Transformations in the Si-O-Ca system: Silicon–calcium via solar energy

Article in Solar Energy - February 2019
DOI: 10.1016/j.solener.2019.02.026

6 authors, including:

Daniel Fernández González
University of Oviedo
33 PUBLICATIONS 92 CITATIONS

I. Ruiz-Bustinza
Spanish National Research Council
50 PUBLICATIONS 194 CITATIONS

Janusz Prążuch
AGH University of Science and Technology in Kraków
16 PUBLICATIONS 55 CITATIONS

Carmen González-Gasca
European University of Madrid
13 PUBLICATIONS 66 CITATIONS

Some of the authors of this publication are also working on these related projects:

Education and Science Ministry of Spain (grant MAT2003-00502); ECOS – CONICYT Grant C02.E04 View project

Ferromanganese alloy production improvement: conversion of high manganese residues into new secondary raw materials for the steelmaking and ferroalloy industry. View project

All content following this page was uploaded by Daniel Fernández González on 18 February 2019.

The user has requested enhancement of the downloaded file.
Transformations in the Si-O-Ca system: Silicon-calcium via solar energy

D. Fernández-Gonzáleza,*, J. Prazuchb, I. Ruiz-Bustinzac, C. González-Gascad, J. Piñuela-Novalb, L.F. Verdejaa

a Department of Materials Science and Metallurgical Engineering, School of Mines, Energy and Materials, University of Oviedo, Oviedo, Asturias, Spain
b Department of Physical Chemistry and Modelling, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow, Poland
c Department of Geological and Mining Engineering, Polytechnic University of Madrid, Madrid, Spain
d European University of Madrid-Laureate International Universities, Villaviciosa de Odón, Madrid, Spain

\textbf{ARTICLE INFO}

\textbf{Keywords:}
Concentrated solar energy
Silicon-calcium
Environment
Alloying elements
Solar energy

\textbf{ABSTRACT}

The production of silicon-calcium alloy is energy intensive (> 10,000 kWh/t). This means that energy cost has a relevant influence in the price of the alloy. The utilization of concentrated solar energy in the synthesis of silicon-calcium alloy is proposed in this paper. Metallurgical quality silicon and limestone are used as starting materials (25 wt.% Si, 50 wt.% and 75 wt.% Si). After a 12 min treatment under power values of around 1 kW and without using special atmosphere, silicon-calcium was detected in all samples, although mixed with the products of reaction (Ca\textsubscript{3}Si\textsubscript{2}O\textsubscript{7}, Ca\textsubscript{10}O\textsubscript{25}Si\textsubscript{6}, SiO\textsubscript{2}). This last question means that there was not proper separation metal-slag, and it should be improved in future investigations. However, the basic knowledge presented in this paper could be of great interest for an industrial process based on the solar energy. This way, the energy costs could be reduced, the pollutant emissions could be minimized, and the competitiveness of the ferroalloys industry could be increased.

1. Introduction

Solar energy, when properly concentrated, offers a great potential in high temperature applications, and therefore its use in the field of materials has been studied for many years (Fernández-González et al., 2018a). These applications include metallurgy, materials processing (welding and cladding; surface treatments; coatings and surface hardening; and, powder metallurgy), and non-metallic materials (ceramics, fullerenes, carbon nanotubes, and production of lime) (Fernández-González et al., 2018a). In the case of the research group that signs this manuscript, different processes were studied using concentrated solar energy; in the synthesis of calcium aluminates (Fernández-González et al., 2018b), in the indirect reduction of mill scale to produce high quality magnetite (Ruiz-Bustinza et al., 2013), in the direct reduction of iron oxides (laboratory quality reagents, Mochón et al., 2014; Fernández et al., 2015; Fernández-González et al., 2018c; real iron ore sinter, Fernández-González et al., 2018c); and in the treatment of BOF (Basic Oxygen Furnace) slag (Fernández-González et al., 2019).

Silicon-calcium is a strong deoxidizing and desulphurizing element that is used in the production of high-quality steels (Pero-Sanz, 2004; Pero-Sanz et al., 2018). The alloy is used in quantities ranging from 0.5 to 3 kg/ton of steel, with 1–2 kg being the average. The world production of this alloy is very limited because only 150,000 tons of silicon-calcium are produced worldwide. The production of the silicon-calcium is distributed into few plants, for instance, FerroGlobe (one of the biggest producers of ferroalloys) produces approximately 30,000 tons of silicon-calcium alloys in Chateau Feuillet (France) and Mendoza (Argentina). Apart from being a strong deoxidizing and desulphurizing alloy, silicon-calcium alloys allow controlling the shape, size and distribution of the oxides and sulfides inclusions (Sancho et al., 2003). In this way, the fluidity, machinability, ductility and properties of the final product are improved: reduction in the number of inclusions and improvement in their shape, reduction of blowholes during the solidification, improvement in the toughness, etc.

