
Clase 3. Ingeniería Metalúrgica

Máster en Ingeniería de Minas Curso 2014/2015

PROTECCIÓN DE PRODUCTOS TERMINADOS OXIDACIÓN Y PROTECCIÓN DEL ACERO

OXIDACIÓN: (Volumen II, pp. 144-147)

CORROSIÓN: (Volumen II, pp. 157-161)

DATOS:

El 2% del PIB de un país se atribuye a los costes de degradación de los materiales (oxidación – corrosión) En España solo se galvaniza el 7% del acero. En Alemania el 18% y en EE.UU el 28%.

Tabla 0.2.- Potenciales Normales de oxidación (Uhlig)

Reacciones	Potenciales normales de oxidación E, en voltios, a 25 °C	Reacciones	Potenciales normales de oxidación E, en voltios a 25 °C
Li = Li*+e	3,05	TI = TI*+e	0,336
$K = K^* + e^*$	2,93	$Co = Co^++2e^-$	0,277
Ca = Ca++2e	2,87		
$Na = Na^+ + e^-$	2,71	$Ni = Ni^++2e^-$	0,250
$Mg = Mg^++2e^-$	2,37	Mo = Mo+3+3e	
$Be = Be^+ + 2e^-$	1,85	$Sn = Sn^++2e^-$	0,136
$U = U^{*3} + 3e^{-}$	1,80	$Pb = Pb^{++}2e^{-}$	0,126
$Hf = Hf^4 + 4e^4$	1,70	$H_2 = 2H^* + 2e^*$	0,000
$Al = Al^{•3} + 3e^{•}$	1,66	$Cu = Cu^++2e^-$	-0,337
Ti = Ti+2e	1,63		
$Zr = Zr^4 + 4e^{-1}$	1,53	2Hg = Hg2"+e"	-0,789
$Mn = Mn^++2e^-$		Ag = Ag' + e'	-0,800
$Nb = Nb^{-3} + 3e^{-}$	aprox. 1,1	Pd = Pd++2e	-0,987
$Zn = Zn^{2} + 2e^{-}$	0,763	$Hg = Hg^++2e^-$	-0,854
Cr = Cr-3+3e-	0,74	$Pt = Pt^++2e^-$	aprox1,2
$Ga = Ga^{*3} + 3e^{*}$	0,53	$Au = Au^{*3} + 3e^{-1}$	-1,50
Fe = Fe"+2e	0,440		
$Cd = Cd^++2e^-$	0,403		
$In = In^{*3} + 3e^{*}$	0,342		

TABLA 0.1.

Electronegatividad creciente de metales, calculada según el criterio de Pauling (eV)

Cs0,79	V1,63
Rb0,82	Zn1,65
K0,82	Cr1,66
Ba0,89	Cd1,69
	In1,78
Na0,93	Ga1,81
Sr0,95	Fe1,83
Li0,98 ·	Co 1.88
Ca	Co1,88
La1,10	Cu1,90
Ce1,12	Si1,90
Pr1,13	Ni1,91
Nd1,14	Ag1,93
Sn1,17	Sn1,96
Gd1,20	Hg2-
Dy1,22	Ge2,01
Y1,22	Ge2,01
Но1,23	Bi2,02
Er1,24	Sb2,05
Lu1,27	Mo2,16
	As2,18
Pu1,28	Pd2,20
Mg1,31	1- 2 20
Zr1,33	Ir2,20
Sc1,36	Rh2,28
Np1,36	Pt2,28
U1,38	Pb2,33
Ti1,54	W2,36
Be1,57	Au2,54
Mn1,55	Se2,55
Al1,16	

Potencial de reducción estándar, E°, V Reacción de reducción (frente al electrodo de hidrógeno)

Más catódico (menor tendencia a la corrosión)

Más anódico (mayor tendencia a la corrosión)

