Scientific articles

19811984198519861987198819891990199119921993199419951996199719982000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024
Molecular emission cavity analysis. Part 21. Effect of phosphoric acid on the determination of sulphate. Anal. Chim. Acta, 131, 1981, 297-301
doi: 10.1016/S0003-2670(01)93564-0
Polarographic study of binary and mixed complexes of copper(II) with glycine and ethilenediaminetetracetate. Electrochim. Acta, 29(12), 1984, 1649-1652
doi: 10.1016/0013-4686(84)89005-2
Electrochemical behaviour of the tin(II)-glycerol system. J. Electroanal. Chem, 179,1984, 201-208
doi: 10.1016/S0022-0728(84)80288-0
Electrochemical detection in hplc assays of anti-cancer drugs (methotrexate) in biological fluids. Anal. Proc, 22, 1985, 349-350
An electrochemical study of the oxidation of thiazolidine-4-carboxylic acid on platinum electrodes. J.Electroanal.Chem, 209, 1986, 339-349
doi: 10.1016/0022-0728(86)80558-7
Adsorptive stripping voltammetric behaviour of folic acid. J. Electroanal. Chem. 225, 1987, 241-253
doi: 10.1016/0022-0728(87)80017-7
An electroanalytical study of the anticancer drug dacarbazine. Anal. Chim. Acta, 202, 1987, 141-149
doi: 10.1016/S0003-2670(00)85909-7
Cathodic stripping voltammetry of 5-fluorouracil. Analyst, 112, 1987, 243-246
doi: 10.1039/AN9871200243
A voltammetric study of thiazolidine-4-carboxylic acid on mercury electrodes. J. Electroanal. Chem., 245, 1988, 157-166
doi: 10.1016/0022-0728(88)80067-6
Adsorptive stripping voltammetric assay of folic-acid in human serum. J. Pharm. Biomed. Anal., 6-8, 1988, 743-747
doi: 10.1016/0731-7085(88)80086-4
Sensors based on amperometric enzymes electrodes. Anal. Proc, 26, 1989, 387-389
Sensors based on polymer modified electrodes. Anal. Proc, 26, 1989, 205
Adsorptive stripping voltammetric analysis of some pterines in human urine. J. Pharm. Biomed. Anal, 7, 1989, 485-1490
doi: 10.1016/0731-7085(89)80155-4
Electrochemical oxidation of dacarbazine and and its major metabolite (AIC) on carbon electrodes. Electroanalysis, 1, 1989, 529-534
doi: 10.1002/elan.1140010609
Liver, horseradish and bananas: a diet of enzymes for voltammetry. Anal. Proc, 26, 1989, 186
Electroxidation of methadone on carbon paste electrodes. Electrochim. Acta,34, 1989, 957-961
doi: 10.1016/0013-4686(89)80020-9
Voltammetric assay of methadone in urine. Analyst, 114, 1989, 939-941
doi: 10.1039/AN9891400939
Determination of ciprofloxacin by differential pulse polarography. Electroanalysis, 2, 1990, 637-641
doi: 10.1002/elan.1140020811
Adsorptive stripping voltammetric determination of pipemidic acid in human urine. Analyst, 115, 1990, 1215-1217
doi: 10.1039/AN9901501215
Phase-selective alternating current polarographic assay of methotrexate in human serum. Anal. Chim. Acta, 233, 1990, 281-287
doi: 10.1016/S0003-2670(00)83489-3
Flow injection analysis of H2O2 using a horseradish peroxidase modified electrode detection system. Electroanalysis, 2, 1990, 303-308
doi: 10.1002/elan.1140020407
Adsortive phase selective stripping voltammetric behaviour of the sodium salt of 2-mercaptoethanesulphonate. J. Electroanal. Chem, 280, 1990, 167-178
doi: 10.1016/0022-0728(90)87092-X
Voltammetric assay of heroin in illicit dosage forms. Analyst, 115, 1990, 209-212
doi: 10.1039/AN9901500209
Peroxidase-ferrocene modified carbon paste electrode as an amperometric sensor for the hydrogen peroxide assay. Electroanalysis 3, 1991, 281-285
doi: 10.1002/elan.1140030407
Electrochemical pretreatment of carbon fiber ultramicroelec-trodes for determination of folic acid. J. Electroanal. Chem., 307, 1991, 63-71
doi: 10.1016/0022-0728(91)85539-2
Comparison of adsorptive stripping voltammetry at mercury and carbon paste electrodes for the determination of ciprofloxacin in urine. Electroanalysis, 3, 1991, 337-342
doi: 10.1002/elan.1140030415
Voltammetric determination of cocaine in confiscated samples. Electroanalysis, 3, 1991, 409-412
doi: 10.1002/elan.1140030427
Simple and reliable fabrication of carbon fiber ultramicro-electrodes. Electroanalysis, 3, 1991, 413-417
doi: 10.1002/elan.1140030428
Determination of mitoxantrone by flow injection analysis using an amperometric detector. J. Pharm. Biomed. Anal, 10, 1992, 263
doi: 10.1016/0731-7085(92)80038-O
Determination of mitoxantrone using phase-selective ac adsorptive voltammetry in a flowing system with selectivity enhancement. Anal. Chim. Acta, 256, 1992, 231-236
doi: 10.1016/0003-2670(92)85348-A