Silicon-calcium alloys are usually produced in submerged arc electric furnaces, which have energy consumptions higher than 10,000 kWh (Robiette, 1973). Mixtures used in the manufacture of silicon-calcium alloys usually comprise quartz/quartzite, lime, fine coke, charcoal and coal. Lime must contain at least 90% CaO because poorly burned lime increases power consumptions, reduces the efficiency of the furnace, implies a non-smooth process and shortens the life of the furnace. Concerning the quality of the different cokes used in ferroalloys industry, their main characteristics can be found in Rodero et al. (2015). Three industrial methods have been developed to produce silicon-

* Corresponding author.
\textit{E-mail address:} fernandezgdaniel@uniovi.es (D. Fernández-González).

https://doi.org/10.1016/j.solener.2019.02.026
Received 20 November 2018; Received in revised form 7 February 2019; Accepted 12 February 2019
0038-092X/ © 2019 International Solar Energy Society. Published by Elsevier Ltd. All rights reserved.
calcium alloys (Robiette, 1973; Tanstad, 2013):

– **Method 1: Simultaneous reduction of calcium and silicon oxides with carbon.**

The raw materials used in this method to produce the silicon-calcium alloy are: lime (> 87% CaO), quartzite (95% SiO₂) and coke. Sulphur quantity in the initial materials must be limited because calcium and sulphur would form CaS during the process. The following chemical reaction describes the process:

\[\text{CaO} + 2\text{SiO}_2 + 5\text{C} \rightarrow \text{Ca} + 2\text{Si} + 5\text{CO} \]

The process is governed by the Boudouard mechanism. According to the program HSC5.1 the process becomes favorable above 1700 °C. The reduction is facilitated because of the presence/formation of stable associates close to CaSi₂. In this situation, the activity of calcium and silicon is reduced and the recovery of these elements from the oxides is increased. SiC and CaC₂ are formed in the process, and excesses of carbon in the charge must be avoided to minimize the formation of these carbides in the furnace bath. On the contrary, shortage of coke in the charge intensifies the formation of slag from CaO and SiO₂. This leads to losses of raw materials, energy, and problems in the operation of the furnace. A precise dosage of the materials that form the mixture is necessary. Extraction efficiency is normally of 67% for the calcium and of 75% for the silicon (Tanstad, 2013).

– **Method 2: Reduction of calcium oxide with silicon.**

Ferrosilicon is used as reductant agent in this method. If metallic silicon was used, this process would become more expensive due to the price of the metallic silicon (Robiette, 1973). The process can be represented using the following reaction (Tanstad, 2013):

\[4\text{CaO} + 6\text{Si} \rightarrow 2\text{Ca} + 2\text{SiO}_2 + 6\text{CO} \]

Silicon has higher affinity for the oxygen than the calcium. This question is problematic, and reducing the activity of the calcium is necessary, if the reaction should proceed in the direction of obtaining silicon-calcium alloy. This means that in the final product high silicon and low calcium would be available. As a result, the process has interest in the event of desiring low grades of silicon-calcium (FeSiCa) (< 20% Ca). The industrial practice used to improve the fluidity and, in this way, facilitate the separation melt-slag, is adding fluor spar. The recovery of calcium is low, 20–30%, because there are vaporizations of calcium, while the utilization of ferrosilicon rises to 75–85% (Tanstad, 2013). The quality of the FeSiCa obtained using this method is higher than in the case of the method 1 due to the low sulfur and carbon contents in the alloy.

– **Method 3: Reduction of silicon from quartzite with carbon coming from CaC₂.**

In this case, mixtures used to produce the silicon-calcium alloy include quartzite, carbon carbide and a mixture of coke with charcoal. The process can be described by the reaction:

\[2\text{SiO}_2 + 2\text{C} + \text{CaC}_2 \rightarrow 2\text{Ca} + 2\text{Si} + 4\text{CO} \]

From the operational point of view, this process is the least difficult of the three because some calcium is already reduced and there is less CO produced, which tends to reduce the volatilization losses (Robiette, 1973). Other problem of these alloys is their specific gravity because they tend to float on the slag and slag/metal separation is difficult.

