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The application of neural networks to the interpretation of a large amount of data from blast furnaces iz still very innovative in the steel and
metatlurgical industry. Contrary to the deterministic research which is based on mass and energy balances, as well as on chemical kinetics,
the development of simulation in “black box” processes has strongly appeared as a consequence of the stochastic origin of the variables
used. Specifically, this paper shows the appiication of neural networks to the processing of thermai information provided by the temperature
measuring probes located at the furnace top, above the level of the ferric and reductant charge. As a result of this work, a cemputer tocl as
a user-friendly aid to the person in charge of the process was developed with the following infermation: (i) A tool that supplies a real time
thermal distribution of the blast furnace gases which are properly classified {Operational Thermal Standards). (ii) It provides the system with
alarms which prevent potentiat incidents (collapses/slippages) over an hour in advance of any incident. (iii) It guides the person in charge

as to how to regulate the blast parameters in order to control the situation.
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Intreduction

Scientific and technological progress is built on three
pillars:  experimentation, theoretical models and
simulation, During the last century, experimentation and
theoretical speculation have provided knowledge but
nowadays scientists are giving impetus on obtaining
knowledge from process simulation. '

Specifically, knowledge by means of simulation can be

differentiated into deterministic models and stochastic
models. Recently, in the steel and metallurgic field,
scientists have been interested in developing research
based on Neural Network (NN) [1,2]. These
considerations give us a chance to state that steel industry
is a modern science and technology which is able to take
advantage of the most avant-garde knowledge, rather than
a group of obsolete practices.

Over the last few years, there has been an exponential
growth in the number of control parameters in the
steelmaking process. It has passed from only a few data to
a large amount of variables in the process. Precisely,
nowadays, there is a paradox with the number of variables
as the person in charge of the installation often gets
confused, rather than frequently informed. Modern
computer systems, together with NN, however, help us to
build data bases which supply us with the information
about the evolution of the most important variables in the
process [3-5].

Inside the blast-furnace stack, the aim is to manage a
uniform drop in the charge. In this part of the blast
furnace, the softening of the ferric charge takes place (with
the corresponding loss of porosity), while the high quality
reductant coke layers let the reductant gases flow (coke
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slits). It would thus be interesting to know the
temperatures inside the charge in that zone of the blast
furnace. However, in real time, it is impossible to obtain
experimental thermal data in that zone. The only
alternative is to use gas temperatures at the blast-furnace
top by means of probes located above the charging level,
in order to acquire an indirect knowledge about the
materials in the cohesive zone [6].

In this paper, it is attempted to use the temperatures
provided by the above burden probes in order to obtain
information by means of an appropriate neural network as
to optimize the conditions for the drop in the blast furnace
temperature [7-10].

The speed rate in the drop is the reason for the
scaffolding where a large gquantity of material is hanging
thus totally or partially blocking the uniform drop of the
material loaded at the blast furnace top. Indirectly, this
drawback can be detected thanks to the corresponding
comptter alarms which have been installed as a result of
the NN analysis of the thermal data from the blast furnace
top, and the development of the corresponding loading
thermal standards for the blast furnace which have been
studied [11,12].

In this paper, a neural system has been prepared so that,
when it is installed in a blast furnace, it can alert the
person int charge of the process to the potential risk of a
load collapse more than one hour in advance.

Classification using Neural Networks

The above mentioned temperature profiles can be
classified according to their particular shape. A neural
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Figure 1.

network is a useful {ool to classify the signals from above
burden probe temperatures; each class being represented
by a pattern, which is a profile created by the neural
network during the training process [13].

Measurements from the thermocouples of above burden
probes were arranged in a 13-D array, one for each
thermocouple installed in the above burden probes, that is,
one coordinate for each temperature sample. These
arrays, P= (T01, TO2, T03, T04, TOS, TO6, TO7, TO8, TGY,
T10, T11, Ti2, T13), were employed during the neural
network training and validation, after standardisation.

Offline and online training. The neural networl

training program was designed specifically for above
burden temperature prefiles, keeping in mind the results
achieved during the study of the wvariables described
above. Two additional signals were employed as program
control signals, an on/off signal and the stock-rod signals,
allowing the program to accept or reject temperature
profiles for training. The profiles are only accepted if the
Mast furnace is working and if the burden level is between
(0.5 to 1.0 meters (from the nominal stock line level). The
reason for these Hmitations is derived from the effect of
burden descent on temperatures profiles. Temperatures
related to stoppages are of no interest.

The left side of Figure 1 shows the training parameters
selected by the user during the training period and the
factors that modify the learning rate for the corresponding
neuron. Each neuron can be trained at a different learning
rate. This prevents oscillations when the classes are
reaching their final solutions.