Phase selective ac adsrptive stripping voltammetry of folic acid on a mercury thin-film electrode. Electroanalysis, 4, 1992, 87
doi: 10.1002/elan.1140040116
Adsorptive stripping voltammetric behaviour of edatrexate and methotrexate at mercury thin film ultramicroelectrode and application to biopharmaceutical analysis. AMI, 1, 1993, 164-171
Phase-selective AC adsorptive stripping voltammetry assay for aminopterin and 10-Edam in human serum. J. Pharm. Biomed. Anal., 118, 1993, 939-946
doi: 10.1016/0731-7085(93)80053-4
Phase-selective alternating current adsorptive stripping voltammetry of aminopterin on a mercury thin film carbon fibre ultramicroelectrode. Analyst, 118, 1993, 649-653
doi: 10.1039/AN9931800649
Adsorptive stripping voltammetry on mercury coated carbon fiber ultramicroelectrodes. Anal. Chim. Acta, 273, 1993, 101-109
doi: 10.1016/0003-2670(93)80149-F
Simultaneous adsorptive stripping voltammetric determination of riboflavin and folic acid in multivitamin preparations. Anal. Chim. Acta, 273, 1993, 377-382
doi: 10.1016/0003-2670(93)80180-S
Adsorptive stripping voltammetric behaviour of mitoxantrone on mercury electrodes. Talanta, 40, 1993, 333-339
doi: 10.1016/0039-9140(93)80242-J
Adsorptive stripping voltammetric behaviour of mitoxantrone on carbon paste electrodes. Talanta, 40, 1993, 325-331
doi: 10.1016/0039-9140(93)80241-I
Application of a nafion-modified carbon paste electrode for the adsorptive stripping voltammetric determination of fenoterol in pharmaceutical and biological fluids. J. Pharm. Biomed. Anal., 12(9), 1994, 1069-1074
doi: 10.1016/0731-7085(94)00055-7
The electrochemical behaviour of salbutamol, fenoterol and metaproterenol on unmodified and nafion-modified carbon paste electrodes. Analyst 119, 1994, 1979-1984
doi: 10.1039/AN9941901979
Comparative voltammetric study of 2,4-dinitrophenol (DNP), albumin and dnp-albumin as an analytical approach to the use of DNP as an universal label in inmunoelectrochemical assays. Talanta, 41, 1994, 1191
doi: 10.1016/0039-9140(94)80091-X
Flow injection-amperometric detection of aniline with a peroxidase modified carbon paste electrode. Anal. Chim. Acta 291, 1994, 349-356
doi: 10.1016/0003-2670(94)80030-8
Novel mercury-coated carbon fiber voltamperometric detector for use in adsorptive stripping flow analysis. Anal. Chim Acta, 289, 1994, 169-176
doi: 10.1016/0003-2670(94)80100-2
Determination of Gentian Violet in human urine and poultry feed by high performance liquid chromatography with electrochemical detection using a carbon fibre microelectrode flow cell. Talanta, 42(2), 1995, 235-242
doi: 10.1016/0039-9140(94)00233-I
Electrochemical behaviour of clenbuterol at nafion-modified carbon paste electrodes. J. Pharm. and Biomed. Analysis, 14 (1-2), 1995, 57-63
doi: 10.1016/0731-7085(95)01610-4
Flow injection analysis of ethanol vith an alcohol dehydrogenase-modified carbon paste electrode. Electroanalysis, 8 (10), 1996, 932-937
doi: 10.1002/elan.1140081016
A comparative study of some phenoxazine and phenotiazine modified carbon paste electrode for ethanol determination. Electoanalysis, 8 , 1996, 591-506
doi: 10.1002/elan.1140080617
Alcohol biosensor based on alcohol dehydrogenase and Meldola Blue immobilized into a carbon paste electrode. Talanta, 43 (5), 1996, 779-784
doi: 10.1016/0039-9140(95)01802-6
Poly(o-aminophenol)-modified bienzyme carbon paste electrode for the detection of uric acid. Talanta, 43 (5), 1996, 785-796
doi: 10.1016/0039-9140(95)01825-5
Electrocatalytic detection of nicotinamide coenzymes by poly(o-aminophenol)- and poly(o-phenylenediamine)- modified carbon paste electrodes. Anal. Chim. Acta 325(1-2), 1996, 33-42
doi: 10.1016/0003-2670(96)00022-0
Determination of dimethylamine in groundwater by liquid chromatography and precolumn derivatization with 9-fluoroenilmethylcloroformate. J. Chromatography A, 721, 1996, 231-239
doi: 10.1016/0021-9673(95)00787-3
Biosensors based on carbon paste electrodes using inmobilizeddehydrogenase enzymes.An overview and trends. Sci. Pap. Univ. Pardubice, Ser. A., 3, 1997, 17-29
Immobilized enzyme electrode for the determination of L-lactate in food sample. Anal. Chim. Acta, 345, 1997, 37-43
doi: 10.1016/S0003-2670(97)00046-9
A bienzyme-poly-(o-phenylenediamine)-modified carbon paste electrode for the amperometric detection of L-lactate. Anal. Chim. Acta 346, (2), 1997, 165-174
doi: 10.1016/S0003-2670(97)00115-3
Amperometric detection of ethanol with poly-(o-phenylenediamine)-modified enzyme electrodes. Biosens. Bioelectron.12, (6), 1997, 511-520.