The first and the third methods are difficult smelting operations because of the high temperatures (around 1700 °C) required before the process becomes markedly favorable (AG° < 0) (Robiette, 1973). Under these conditions there are problems of vaporization, which mean important losses. Thus, the control of the carbon requirements is complicated because excesses of carbon imply the appearance of infusible calcium and silicon carbides, while on the contrary, deficiency of carbon imply fluid calcium silicates resulting in excessive slag losses (Robiette, 1973).

In the experiments described in this manuscript, the utilization of a variation of the Method 2 is proposed, from now it is called Method 2.1, where limestone (CaCO₃) instead of lime (CaO) was used, and metallurgical silicon instead of ferrosilicon was employed. The process could be summarized using the following reaction:

\[4\text{CaCO}_3 + 6\text{Si} \rightarrow 2\text{Ca} + 5\text{Si} + 4\text{CO}_2 + 2\text{CaO-SiO}_2 \]

Initially, limestone was calcined into lime at around 900 °C (Fernández-González et al., 2018b; Sancho et al., 2003; Ballester et al., 2003), according to the reaction:

\[\text{CaCO}_3 + \text{heat} \rightarrow \text{CO}_2 + \text{CaO} \]

After that, lime is reduced via silicothermic reduction to form calcium, which with the silicon forms the alloy (silicon-calcium):

\[4\text{CaO} + 6\text{Si} \rightarrow 2\text{Ca} + 5\text{Si} + 4\text{CO}_2 + 2\text{CaO-SiO}_2 \]

Apart from the alloy, silicates of calcium are formed during the process. One of the advantages of the solar process is that could provide a purer alloy because there will not be contamination coming from electrodes. Apart from that, CO₂ emissions could be reduced due to carbon is not used as reductant reagent.

It was previously indicated that Methods 1 and 3 utilize carbon as reductant reagent, while silicon (or ferrosilicon) is the reductant reagent in the Method 2. In the three methods, lime is required to produce calcium for the silicon-calcium alloy. Lime is produced by calcination of the limestone and requires 20–70 kWh of energy per ton of CaO. The calcination of the limestone can be performed in the own process, which was the method used in the experiments presented in this manuscript, or in a separated stage. CO₂ emissions associated to the calcination of the lime are unavoidable, but the emissions associated to the energy (electricity or fossil fuels) used to calcine the limestone might be avoided. The following assumptions were made:

- – 0.428 kg CO₂/kWh are emitted in EU28 (average);
- – 0.05–0.07 €/kWh for industrials;
- – 22.5 €/ton CO₂ is the cost of releasing carbon dioxide in the EU according to the EU Emissions Trading System (with expectative of increasing).

It is possible to check that 8.5–30 kg CO₂/ton of lime might not be emitted only in the production of lime if the generation of heat to produce the lime was taken into account, 1–4.9 €/ton of lime might be saved considering the energy consumption and 0.2–0.7 €/ton lime might be saved only considering the taxes of emitting CO₂. The industrial production of lime using solar energy was studied by Flamant et al. (1980), Imhof (1997), Meier et al. (2004) and Meier et al. (2006). Meier et al. (2004, 2005a, 2006) designed a kiln furnace indirectly heated using a system of rotary tubes. Absorber tubes were heated by means of solar energy and they are responsible of heating the load. Meier et al. (2006) used a 15 kW solar furnace where the experiments required 1.5–2 h to reach stationary conditions and after that the treatment lasted 30 min. Calcination yield of 98.2% and productivities of 64.2 g/min at temperatures of around 1395 K are achieved. Meier et al. (2005b) studied the potential advantages and disadvantages of using concentrated solar energy in the production of lime, and they observed that CO₂ emissions could be reduced by 20% in a state-of-the-art lime plant, and up to 40% in a conventional cement plant. Meier et al. (2005b) calculated the price of the solar lime for a plant of 25 MW, and they observed that the price of the solar lime (128–157 $/ton) was twice that of the conventional lime (in 2004). Thus, producing lime using solar energy in a separated stage seems to mean an increase in the cost of producing the silicon-calcium alloy due to the price of the
lime. That is the reason of using limestone instead of lime in the experiments presented in this manuscript.