Reacción de reducción	(frente al electrodo de hidrógeno)	
$Au^{3+} + 3e^- \rightarrow Au$	+1,498	
$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$	+1,229	
$Pt^{2+} \perp 2e^{-} \rightarrow Pt$	+1.200	
$Ag^+ + e^- \rightarrow Ag$	+0,799	
$Hq_2^{2+} + 2e^- \rightarrow 2Hg$	+0,788	
$Fe^{3+} + 2e^{-} \rightarrow Fe^{2+}$	+0,771	
$O_2 + 2H_2O + 4e^- \rightarrow 4(OH)$	+0,401	
Cu ²⁺ + 2e ⁻ → Cu	+0,337	
$Sn^{4+} + 2e^- \rightarrow Sn^{2+}$	+0,150	
$2H^+ + 2e^- \rightarrow H_2$	+0,000	
Pb ²⁺ 2e ⁻ → Pb	-0,126	
Sn ²⁺ 2e ⁻ → Sn	-0,136	
$Ni^{2+} 2e^- \rightarrow Ni$	-0,250	
Co ²⁺ 2e ⁻ → Co	-0,277	
$Cd^{2+} 2e^{-} \rightarrow Cd$	-0,403	
Fe ²⁺ 2e ⁻ → Fe	-0,440	
Cr ³⁺ 3e ⁻ → Cr	-0.744	
$Zn^{2+} 2e^- \rightarrow Zn$	-0,763	
Al ³⁺ 3e ⁻ → Al	-1,662	
$Mg^{2+} 2e^{-} \rightarrow Mg$	-2,363	
$Na^{2+} 1e^- \rightarrow Na$	-2,714	

^{*} Las reacciones se escriben como semiceldas anódicas. La reacción de semicelda más negativa, la más anódica, presenta la mayor tendencia a que aparezca la corrosión u oxidación.

CUADRO 8.4 Potenciales estándar de electrodo, a 298 K, en disolución acuosa

Reacción de electrodo	$E_M^{\circ} (\phi_{H_2} - \phi_M)/V$	Reacción de electrodo	$E_M^\circ (\phi_{H_2} - \phi_M)/V$
li⁺ + 1e⁻ ⇔ li	-3,05	Ni ²⁺ + 2e ⁻ ⇔ Ni	-0,23
K++1e-⇔K	-2,93	$Sn^{2+} + 2e^{-} \Leftrightarrow Sn$	-0,14
Ca ²⁺ + 2e ⁻ ⇔ Ca	-2,84	Pb ²⁺ + 2e ⁻ ⇔ Pb	-0,13
$Na^+ + 1e^- \Leftrightarrow Na$	-2,71	$H^+ + 1e^- \Leftrightarrow 1/2 H_2(g)$	0,00
	-2,36	$Sn^{4+} + 2e^- \Leftrightarrow Sn^{2+}$	+0,15
$Mg^{2+} + 2e^{-} \Leftrightarrow Mg$ $Al^{3+} + 3e^{-} \Leftrightarrow Al$	-1,67	Cu ²⁺ + e ⁻ ⇔ Cu ⁺	+0,16
70.77	-1,18	Calomelanos saturado en cloruro	+0,2415
$Mn^{2+} + 2e^- \Leftrightarrow Mn$	-0,76	Cu²+ + 2e⁻ ⇔ Cu	+0,34
$Zn^{2+} + 2e^- \Leftrightarrow Zn$	-0,74 (sol. ácida)	$Fe^{3+} + e^{-} \Leftrightarrow Fe^{2+}$	+0,77
$Cr^{3+} + 3e^- \Leftrightarrow Cr$		Ag+ + 1e- ⇔ Ag	+0,80
Fe ²⁺ + 2e ⁻ ⇔ Fe	-0,44	$Hg^{2+} + 2e^{-} \Leftrightarrow Hg$	+0,85
$Cr^{3+} + e^{-} \Leftrightarrow Cr^{2+}$	-0,42 (sol. ácida)	$Au^{3+} + 3e^{-} \Leftrightarrow Au$	+1,52
$Cd^{2+} + 2e^{-} \Leftrightarrow Cd$	-0,40	Au* + 3e ⇔ Au	11,02
Co ²⁺ + 2e ⁻ ⇔ Co	-0,28		