doi: 10.1016/S0956-5663(97)00008-0
Amperometric glutamate biosensor based on poly(o-phenylenediamine) film electrogenerated onto modified carbon paste electrodes. Biosens. Bioelectron. 12(8), 1997, 739-747
doi: 10.1016/S0956-5663(97)00041-9
Amperometric biosensors based on NAD(P)-dependent dehydrogenase enzymes. Electroanalysis, 9(3), 1997, 191-202
doi: 10.1002/elan.1140090302
Electrocatalytic reduction of metal ions by adsorbed organic nitrogen bases on mercury electrodes. Recent Research Developments in Electrochemistry, Vol. 1, 1998, 281-293 (Book chapter)
TransWorld Research Network. S.G. Pandalai (Managing Editor)
A poly(o-aminophenol) modified electrode as an amperometric hydrogen peroxide biosensor. Electrochimica Acta 43, 1998, 3533-3539
doi: 10.1016/S0013-4686(98)00101-7
Electrocatalytic detection of NADH and glycerol by NAD(+)-modified carbon electrodes. Anal. Chem. 72, (3), 2000, 520-527
doi: 10.1021/ac9908344
Amperometric detection of D-sorbitol with NAD(+)-D-sorbitol dehydrogenase modified carbon paste electrode. Anal. Chim. Acta 424, (1), 2000, 45-50.
doi: 10.1016/S0003-2670(00)01140-5
Differential-pulse voltammetric determination of low µg/l cianyde levels using EDTA, Cu(II) and a hanging mercury drop electrode. Anal. Chim. Acta 410, 2000, 135-142
doi: 10.1016/S0003-2670(99)00863-6
A comparative study of different adenine derivatives for the electrocatalytic oxidation of b-nicotinamide adenine dinucleotide. J. Electroanal. Chem., 502, (1-2), 2001, 109-117
doi: 10.1016/S0022-0728(00)00540-4
Molecularly imprinted polyphosphazene films as recognition element in a voltammetric rifamycin SV sensor. Electroanalysis 13(17), 2001, 1399-1404
doi: 10.1002/1521-4109(200111)13:17<1399::AID-ELAN1399>3.0.CO;2-W
Amperometric determination of serum lactate dehydrogenase activity using an ADP-modified graphite electrode. Anal. Chim. Acta 457(2), 2002, 275-284.
doi: 10.1016/S0003-2670(02)00055-7
Modified carbon paste electrodes for flow injection amperometric determination of isocitrate dehydrogenase activity in serum. Anal. Biochem. 308(2), 2002, 195-203
doi: 10.1016/S0003-2697(02)00263-4
Electrocatalytic oxidation of NADH at polyadenylic acid modified graphite electrodes. Electroanalysis 14, (22), 2002, 1543-1549
doi: 10.1002/1521-4109(200211)14:22<1543::AID-ELAN1543>3.0.CO;2-R
Voltammetric determination of underivatized oligonucleotides on graphite electrodes based on their oxidation products. Anal. Chem. 74 (14), 2002, 3342-3347
doi: 10.1021/ac015749m
Amperometric Determination of Sacorsine with Sacorsine Oxidase Entrapped with nafion on Manganese Dioxide-Modified Screen Printed Electrodes. Sci. Pap. Univ. Pardubice, 8, 2002, 93-101
New scheme for electrochemical detection of DNA based on electrocatalytic oxidation of NADH. Electrochem. Commun. 5(3), 2003, 267-271
doi: 10.1016/S1388-2481(03)00041-9
Voltammetric response of diclofenac-molecularly imprinted film modified carbon electrodes. Anal. Bioanal Chem, 377, 2003, 257-261
doi: 10.1007/s00216-003-2019-6
Catalytic voltammetric determination of cladribine in biological samples. Electroanalysis 15 (5-6), 2003, 441-446
doi: 10.1002/elan.200390051
Voltammetric sensor for vanillylmandelic acid based on molecularly imprinted polymer-modified electrodes. Biosens. Bioelectron., 18 (4), 2003, 353-362
doi: 10.1016/S0956-5663(02)00151-3
Electrocatalytic oxidation of NADH by oxidized s-adenosyl-L-methionine (SAMe): Application to NADH and SAMe determinations. Electroanalysis 16 (11), 2004, 881-887.