The production of silicon-calcium alloy is much more energy intensive than the production of lime. Within 10,000 and 15,000 kWh are required per ton of silicon-calcium alloy depending on the process and operational conditions. For instance, 12,500 kWh per ton of silicon calcium are required in the Method 3 (Robiette, 1973), although producing the calcium carbide would consume approximately 3000 kWh more. As it was previously indicated, silicon-calcium was obtained in this paper using a variation of the Method 2 that was called Method 2.1. Despite this Method 2.1 would only emit the carbon dioxide produced during the calcination of the limestone, the production of metallurgical silicon requires significant quantities of energy (close to 12,000 kWh/ton silicon) and produces significant emissions of carbon dioxide (5.1 tons CO₂/ton Si (energy) + 4.68 tons CO₂/ton Si (process) (Moneses et al., 1998). However, the production of silicon was studied using concentrated solar energy (see Murray et al., 2006; Loutzenhiser et al., 2010; Flamant et al., 2006). In this way, CO₂ emissions could be reduced due to the replacement of the conventional fossil fuels used to heat the industrial furnaces with a clean energy source (solar energy).

Considering only the production of the silicon-calcium alloy using one of the methods previously described, the energy required to produce 1 ton of the alloy is within 10,000–15,000 kWh. Making calculations using the assumptions previously indicated, the carbon dioxide emissions associated to the production of silicon-calcium would be in the range 4.3–6.4 ton CO₂/ton silicon-calcium alloy. Regarding the potential reduction of costs (considering the electricity price and the taxes for emitting CO₂), costs of energy, 500–1050 €/ton of silicon-calcium alloy; costs of emitting CO₂, 97–144 €/ton of silicon-calcium alloy. However, to evaluate the real advantages of the solar process (regarding costs), apart from considering the costs of the raw materials, the installation costs should be considered. Flamant et al. (1999) evaluated the installation costs within 1.2–1.8 k€/kW in the range 50–1000 kW. The range of power for the solar furnaces of Flamant et al. (1999) is limited if compare it with that of the industrial furnaces. For instance, the furnace used in Chateau Feuillet to obtain silicon-calcium alloy has a power of 21 MW and produces approximately 18,000 tons of the alloy yearly. Despite the installation costs were not considered because in this paper was studied whether it was possible or not obtaining silicon-calcium using concentrated solar energy, the production of the alloy is energy intensive, and 40–70% of the production costs come from the electricity required by the process. This way, there is a wide range of costs that could be reduced (40–70%), although the costs of development, installation and transportation for the solar process should vary in this range to be competitive with the conventional process.

To conclude this section, the utilization of concentrated solar energy in the production of silicon-calcium is proposed in this manuscript. Solar energy arises as a suitable candidate because:

– high temperatures are required in the process (> 1700 °C);
– the process is energy intensive (> 10,000 kWh, Robiette, 1973);
– the production quantities are not excessively elevated (approximately 150,000 tons are produced worldwide, and around 15,000 tons per plant);
– the discontinuous operation is possible because the quantities produced daily in each plant are not excessively big, for instance, 40–50 t/day are produced in Chateau Feuillet (France). This way, operating in off-peak hours for electricity (night), when the energy is usually least expensive, is a common practice in the energy intensive industries if the production process/requirements allow it.