The right side of Figure 1 shows the evolution of the
patterns obtained during the training so that they can be
inspected by the user. The windows can be refreshed every
time a new sample is put in the program, and the best
pattern is presented in red (in this case class 8 — column 2 -
row 3) and below each pattern the time expended on it.
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Neural network training program’s user interface.

Analysis of Patferns oﬁtained

The previously described program was employed
extensively to obtain final shapes and representative
patterns in order to decide the total number of patterns to
be employed for training and validation purposes. To that
end, a large number of trials, with the number of patterns
varying from 6 to 30 were performed. After examining the
results, a set of fifieen patterns were selected as these
yielded the best results (Figure 2).

A study of these patterns shows that several of them

* have a very similar shape. As far as the neural network is

based on Self Organising Maps (SOM), patierns of
temperature profiles that have a similar shape but a shifted
position are classified as different.

To obtain a clearer image of these, it is useful to perform
some kind of interpolation among the temperatures
obtained for the patterns. In this case a cubic spline
interpolation was used, This allows estimating us the
position of maximum temperature. Figure 3 shows an
example of cubic spline interpolation for classes 1, 5, 3
and 6. The straight lines represent the results of the
interpolation showing the actual position of the
temperature peaks.

After performing the interpolation, the patterns can be
easily compared. Some of them are very similar and the
main difference is the asymmetric position of the
maximum temperature. This effect should be related to an
asymmetric gas flow. Slight asymmetries are detected by
the neural network and classified in different patterns but
it is necessary to preserve this number of patterns because
a lower number of them leads to errors in temperature
classification.

Furthermore, it is necessary to regroup the classes
obtained in order to relate them to the blast furnace state,
From the obtained results, the previous fifteen classes can
be regrouped in five major classes.
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Figure 2. Patterns cbtained by self organizing maps (SOM) training.

Figure 3. Example of cubic spline interpolation for classes 1, 5, 3 and B; numbers 1 to 13 indicate thermocouples.

Table 1 shows these five major classes in addition to the
previous classes. Figure 4 shows the first of these major
classes. All the now regrouped patterns are put in relation
to stable blast furnace performance with high productivity
and a strong central gas flow. This result was expected
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because the blast furnace used for the present work is
usually operated with a high amount of central coke due to
a high PCI rate, the current state of blast furnace walls
and the low alkali content in ores employed in the burden
that avoid scaffold formation.

. steel research int. 80 (2009) No. 3
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It is important to highlight that the
patterns  were obtained after the
temperature profiles were normalised.
As the gas flow may be asymmetric,
temperatures measured by the probes are
projections of the three dimensional gas
temperature  distributions over the
probes’ plane. Thus, the most mportant
feature is not the peak height but its
width thus reflecting a larger or smaller
temperature distribution.

After performing the new classifica-
tion, the old patterns were reordered,
with similar classes being put together
{Figure 5). Patterns located in the central
column are the most centred patterns;
their highest temperature is located very
close to the thermocouple no.7. Patterns
located in the right column have their
highest temperature shifted to the right
and patterns located in the left column
have their highest termperature shifted to
the left, except for the last one represent-
ing the class related to stoppages, put in
this position arbitrarily.

Therefore, the patterns related to a

central flow and a stable situation have been located in the
upper part of Figure 5. Moving downwards, the patterns
represent situations with less central gas and, in general, a
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Figure 4. Major class 1 grouping classes 1, 3,'4, 7 and 14,

Table 1. The five major classes.

10 11 12 13

Class naumber Previous classes
1 1-3-4-7-14
2 2—-10-2
3 611
4 5-12-13-15
5 9

less stable state. This new distribution allows the operators
to follow the transition and easily check the blast furnace
state via the use of intuitive traffic light-like colours.

Green

class

‘—k\

|

A
eyt e

\ﬁ )

lass.,

Yellow

Purple

Figure 5. Classes reordered by similar shape, according to their major class. {Green: major class 1,
vellow: major class 2, blue: major class 3, red: major class 4 and purple: major class 5}

steel research int. 80 (2009) No. 3

197




Process Metallurgy

14000

12000

10000

8000

6000

4000

2000

' o, W)

2 3 4

12 1

20 =

Figure 6. Statistical distribution of temperature profiles according to pattemns; white: original signals; black: signals after
rebuilt M-shaped pattens.
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Figure 7. Classification of above burden probe temperatures for a long period of blast furnace performance. Comparison with

stock rod signals.
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Figure 8. Classification of above burden probe temperatures in Zone B. Comparison with stock rod signals and pressure drop

between iuyeres and throat.