doi: 10.1002/elan.200302892
Electrocatalytic adsorptive voltammetry for fludarabine determination in urine. Anal. Chim. Acta 504 (2), 2004, 271-277
doi: 10.1016/j.aca.2003.10.055
Electrochemistry of nucleic acids at solid electrodes and its applications. Electroanalysis 16,(15), 2004, 1193-1204
doi: 10.1002/elan.200402995
Current strategies for electrochemical detection of DNA with solid electrodes. Anal. Bioanal. Chem. 378(1), 2004, 104-118
doi: 10.1007/s00216-003-2369-0
Electrochemical sensors based on molecularly imprinted polymers. TRAC 23 (1), 2004, 36-48
doi: 10.1016/S0165-9936(04)00102-5
Adsorptive-stripping voltammetry of rifamycins at unmodified and surfactant-modified carbon paste electrodes. Electroanalysis, 16(20), 2004, 1660-1666
doi: 10.1002/elan.200403032
Electrochemical sensing with electrodes modified with molecularly imprinted polymer film. Anal. Bioanal. Chem. 378, 2004, 1922–1928
doi: 10.1007/s00216-003-2330-2
Voltammetry of diclofenac at graphite, carbon composites and molecularly imprinted polymer- composite electrodes. Anal. Lett. 37(5), 2004, 915-927
doi: 10.1081/AL-120030287
Flavin adenine dinucleotide as precursor for NADH electrocatalyst. Anal. Chem.77 (13), 2005, 4286-4289
doi: 10.1021/ac048545p
5-hydroxytryptophan (5-HTPP) as a precursor of a catalyst for the oxidation of NADH. Anal. Chem. 77 (8), 2005, 2624-2631
doi: 10.1021/ac048554y
Electrochemical and catalytic properties of the adenine coenzymes FAD and coenzyme A on pyrolytic graphite electrodes. Electroanalysis 17 (5-6), 2005, 445-451.
doi: 10.1002/elan.200403180
Electrocatalytic oxidation of NADH by Brilliant Cresyl Blue-DNA intercalation adduct. Electrochim. Acta 50, (5), 2005, 1107-1112.
doi: 10.1016/j.electacta.2004.08.007
Computational approach to the rational design of molecularly imprinted polymers for voltammetric sensing of homovanillic acid. Anal. Chem. 77(20), 2005, 6741-6746.
doi: 10.1021/ac0513461
Flufenamic acid determination in human serum by adsorptive voltammetry with in situ surfactant modified carbon paste electrodes. Electroanalysis, 17(17), 2005, 1555-1562
doi: 10.1002/elan.200403262
NADH-based electrochemical sensors. in Encyclopedia of Sensors, vol. 6, 349-378 C.A. Grimes, E.C. Dickey, M.V. Pishko, American Scientific Publisher, California 2006. ISBN (VOL 6) 1-58883-062-4
Amplified label-free electrocatalytic detection of DNA in the presence of calcium ions. Biosens. Bioelectron. 21 (8), 2006, 1507-1512.
doi: 10.1016/j.bios.2005.07.003
Computational predictions and experimental affinity distributions for a homovanillic acid molecularly imprinted polymer. Biosens. Bioelectron. 22 (3), 2006, 364-371
doi: 10.1016/j.bios.2006.03.027
Hydrogen-assisted and CO-assisted reductive desorption of hydroquinone-derived adlayers from Pt(1 1 1) single crystal electrodes. J. Electroanal. Chem., 594(2), 2006, 143-151
doi: 10.1016/j.jelechem.2006.05.024
Modified-RNA Aptamer-based Sensor for Competitive Impedimetric Assay of Neomycin B. J. Am. Chem. Soc, 129 (13), 2007, 3808-3809.