2. Materials and methods

Experiments were carried out in a 1.5 kW (maximum power) vertical axis solar furnace (Fig. 1) located in Odeillo (France) and belonging to the PROMES-CNRS (Procédés Matériaux et Énergie Solaire – Centre National de la Recherche Scientifique). The functioning of the vertical axis solar furnace can be summarized in that a solar tracking heliostat reflects the rays towards a 2.0 m in diameter parabolic concentrator, which makes converging sun radiation in a focal point of approximately 12–15 mm in diameter. In this way, incident radiation is concentrated a maximum of 15,000 times. The average incident radiation during the experiments varied in the range 722–841 W/m², with fluctuations in the own experiment that did not overcome ± 10%. The control of the power applied in each experiment was carried out with a venetian blind (shutter opening, which indicates the percentage of aperture of the venetian blind, 0 closed, 100 totally opened). Three sets of mixtures were prepared varying the proportion of silicon (25 wt. %, 50 wt.% and 75 wt.% in the mixture calcium carbonate-silicon to know in what situation the best results were obtained. In Fig. 2 it is possible to locate the different compositions after the conversion of weight percentages into molar percentages, and see what temperatures would ensure the presence of liquid silicon-calcium. The obtaining of the silicon-calcium was performed using the method that in the introduction was identified with the name Method 2.1, reduction of limestone with metallurgical silicon. Using limestone is less favorable than using lime because the calcium carbonate must be calcined into lime before being reduced with silicon to obtain the silicon-calcium. This way, if silicon-calcium is obtained using this method, it will be also synthesized using lime as starting material. Special atmosphere was not used during the experiments. Samples were located under a glass hood connected to a pump that led to a pressure inside of the glass chamber of 0.85 atm. This way, gases that were released during the experiments did not end in the parabolic concentrator. Despite the pump was...
It is not clear distinction between metal and slag because slag-forming elements were not added during the experiments (fluorspar). Conditions of the X-ray diffraction measurements of the powdered samples were indicated in Section 2. The X-ray diffraction patterns are shown in Figs. 6–8 (25 wt.% Si), Figs. 9–11 (50 wt.% Si) and 12 (75 wt.% Si). There is no clear distinction between metal and slag because slag-forming elements were not added during the experiments (fluorspar). Conditions of the X-ray diffraction measurements of the powdered samples were indicated in Section 2. The X-ray diffraction patterns are shown in Figs. 6–8 (25 wt.% Si), Figs. 9–11 (50 wt.% Si) and 12 (75 wt.% Si).

3. Results and discussion

Powders of the final samples taken from the zone affected by the solar radiation were analyzed using X-ray diffraction technique. There is no clear distinction between metal and slag because slag-forming elements were not added during the experiments (fluorspar). Conditions of the X-ray diffraction measurements of the powdered samples were indicated in Section 2. The X-ray diffraction patterns are shown in Figs. 6–8 (25 wt.% Si), Figs. 9–11 (50 wt.% Si) and 12 (75 wt.% Si).
The main remark that can be deduced from the X-ray diffraction analysis is that calcium was detected in all samples. In this way, calcium is obtained via silicothermic reduction of the calcium oxide (II). This question leads to the following conclusions: calcium carbonate was calcined into calcium oxide (II) due to the heat supplied by the concentrated solar energy (calcination of the limestone takes place at temperatures above 900 °C); and the calcium oxide (II) is reduced with the silicon to form calcium. The controlling stage of the process is the calcination of the limestone. If calcium oxide (II) was not available to react with the silicon, there would not be calcium in the final sample. Calcium formed due to the silicothermic reduction of the calcium oxide (II) forms with the silicon the silicon-calcium alloy. Therefore, the process progresses according to the Method 2.1 presented in the Introduction section. Ca₃Si₂O₇ and Ca₁₀O₂₅Si₆ are also identified during the X-ray diffraction analysis. These two phases would be part of the slag. However, both phases were identified during the X-ray diffraction analysis, and this confirms that there is not proper separation metal-slag. Finally, it is possible to deduce from the X-ray diffraction analyses that the calcination and the silicothermic reduction did not progress to the bottom of the crucible because we identified CaCO₃, which indicates that the limestone was not completely calcined. This explains the existence of powders below the layer of densified and reacted material.

A quantitative analysis of the phases identified during the X-ray diffraction analysis was performed. Quantities were calculated using the program XPowder12 Ver. 01.02 without considering the presence of amorphous phases. Results of the quantitative analysis of the crystalline phases identified during the X-ray diffraction are collected in Table 3. Before the statistical analysis it is reasonable to confirm that there is a big dispersion in the results because the sample taken for the X-ray analysis was randomly taken from the final product, and the powders might come either from a region enriched in slag or from a region enriched in silicon or from a region enriched in mixture silicon-calcium. Apart from that, experiments were only repeated three times each set of them. SEM-EDX in Fig. 15 (EDX spectra are shown in Fig. 16) shows a micrograph of a sample where silicon-calcium, calcium silicate and silica are observed in the same region. The situation observed in Fig. 15 is the same that is observed in the other samples. A statistical analysis was performed considering only the silicon-calcium mixture for the quantitative analysis. In the case of the samples with: 25 wt.% Si, the mean Si was 36.5% (standard deviation: 16.5; CV: 0.45) and the mean Ca was 63.5% (standard deviation: 22.1; CV: 0.34); 50 wt.% Si, the mean Si was 47.1% (standard deviation: 38.2; CV: 0.8) and the mean Ca was 52.9% (standard deviation: 38.2; CV: 0.72); and, 75 wt.% Si, the mean Si was 47.7% (standard deviation: 17.4; CV: 0.37) and the mean Ca was 52.3% (standard deviation: 17.4; CV: 0.33). The statistical analysis indicates that there is a big heterogeneity/dispersion in the results, resulting from a limited number of experiments (the same was observed in the other statistical analyses). Thus, it is observed from the X-ray diffraction that silicon-calcium mixtures were detected but it is not possible to ensure that the analyses are representatives of the entire sample.
sample. Increasing the number of experiments in each group, apart from achieving a proper separation metal-slag, to have a representative composition of the silicon-calcium obtained, is necessary. It is deduced from the statistical analysis that increasing the silicon percentage in the initial mixture would rise the silicon percentage in the final mixture. At the same time, increasing the silicon percentage in the initial mixture led to mass gains resulting from the oxidation of the silicon under the ambient atmosphere used in the experiments.

