuando se considera el índice de desgaste sugerido por Cailleux y Tricart (BRIGGS, 1977), se repiten las mismas diferencias, pero, lógicamente, los valores más bajos corresponden a los derrubios estratificados (Cuadro II). Esta distinción se marca, sobre todo, al comprobar que el intervalo modal que con más frecuencia tienen las muestras de este tipo de depósitos es el más bajo (Fig. 8). Asimismo, la distinción entre estos dos tipos de depósitos queda reflejada de forma más expresiva cuando se relacionan ambos índices, de manera que mediante la representación de las muestras en unos ejes de coordenadas se verifica una polarización de los mismos en dos sectores: uno en la parte superior y más próxima al

<table>
<thead>
<tr>
<th>Número muestra</th>
<th>Índice aplanamiento medio</th>
<th>Índice desgaste medio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,55</td>
<td>1,38</td>
</tr>
<tr>
<td>2</td>
<td>2,61</td>
<td>1,30</td>
</tr>
<tr>
<td>3</td>
<td>2,93</td>
<td>1,28</td>
</tr>
<tr>
<td>4</td>
<td>2,82</td>
<td>1,17</td>
</tr>
<tr>
<td>5</td>
<td>2,60</td>
<td>1,36</td>
</tr>
<tr>
<td>6</td>
<td>2,58</td>
<td>1,43</td>
</tr>
<tr>
<td>7</td>
<td>2,32</td>
<td>1,39</td>
</tr>
<tr>
<td>8</td>
<td>2,51</td>
<td>1,39</td>
</tr>
<tr>
<td>9</td>
<td>2,44</td>
<td>1,09</td>
</tr>
<tr>
<td>10</td>
<td>2,70</td>
<td>1,25</td>
</tr>
<tr>
<td>11</td>
<td>2,39</td>
<td>1,76</td>
</tr>
<tr>
<td>12</td>
<td>2,31</td>
<td>1,67</td>
</tr>
<tr>
<td>13</td>
<td>1,97</td>
<td>1,43</td>
</tr>
</tbody>
</table>
Fig. 7. Distribución porcentual de los índices de eplanamiento.

Eje de ordenadas (donde se registran los valores del índice de desgaste), mientras que en la parte inferior se agrupan los correspondientes a los derrubios estratificados (Fig. 9).

La morfoscopía es la que arroja los resultados más claros, pues en ella no hay excepciones: la observación de los derrubios in situ y su verificación en el laboratorio, evidencia una distinción fehaciente entre los dos tipos de depósitos. En el momento de realizar la recogida de muestras durante el estío, llamó la atención el hecho de que en los perfiles de los derrubios estratificados, la frecuente presencia de impregnaciones carbonáticas púlverulentas; pero más llamativo resultó observar que buena parte de los derrubios presentaban en su cara inferior (según su disposición en el depósito) cristalizaciones de carbonato cálcico que, en ocasiones se prolongaban hasta soldar unos derrubios con otros. Este último rasgo se apreció en el perfil del Port de Confrides, mientras que en el caso del perfil del frente oriental de Aitana estas cristalizaciones actúan como cemento calcáreo hasta formar una brecha; de ahí que no se pudieran realizar catas en los lechos intercalados entre las muestras 7 y 8, así como entre la 8 y la 9, correspondientes a depósitos de cantos casi exclusivamente.

Esta micromorfología guarda paralelismos evidentes con los fenómenos descritos por Vogt (1984), que relaciona dichas cristalizaciones fibrosas de calcita con el hielo, es decir, se trata de cristalizaciones criogenéticas; en cualquier caso, en opinión de algunos autores, habría que considerarlas sigenéticas (Peña Monné, Chueca Cía y Julián Andrés, 1998).

V
CONSIDERACIONES FINALES

En primer lugar, señalar que el relieve, y más concretamente el relieve fallado, resulta decisivo para la existencia de este tipo de depósitos, ya que, por un lado, es obligado referirse a la altitud (condición indispensable en estas latitudes), tanto por las cotas que se alcanzan, como por la considerable extensión que adquieren los espacios por encima de 900-1.000 m y, por otro, a la relación tan estrecha puesta de manifiesto entre escarpes de falla, laderas tipo cantil-talud y localización de derrubios estratificados. Hechos que derivan de las deformaciones introducidas por la tectónica de fractura en una cobertera sedimentaria y que implican la subordinación de los últimos respecto de las primeras.

En segundo lugar, indicar que estas formas de modelo (depósitos de ladera en general), como tales, introducen retoces en las formas estructurales del relieve que, en la mayor parte de los casos, provocan una ate-
nuación de ciertos rasgos fisiográficos de aquellas; se hace referencia al papel de formas de regularización de las laderas que también ha sido señalado como característica básica de estos depósitos. Sin embargo, se señalan diferencias, incluso nítidas, entre ciertas acumulaciones de ladera y los derrumbes estratificados, aunque éstas puedan derivar de la evolución sufrida por estos últimos.

En tercer lugar, que es, precisamente este último, uno de los aspectos que mayor singularidad confiere a los derrumbes estratificados de Aitana, es decir, su disposición arqueada con la concavidad orientada hacia arriba fruto de su avance ladera abajo.

y, por último, apuntar que los rasgos morfométricos de la fracción gruesa de los derrumbes estratificados, especialmente los relativos a la planificación, son los que apuntan de forma más evidente a la intervención de fenómenos de clima frío en su génesis, relación que es precisa atribuirla a la morfología propia de las esquirlas crioclásticas, más aplanadas que otros derrumbes, también de origen mecánico y, sobre todo, que aquéllas que se deban a la combinación de tectonización y carstificación, los cuales adquieren más importancia en los depósitos de ladera de La Condomina en los que, si bien han podido intervenir fenómenos relacionados con el frío, lo hacen en menor grado; de ahí las diferencias en los índices de aplanamiento y, sobre todo, de desgaste.

El predominio, por no decir exclusividad, de la gelificación como fuente de alimentación de clastos, también puede considerarse para justificar dos de los aspectos granulométricos señalados para los derrumbes estratificados; por un lado, dentro de la estructura granulométrica general de las muestras se destacó el porcentaje de la fracción grava, mientras que, por otro, igualmente se subrayó la importancia relativa de las arenas dentro de la fracción fina que, en definitiva, supone la principal diferencia entre los histogramas de frecuencia de las arenas y las curvas acumulativas de estos derrumbes y de los de otros depósitos de laderas.