doi: 10.1021/ja0689482
Hairpin-DNA Probe for Enzyme-Amplified Electrochemical Detection of Legionella pneumophila. Anal. Chem.,79 (11), 2007, 4050-4055
doi: 10.1021/ac062260q
Determination of diclofenac in urine samples by molecularly-imprinted solid-phase extraction and adsorptive differential pulse voltammetry. Electroanalysis, 19(15), 2007, 1555-1561 [
doi: 10.1002/elan.200703895
Electrochemical oxidation of Guanosine and Adenosine: Two Convergent Pathways. Electrochem. Commun. 9, 2007, 1862-1866
doi: 10.1016/j.elecom.2007.04.018
Electrocatalytic activity of oxidation products of guanine and 5′-GMP towards the oxidation of NADH. Electrochim. Acta 53 (2), 2007, 829-836
doi: 10.1016/j.electacta.2007.07.062
Electrochemical behavior of catecholamines and related compounds at in situ surfactant modified carbon paste electrodes. Electroanalysis, 19(2-3), 2007, 207-213
doi: 10.1002/elan.200603712
Effect of bismuth surface coverage on the kinetics of quinone–hydroquinone at polycrystalline platinum electrodes. J. Electroanal. Chem.,604(1), 2007, 26-32
doi: 10.1016/j.jelechem.2007.02.022
Homemade bienzymatic-amperometric biosensor for beverages analysis. J. Chem. Educ.,84(7), 2007, 677-680
doi: 10.1021/ed084p677
Biosensors. in Advances in Fermentation Technology, chapter 4, 89-120 C Larroche, CR Soccol, CG Dussap, Ashok Pandey, Asiatech Publishers 2008. ISBN : 81-87680-18-0
http://www.vedamsbooks.com/no59911.htm
Model system for the study of 2D phase transitions and supramolecular interactions at electrified interfaces: hydrogen-assisted reductive desorption of cathecol-derived adlayers from Pt(111) single crystal electrodes. Langmuir, 24(7), 2008, 3551-3561
doi: 10.1021/la702654v
Electrochemical oxidation of guanosine and xanthosine at physiologica pH: further evidences of a convergent mechanism for the oxidation of purine nucleosides. Electroanalysis 20(8), 2008, 833-839
doi: 10.1002/elan.200704153
Aptamers as recognition elements for label-free detection. TRAC 27(5), 2008, 437-446
doi: 10.1016/j.trac.2008.03.003
CO tolerance of ordered intermetallic phases. J. Electroanal. Chem., 626, 2009, 14-22
doi: 10.1016/j.jelechem.2008.10.028
Stem-loop probes for the voltammetric determination of Legionella pneumophila on disposable screen-printed gold electrodes. Electroanalysis 21(3-5), 2009, 267-273
doi: 10.1002/elan.200804317
PCR-coupled electrochemical sensing of Legionella pneumophila. Biosens. Bioelectron. 24, 2009, 2390-2396
doi: 10.1016/j.bios.2008.12.014
SPR sensing of small molecules with RNA aptamers: detection of Neomycin B. Biosens. Bioelectron. 24, 2009, 2547-2553
doi: 10.1016/j.bios.2009.01.011
Chloroperoxidase modified electrode for amperometric detection of 2,4,6 trichlorophenol. Electroanalysis 21(12), 2009, 1339-1342
doi: 10.1002/elan.200804545
Structured nucleic acid probes for electrochemical devices. Electroanalysis 21(12), 2009, 1077-1090
doi: 10.1002/elan.200904653
Model system for the study of 2D phase transitions and supramolecular interactions at electrified interfaces: hydrogen-assisted reductive desorption of cathecol-derived adlayers from Pt(111) single crystal electrodes. Langmuir, 25(17), 2009, 10337-103544
doi: 10.1021/la900771c
Domain-selective reactivity of hydroquinone-derived adlayers at basal Pt(hkl) single-crystal electrodes. Langmuir, 26(3), 2010, 2124-2129
doi: 10.1021/la902569z
Comparative study of HRP, a peroxidase-mimicking DNAzyme, and ALP as enzyme labels in developing electrochemical genosensors for pathogenic bacteria. Electroanalysis 22(12), 2010, 1297-1305
doi: 10.1002/elan.200900608
Heterogeneous catalytic 2,4,6-trichlorophenol degradation at hemin-acrylic copolymer. Appl. Catal. B Environm. 96(1-2), 2010, 51-59
doi: 10.1016/j.apcatb.2010.01.032
Electrochemical reactivity of aromatic molecules at nanometer-sized sUrface Domains: From Pt(hkl) single crystal electrodes to preferentially oriented platinum nanoparticles. J. Am. Chem. Soc. 132(7), 2010, 2233-2242
doi: 10.1021/ja909082s
Kinetic study of the oxidative dehalogenation of 2,4,6-trichlorophenol catalyzed by chloroperoxidase. J. Molecular Catalysis B: Enzymatic 66, 2010, 332-336
doi: 10.1016/j.molcatb.2010.06.011