The solidification of the melt was analyzed using the Ca-Si phase diagram of the Fig. 2. Once silicon and calcium in liquid state were available, if the solidification would have progressed like equilibrium solidification, different calcium silicides should be found at the end of the solidification depending on the silicon percentage. However, mixtures silicon-calcium were detected at the end of the solidification. This way, the solidification progressed according to non-equilibrium solidification. A heterogeneous liquid formed by calcium, silicon (and the slag) was fast cooled down to the room temperature (air-cooling). Due to this fast cooling, there is not enough time for the formation of the equilibrium phases (calcium silicides). Furthermore, the treatment lasted only 12 min and, heating, calcination, silicothermic reduction of the limestone; carbon in the samples was added before reaction between the lime and the silica), silica, limestone (rests of unreacted material), silicon and calcium would be available, most of them in liquid state. Due to the oxidizing environment, there were risks of re-oxidation of the formed products. Apart from that, there was not proper separation metal-slag and, in this situation might have given mass gains due to the oxidation of the silicon; or samples with high silicon (low calcium carbonate), where mass losses due to the calcination of the limestone were higher than the mass gains due to the oxidation of the silicon; or samples with high silicon (low calcium carbonate), where mass losses due to the calcination of the limestone were smaller than the mass gains due to the oxidation of the silicon. At this point it is possible to say that the controlling step for the process is the calcination of the limestone, if lime is not available, the silicothermic reduction of the calcium oxide cannot take place, and the silicon-calcium would not be formed. It is evident that lime is available in all experiments because calcium is identified at the end of the process. Once lime is available, silicon reduces the lime to produce calcium oxide (II) reaction: the point 1 represents the silicon-calcium mixture, in this case Ca-rich mixture; the point 2 represents the calcium silicates (Ca₃Si₂O₇ and Ca₁₀O₂₅Si₆); and, the point 3 is the silicon oxide (SiO₂), product either of the lime silicothermic process or the silicon oxidation with the ambient air.

High-calcium compounds and metallic calcium have low melting point, and particularly metallic calcium has low boiling point (1484 °C). Calcium might be volatilized at the temperatures involved in the concentrated solar energy process. This question could also remark the presence of calcium and justify the presence of bubble holes (see Fig. 17). The calcination of the calcium carbonate also generates gas, carbon dioxide, which might also produce bubble holes in the sample. Resulting from the X-ray diffraction analyses and from the SEM-EDX it is possible to say that the process progressed as follows. First, calcium carbonate is calcined at around 900 °C to form lime (calcium oxide (II) and release carbon dioxide (before the calcination, several reactions of dehydration took place)). At the same time, silicon in contact with the atmosphere inside the glass chamber (oxidizing ambient atmosphere) oxidizes to form silica. Here it is possible to establish two situations: samples with low silicon (high calcium carbonate), where mass losses due to the calcination of the limestone were higher than the mass gains due to the oxidation of the silicon; or samples with high silicon (low calcium carbonate), where mass losses due to the calcination of the limestone were smaller than the mass gains due to the oxidation of the silicon. At this point it is possible to say that the controlling step for the process is the calcination of the limestone, if lime is not available, the silicothermic reduction of the calcium oxide cannot take place, and the silicon-calcium would not be formed. It is evident that lime is available in all experiments because calcium is identified at the end of the process. Once lime is available, silicon reduces the lime to produce calcium oxide (II) reaction: the point 1 represents the silicon-calcium mixture, in this case Ca-rich mixture; the point 2 represents the calcium silicates (Ca₃Si₂O₇ and Ca₁₀O₂₅Si₆); and, the point 3 is the silicon oxide (SiO₂), product either of the lime silicothermic process or the silicon oxidation with the ambient air.