GALVANIC SERIES In Flowing Seawater

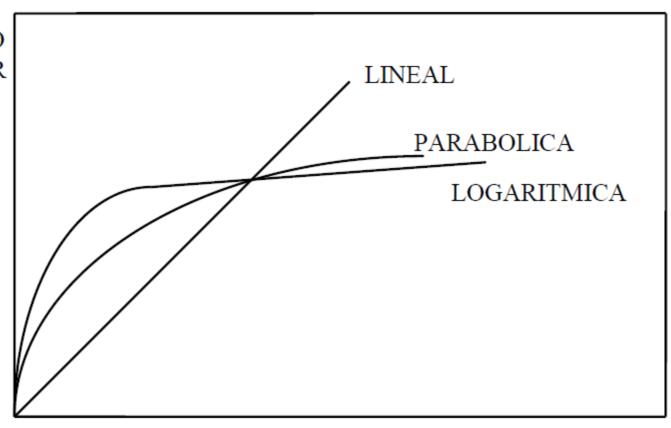
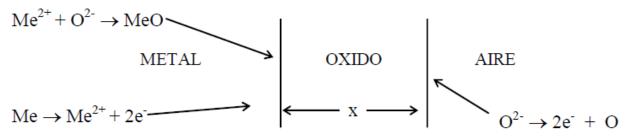
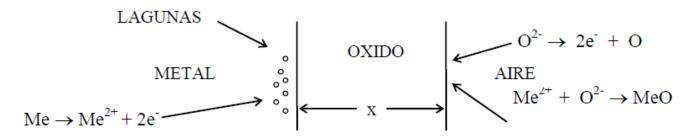

	Alloy	Voltag vs. Refe	e Range of Alloy erence Electrode*
	Magnesium Zinc	Anodic or Active End	-1.60 to -1.63 -0.98 to -1.03
	Aluminum Alloys Cadmium Cast Irons Steel		-0.70 to -0.90
			-0.70 to -0.76
			-0.60 to -0.72 -0.60 to -0.70
	Aluminum Bronze		-0.30 to -0.40
	Red Brass, Yellow I Naval Brass	Brass,	-0.30 to -0.40
	Copper		-0.28 to -0.36
	Lead-Tin Solder (50/50)		-0.26 to -0.35
	Admiralty Brass		-0.25 to -0.34
	Manganese Bronze		-0.25 to -0.33
	Silicon Bronze		-0.24 to -0.27
	400 Series Stainless Steels**		-0.20 to -0.35
	90-10 Copper-Nickel		-0.21 to -0.28
	Lead		-0.19 to -0.25
	70-30 Copper-Nickel		-0.13 to -0.22
	17-4 PH Stainless Steel †		-0.10 to -0.20
	Silver		-0.09 to -0.14
	Monel		-0.04 to -0.14
	300 Series Stainless Steels ** †		-0.00 to -0.13
	Titanium and Titanium Alloys †		+0.06 to -0.03
	Inconel 625 †		+0.10 to -0.04
	Hastelloy C-276 †		+0.10 to -0.0
	Platinum †	Cathodic or	+0.25 to +0.18
	Graphite	Noble End	+0.30 to +0.20

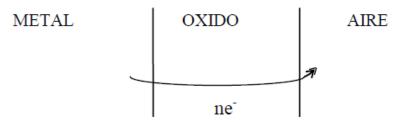
Figura 2. Serie galvánica en agua de mar


Me (ag) + me - - Me (s)
$$\Delta G^{\circ}(T) = -m + E^{\circ}_{reduccion}.$$

LEYES DE VELOCIDAD DE OXIDACION


INCREMENTO DE MASA POR UNIDAD DE AREA

TIEMPO


Caso I - El catión Me²⁺ difunde muy lentamente en la capa de óxido. El crecimiento del oxido tiene lugar en la interfase metal - óxido. Ejemplos: Ti, Zr y U.

Caso II - El anión O²⁻ difunde muy lentamente en la capa de óxido. El crecimiento del oxido tiene lugar en la interfase óxido - aire.

Existe una elevada concentración de lagunas en la interfase metal - óxido.

Ejemplos: Cu, Fe, Cr y Co.

Caso III - El transporte de electrones es muy lento. El óxido puede crecer muy lentamente en la interfase óxido - aire o metal - oxido dependiendo de la difusividad de los cationes, Me²⁺, o aniones, O²⁻.

Ejemplo: Al.