A new gravity-driven microfluidic-based electrochemical assay coupled to magnetic beads for nucleic acid detection. Electrophoresis, 31, 2010, 3727-3736
doi: 10.1002/elps.201000288
Preparation and characterization of a molecularly imprinted microgel for electrochemical sensing of 2,4,6-trichlorophenol. Electroanalysis, 23(1), 2011, 201-208
doi: 10.1002/elan.201000481
Impedimetric aptasensor for tobramycin detection in human serum. Biosens. Bioelectron. 26(5), 2011, 2354-2360
doi: 10.1016/j.bios.2010.10.011
DNA-based biosensor for the electrocatalytic determination of antioxidant capacity in beverages. Biosens. Bioelectron. 26(5), 2011, 2396-2401
doi: 10.1016/j.bios.2010.10.019
Amperometric quantification of gluten in food samples using an ELISA competitive assay and flow injection analysis. Electroanalysis, 23(1), 2011, 108-114
doi: 10.1002/elan.201000583
Aptamer-based inhibition assay for the electrochemical detection of tobramycin using magnetic microparticles. Electroanalysis, 23(1), 2011, 43-49
doi: 10.1002/elan.201000567
Ternary monolayers as DNA recognition interfaces for direct and sensitive electrochemical detection in untreated clinical samples. Biosens. Bioelectron. 26(11), 2011, 3577-3583
doi: 10.1016/j.bios.2011.02.004
Micromachine-Enabled Capture and Isolation of Cancer Cells in Complex Media. Angew. Chem. Int. Ed. 50(18), 2011, 4161-4164
doi: 10.1002/anie.201100115
Molecularly Imprinted Catalytic Polymers with Biomimetic Chloroperoxidase Activity. Polymer, 52, 2011, 2468-2473
doi: 10.1016/j.polymer.2011.04.004
Electrocatalytic evaluation of DNA damage by superoxide radical for antioxidant capacity assessment. J. Electroanal. Chem. 659(1), 2011, 43-49
doi: 10.1016/j.jelechem.2011.04.022
Towards a reliable technology for antioxidant capacity and oxidative damage evaluation: electrochemcial (bio)sensors. Biosens. Bioelectron. 30, 2011, 1-12
doi: 10.1016/j.bios.2011.08.036
Molecularly imprinted electrochemical sensors: past, present, and future. in “Molecularly imprinted sensors. overview and applications. Chapter 1, 2012, 1-34. Eds. S. Li, Y. Ge, S.A. Piletsku, J. Lunec, Elsevier, Oxford, UK. ISBN: 978-0-444-56331-6
http://www.sciencedirect.com/science/book/9780444563316
New materials for analytical biomimetic assays based on affinity and catalytic receptors prepared by molecular Imprinting. TrAC 33, 2012, 68-80 [
doi: 10.1016/j.trac.2011.09.011
Hemo-acrylic polymers as catalyst for the oxidative dehalogenation of 2,4,6-trichlorophenol. Chloroperoxidase´s mimic imprinting effects. J. Molecular Catalysis A: Chemical, 117, 2012, 353-354
doi: 10.1016/j.molcata.2011.11.014
SPR evaluation of binding kinetics and affinity study of modified RNA aptamers towards small molecules. Talanta, 99, 2012, 767-77
doi: 10.1016/j.talanta.2012.07.019
Nanomotor-based biocatalytic patterning of helical metal microstructures. Nanoscale 5, 2012, 1310-1314
doi: 10.1039/C2NR33040G
Aptamer-based analysis: A promising alternative for food safety control. Sensors 13(12), 2013, 16292–16311
doi: 10.3390/s131216292
Effect of the tags and labels on the performance of enzyme-amplified electrochemical genomagnetic assays. Electroanalysis 25(1), 2013, 147-153
doi: 10.1002/elan.201200381
A label-free DNA aptamer-based impedance biosensor for the detection of E. coli outer membrane proteins. Sensors and Actuators: B. Chemical, 181, 2013, 776-772
doi: 10.1016/j.snb.2013.01.062
Monovalent labeling system improves the sensitivity of aptamer-based inhibition assay for small molecule detection. Sensors and Actuators: B. Chemical, 182, 2013, 668-674
doi: 10.1016/j.snb.2013.01.070
Artificial enzyme with magnetic properties and peroxidase activity on indoleamine metabolite tumor marker. Polymer, 55 (5), 2014, 1113-1119
doi: 10.1016/j.polymer.2014.01.037
Aptamer binding to celiac disease-triggering hydrophobic proteins: a sensitive gluten detection approach. Analytical Chemistry, 86(5), 2014, 2733-2739
doi: 10.1021/ac404151n
Strongly structured DNA sequences as targets for genosensing: sensing phase design and coupling to PCR amplification for a highly specific 33-mer gliladin DNA frament. Biosens. Bioelectron. 60, 2014, 244-251
doi: 10.1016/j.bios.2014.04.033