High-calcium compounds and metallic calcium have low melting point, and particularly metallic calcium has low boiling point (1484 °C). Calcium might be volatilized at the temperatures involved in the concentrated solar energy process. This question could also remark the presence of calcium and justify the presence of bubble holes (see Fig. 17). The calcination of the calcium carbonate also generates gas, carbon dioxide, which might also produce bubble holes in the sample. Resulting from the X-ray diffraction analyses and from the SEM-EDX it is possible to say that the process progressed as follows. First, calcium carbonate is calcined at around 900 °C to form lime (calcium oxide (II) and release carbon dioxide (before the calcination, several reactions of dehydration took place)). At the same time, silicon in contact with the atmosphere inside the glass chamber (oxidizing ambient atmosphere) oxidizes to form silica. Here it is possible to establish two situations: samples with low silicon (high calcium carbonate), where mass losses due to the calcination of the limestone were higher than the mass gains due to the oxidation of the silicon; or samples with high silicon (low calcium carbonate), where mass losses due to the calcination of the limestone were smaller than the mass gains due to the oxidation of the silicon. At this point it is possible to say that the controlling step for the process is the calcination of the limestone, if lime is not available, the silicothermic reduction of the calcium oxide cannot take place, and the silicon-calcium would not be formed. It is evident that lime is available in all experiments because calcium is identified at the end of the process. Once lime is available, silicon reduces the lime to produce calcium oxide (II) reaction: the point 1 represents the silicon-calcium mixture, in this case Ca-rich mixture; the point 2 represents the calcium silicates (Ca₃Si₂O₇ and Ca₁₀O₂₅Si₆); and, the point 3 is the silicon oxide (SiO₂), product either of the lime silicothermic process or the silicon oxidation with the ambient air.

High-calcium compounds and metallic calcium have low melting point, and particularly metallic calcium has low boiling point (1484 °C). Calcium might be volatilized at the temperatures involved in the concentrated solar energy process. This question could also remark the presence of calcium and justify the presence of bubble holes (see Fig. 17). The calcination of the calcium carbonate also generates gas, carbon dioxide, which might also produce bubble holes in the sample. Resulting from the X-ray diffraction analyses and from the SEM-EDX it is possible to say that the process progressed as follows. First, calcium carbonate is calcined at around 900 °C to form lime (calcium oxide (II) and release carbon dioxide (before the calcination, several reactions of dehydration took place)). At the same time, silicon in contact with the atmosphere inside the glass chamber (oxidizing ambient atmosphere) oxidizes to form silica. Here it is possible to establish two situations: samples with low silicon (high calcium carbonate), where mass losses due to the calcination of the limestone were higher than the mass gains due to the oxidation of the silicon; or samples with high silicon (low calcium carbonate), where mass losses due to the calcination of the limestone were smaller than the mass gains due to the oxidation of the silicon. At this point it is possible to say that the controlling step for the process is the calcination of the limestone, if lime is not available, the silicothermic reduction of the calcium oxide cannot take place, and the silicon-calcium would not be formed. It is evident that lime is available in all experiments because calcium is identified at the end of the process. Once lime is available, silicon reduces the lime to produce calcium oxide (II) reaction: the point 1 represents the silicon-calcium mixture, in this case Ca-rich mixture; the point 2 represents the calcium silicates (Ca₃Si₂O₇ and Ca₁₀O₂₅Si₆); and, the point 3 is the silicon oxide (SiO₂), product either of the lime silicothermic process or the silicon oxidation with the ambient air.
phases identified during the X-ray diffraction analyses give different proportions of calcium and silicon in the mixture. The mixture was fast cooled down to the room temperature using air cooling. After that, we obtain the calcium-silicon mixtures detected in the X-ray diffraction and SEM-EDX analyses. If proper separation metal-slag would have been achieved, and the mixture had been in liquid state for longer times, both equilibrium calcium silicides and homogeneous (in percentage) silicon-calcium mixtures would have been obtained.

Several questions have arisen during the experiments that should be solved in future experiments:

– The separation metal slag. This question is fundamental, if there is not proper separation metal-slag, the process has no interest. In the industrial practice slag-forming elements are added (fluorspar) to improve the fluidity of the slag and, in this way, separate adequately the alloy from the slag.