Model Validation

Once the classes’ final form was established, a program
to analyse the available data was developed and used
extensively. A systematic analysis allowed the definition
of the relationship between the patterns and blast furnace
state. As a summary of the results obtained, Figure 6
shows a bar diagram with the classification performed
by the neural network for a period longer than one year.
The bright bars (left bars) represent the classification
performed for the original signals by the Self-
Organising Map. The black ones (right bars) represent
the classification performed for the same signals after
rebuilding those profiles affected by the cooling system.
(This process was explained in the first part of this
work, [16]). Classes 16 to 21 are special classes for M-
shaped profiles, The number of remaining M-shaped
profiles was reduced dramatically after the signals were
rebuilt.
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The statistic shows how the patterns related to normal
blast furnace performance are more frequently obtained.

The above performed description generaily fits well with
the present blast furnace performance and the temperature
classification made by the neural network allows for
description of the blast furnace state and, in some cases,
the forecasting of hangings and collapses. As an example
to illustrate this, a period of irregular blast furnace
performance has been selected and the obtained
temperature profiles have been classified employing the
developed model. The upper part of Figure 7 shows the
temporal evolution of above burden probe temperature
profiles during the selected period. A single vertical line
represents each temperature profile, covering a period of
180 hours. Each one is coloured according to the pattern to
which it belongs. The black lines represent temperature
profiles altered due to the probe cooling and are useless
because the information has been destroyed (M-shape
profiles).
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Figure 9. User's interface of validation program.

In the lower part of Figure 7 the stock rods are
represented in order to compare them with above burden
probe signals. There is a stock rod change employed at 90
hours where a slight shift in the burden level can be
observed. This height difference could be the reason for
the slight asymmetry shown for the above burden
temperature profile. '

It is possible to divide the represented period into four’

different zones.

Zone 4 (0 — 40 hours): The zone begins with a stable
situation, After that, a lfess stable period takes place which
is also reflected in the stock rod signal showing some
slight slips.

Zone B (40 — 60 hours): A zone with high instability.
Major hangings and slippage take place during the entire
period, which must be studied in more detail.

Zone C' (60 — 140 hours): A stable zone. The descent of
the burden is regular, as can be seen in the lower part of
the figure.

Zone D (140 — 180 hours): indicates a programmed blast
furnace stop with the subsequent start. After the blast
furnace re-start, the profiles indicate that the blast furnace
has not reached its normal performance vet.

In Figure 8 Zone B has been expanded. In the lower
part of the figure a new plot representing the pressure drop
between tuyeres and throat has been added. This period
begins with two hours of normal blast furnace behaviour.
After that, the burden suifers a slip. The stock rod shows
that something abnormal is also taking place. In particular,
the last stock rod signal appears to be stopped just before
the slip. The pressure drop undergoes a sudden rise before
the slip and goes down after it.
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Note that the lines representing classes turn up almost
one hour before the first major slip takes place, providing
an early warning about the abnormal blast furnace
behaviour which will fake place shortly, After
approximately seventeen hours, the last slip takes place
and the blast firnace begins to slowly recover.

The characteristic gas temperature pattern after a slip is
a sudden jump of the top gas temperature foflowed by a
gradual decrease caused by the frequent charging needed
to recover the stock level [14]. During this period, the
burden distribution control is lost (due to the longer
trajectories of the falling burden) with a flat temperature
probe profile as a result [15].

Toel for On-line Prohes Interpretation

As a complementary part of the present work, a software
platform was implemented to classify temperature profiles
and to analyse the other blast furnace parameters. It was
designed to work in both on-line and off-line mode, taking
data from either the blast furnace process computer or
from a data file respectively (Figure 9).

A complete set of blast furnace parameters are presented
on the screen in order to compare and study their
evolution. Furthermore, other information such as blast
moisture evolution over time, oxygen enrichment, hot
metal temperature, pressure drop between tuyeres and
throat and stock-rod during the two previous hours are
graphically shown. Some other data are presented in
numerical format, such as time, number of tapping, PCI
and ore/coke rate. Working on-line, the program refreshes
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data on the screen every two minutes, and in the off-line
case, reads new data from a data file.

Conclusions

The study carried out on the above burden probe signals
has allowed us to gain deeper knowledge of their
significance and their relationships to blast furnace
performance. It has been established that observing the
raw signals as they are delivered by the blast furnace
probes is not of significant interest to plant operators.

In this work it is put forward that every time a new
temperature profile is obtained from the above burden
probes, it is classified and, subsequently, a valid diagnosis
~which is useful to the plant operators- on the blast
furnace performance is made, using a traffic light-like
method. At the same time it is possible to forecast
hangings and burden collapses more than one hour in
advance.

A new user-friendly tool for above burden probe
interpretations, based on the above mentioned research and
allowing the plant operator to obtain not only the bare
probe signals but also an initial interpretation of their
meaning, was also developed.
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