Development of a genosensor for peanut allergen ARA h 2 detection and its optimization by surface response methodology. Biosens. Bioelectron. 62, 2014, 350-356
doi: 10.1016/j.bios.2014.06.065
Electrochemical genosensor for the control of GMO in food and feed using helicase-dependent amplification. Actualidad Analitíca, 51, 2015, 10-14
Targeting Helicase-Dependent Amplification Products with an Electrochemical Genosensor for Reliable and Sensitive Screening of Genetically Modified Organisms. Anal. Chem 87, 2015, 8547-8554
doi: 10.1021/acs.analchem.5b02271
Sensitive Gluten Determination in Gluten Free Foods by an Electrochemical Aptamer-based Assay. Anal. Bioanal. Chem 407(20), 2015, 6021-6029
doi: 10.1007/s00216-015-8771-6
Affinity of aptamers binding 33-mer gliadin peptide and gluten proteins: influence of immobilization and labeling tags. Anal. Chim. Acta, 873, 2015, 63-70
doi: 10.1016/j.aca.2015.02.053
Hairpin-based DNA electrochemical sensor for selective detection of a repetitive and structured target codifying a gliadin fragment. Anal. Bioanal. Chem, 407, 2015, 3481-3488
doi: 10.1007/s00216-015-8560-2
Multiplex electrochemical DNA platform for femtomolar-level quantification of genetically modified soybean. Biosens. Bioelectron. 68, 2015, 259-265
doi: 10.1016/j.bios.2015.01.007
Attomolar quantitation of Mycobacterium tuberculosis by asymmetric helicase-dependent isothermal DNA-amplification and electrochemical detection. Biosens. Bioelectron, 68, 2015, 122-128
doi: 10.1016/j.bios.2014.12.029
3D-nanostructured Au electrodes for the event-specific detection of MON810 transgenic maize. Talanta 134, 2015, 158-164
doi: 10.1016/j.talanta.2014.10.017
Artificial enzyme-based catalytic sensor for the electrochemical detection of 5-hydroxyindole-3-acetic acid tumor marker in urine. Sens. Act. B-Chemical, 220, 2015, 688-694
doi: 10.1016/j.snb.2015.05.109
Aptámeros anti-gliadina para la detección de gluten en alimentos. Actualidad Analítica 55, 2016, 36-39
Isothermal nucleic acid amplification in bioanalysis. Anal. Bioanal. Chem. 408 (30), 2016, 8581-8582 (Editorial)
doi: 10.1007/S00216-016-9902-4
Aptamers as synthetic receptors for food quality and safety control. in Biosensors for sustainable food: new opportunities and technical challenges, vol 74, chapter 6, 155-191. V.Scognamiglio, G. Rea, F. Arduini and G. Palleschi Eds, in Comprehensive Analytical Chemistry, 2016, Electronic ISBN: 978-0-444-63580-8
doi:10.1016/bs.coac.2016.03.021
Impedance sensing of DNA hybridization onto nanostructured phthalocyanine-modified electrode. Electrochimica Acta 221, 2016, 86-95
doi: 10.1016/j.electacta.2016.10.140
Highly monodisperse Fe3O4@Au superparamagnetic nanoparticles as reproducible platform for genosensing genetically modified organisms. ACS Sensors, 1, 2016, 1044-1053
doi: 10.1021/acsensors.6b00182
High resolution melting analysis as a new approach to discriminate gluten-containing cereals. Food Chemistry 211, 2016, 383-391
doi: 10.1016/j.foodchem.2016.05.067
Harnessing aptamers to overcome challenges in gluten detection. Biosensors 6, 2016, 16
doi: 10.3390/bios6020016
Comparison of isothermal helicase dependent amplification and PCR for the detection of Mycobacterium tuberculosis by an electrochemical genomagnetic assay. Anal. Bioanal. Chem, 408, 2016, 8603-8610
doi: 10.1007/s00216-016-9514-z
Challenging genosensors in food samples: the case of gluten determination in highly processed samples. Talanta 146, 2016, 490-496
doi: 10.1016/j.talanta.2015.09.017
Electrochemical magnetoassay coupled to PCR as a quantitative approach to detect the soybean transgenic event GTS40-3-2 in foods. Sens Act B: chemical 222, 2016, 1050-1057
doi: 10.1016/j.snb.2015.09.013
Solid-phase helicase dependent amplification and electrochemical detection of Salmonella on highly stable oligonucleotide-modified ITO electrodes. Chem. Commun. 53, 2017, 9721-9724
doi: 10.1039/C7CC05128J
A quantitative PCR-electrochemical genosensor test for the screening of biotech crops. Sensors, 17, 2017, 881
doi: 10.3390/s17040881
Thioaromatic DNA monolayers for target-amplification-free electrochemical sensing of environmental pathogenic bacteria. Biosens. Bioelectron. 92, 2017, 162-170
doi: 10.1016/j.bios.2017.02.017
Disposable electrochemical aptasensor for gluten determination in food. Sensors and Actuators B: Chemical 241, 2017, 522-527