– The volume of material treated during the experiments. This question is related with the power of the furnace used in the experiments (1.5 kW max., focal point of 12–15 mm in diameter) because powerful furnaces will allow increase the focal point dimensions, and thus the treated volume.
– The duration of the treatment. Probably the duration of the treatment (12 min) was too short in our experiments, because the following processes must take place in this time: heating of the initial mixture, calcination of the limestone, reduction of the lime via silicothermic reduction and homogenization the liquid. Furthermore, the cooling should be slower if equilibrium solidification is aimed. Producing the lime in a separated stage could be more adequate due to the calcination of the limestone is the controlling step in our process.

– The oxidation and risks of re-oxidation. The utilization of a reductant atmosphere or at least a protective atmosphere should be required to minimize the oxidation of the initial silicon. If the silicon is oxidized, it will not reduce the calcium oxide (II) and will not form the silicon-calcium oxide.

Despite the problems observed during the experiments described in this manuscript, it was demonstrated that using concentrated solar energy it is possible to obtain silicon-calcium. This paper offers preliminary research about the utilization of solar energy in the synthesis of this alloy and, consequently, further research should be carried out to solve all the problems identified during the experiments presented in this manuscript. Anyway, in contrast with other metallurgical processes, silicon-calcium production plants handle quantities of product that do not make necessary operating 24 h every day, and they can take

<table>
<thead>
<tr>
<th>25% Si</th>
<th>50% Si</th>
<th>75% Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaSi13</td>
<td>CaSi14</td>
<td>CaSi18</td>
</tr>
<tr>
<td>Si 15.9 ± 0.9</td>
<td>34.0 ± 0.8</td>
<td>10.8 ± 1.4</td>
</tr>
<tr>
<td>Ca 30.0 ± 2.3</td>
<td>23.2 ± 2.5</td>
<td>59.4 ± 1.2</td>
</tr>
<tr>
<td>Ca3Si2O7 36.4 ± 2.1</td>
<td>26.3 ± 2.5</td>
<td>7.2 ± 3.7</td>
</tr>
<tr>
<td>Ca3Si2O7 22.6 ± 2.9</td>
<td>13.0 ± 3.3</td>
<td></td>
</tr>
<tr>
<td>SiO2 8.6 ± 2.8</td>
<td>9.0 ± 2.6</td>
<td>9.5 ± 3.4</td>
</tr>
<tr>
<td>CaCO3 9.1 ± 2.9</td>
<td>8.4 ± 2.7</td>
<td></td>
</tr>
</tbody>
</table>

Table 3
Quantitative analysis discounting the presence of amorphous phases.
advantage of the off-peak hours when the electricity is less expensive (discontinuous operation is possible). Moreover, the production of not only silicon-calcium alloy, but also of other ferroalloys, is energy intensive whether it is compared with other metallurgical processes. For example, the production of steel requires 3000–4000 kWh per ton of steel, while 10,000–15,000 kWh are required per ton of silicon-calcium alloy. Additionally, carbon dioxide emissions might be reduced using the concentrated solar energy as it was indicated in Section 1, apart from all mentioned in that section about the potential reduction in

Table 4
Point analysis for the sample CaSi11.

<table>
<thead>
<tr>
<th>Element (wt.%)</th>
<th>Point 1</th>
<th>Point 2</th>
<th>Point 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>2.79</td>
<td>8.56</td>
<td>28.66</td>
</tr>
<tr>
<td>Si</td>
<td>13.48</td>
<td>21.51</td>
<td>70.39</td>
</tr>
<tr>
<td>Ca</td>
<td>83.73</td>
<td>37.67</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>29.79</td>
<td>28.66</td>
</tr>
<tr>
<td>Al</td>
<td></td>
<td>2.47</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Fig. 15. SEM image of the sample CaSi11.

Fig. 16. EDX spectra: y-axis indicates the number of counts and x-axis the energy of the X-rays.
Researchers/technology experts. Project SOLMETBY (P1701250238), Investigation and evaluation of solar energy as energy source in the treatment of metallurgical by-products.

This research was supported by the Spanish Ministry of Education, Culture, and Sports via an FPU (Formación del Profesorado Universitario) grant to Daniel Fernández González (FPU014/02436).

References

TAPP. Version 2.2. ES Microwave Inc., Wade Court, Hamilton, OH.