doi: 10.1016/j.snb.2016.10112
Electrochemical Methods based on DNA in Food Safety Assessment. Critical Reviews in Food Science and Nutrition, 57(13), 2017, 2758-2774
doi: 10.1080/10408398.2015.1067597
Characterization of aptamer-ligand complexes. In Aptamers for Analytical Applications: Affinity Acquisition and Method Design, Chapter 4, 127-172. Ed. Y. Dong, Wiley 2019. ISBN: 978-3-527-34267-9
doi: 10.1002/9783527806799.ch4
Selection of anti-gluten DNA aptamers in a deep eutectic solvent. Angewandte Chem. Int Ed. 57, 2018, 12850-12854
doi: 10.1002/anie.201804860
Trapping para-quinone methide intermediates with ferrocene: synthesis and preliminary biological evaluation of new phenol-ferrocene conjugates. Molecules, 23, 2018, 1335
doi: 10.3390/molecules23061335
Carbon nanotube modified glassy carbon electrode for electrochemical oxidation of alkylphenol ethoxylate. Water Science and Technology 77(10), 2018, 2436-2444
doi: 10.2166/wst.2018.196
Sequence-specific electrochemical detection of enzymatic amplification products of Salmonella genome on ITO electrodes improves pathogen detection to the single copy level. Sens. Act. B: Chemical 268, 2018, 438-445
doi: 10.1016/j.snb.2018.04.133
Ferrocene-Decorated Phenol Derivatives by Trapping of ortho-Quinone Methide Intermediates with Ferrocene,. European Journal of Organic Chemistry, 22, 2018, 2858-2862
doi: 10.1002/ejoc.201800396
Electrochemical genoassays on gold-coated magnetic nanoparticles to quantify genetically modified organisms (GMOs) in food and feed as GMO percentage. Biosens. Bioelectron., 110, 2018, 147-154
doi: 10.1016/j.bios.2018.03.042
Understanding the factors affecting the analytical performance of sandwich-hybridization genosensors on gold electrodes. Electroanalysis, 30, 2018, 1229-1240
doi: 10.1002/elan.201800049
Post-translational modifications in tumor biomarkers: the next challenge for aptamers?. Anal. Bioanal. Chem. 410(8), 2018, 2059-2065
doi: 10.1007/s00216-018-0861-9
Helicase-dependent isothermal amplification: a novel tool in the development of molecular-based analytical systems for rapid pathogen detection. Anal. Bioanal. Chem. 410, 2018, 679-693
doi: 10.1007/s00216-017-0620-3
Unravelling the lipocalin 2 interaction with aptamers: May Rolling Circle Amplification improve their functional affinity?. Talanta 197, 2019, 406-412
doi: 10.1016/j.talanta.2019.01.057
Long noncoding RNAs: from genomic junk to rising stars in the early detection of cancer,. Anal. Bioanal.Chem., 411, 2019, 4265-4275
doi: 10.1007/s00216-019-01607-6
Focusing aptamer selection on the glycan structure of prostate-specific antigen: Toward more specific detection of prostate cáncer. Biosens. Bioelectron. 120, 2019, 83-90
doi: 10.1016/j.bios.2018.12.040
Chronoamperometric magnetogenosensing for simultaneous detection of two Roundup Ready™ soybean lines: GTS 40-3-2 and MON89788,. Sens. Act. B: Chemical, 283, 2019, 262-268
doi: 10.1016/j.snb.2018.12.009
Electrochemical aptamer-based assays coupled to isothermal nucleic acid amplification techniques: new tools for cancer diagnosis,. Current Opinion in Electrochemistry 14, 2019, 32-43
doi: 10.1016/j.coelec.2018.11.008
On-gold recombinase polymerase primer elongation for the electrochemical detection of bacterial genome: mechanism insights and influencing factors,. ChemElectroChem, 6, 2019, 793-800
doi: 10.1002/celc.201801208
Catching the Sugars: Electrochemical Aptasensors for the Detection of Cancer-Related Glycosylation Changes in Prostate Specific Antigen. Proceedings, 60 (1), 2020, 47 (open access)  
doi: 10.3390/IECB2020-07023
Electrochemical Platforms for Solid-Phase Isothermal Amplification and Detection of Bacterial Genome. Proceedings, 60 (1), 2020, 23 (open access)
doi: 10.3390/IECB2020-07025
Improving the Analytical Performance of Weak Aptamers: DNA Isothermal Amplification Approaches. Proceedings, 60 (1), 2020, 26 (open access)
doi:  10.3390/IECB2020-07026
Giving New Uses to Glucose Meters: Detection of Prostate Cancer. Proceedings, 60 (1), 2020, 24 (open access)
doi: 10.3390/IECB2020-07024
Bibliographic resources in electroanalysis. In Laboratory Methods in Dynamic Electroanalysis 1, chapter 36, pp. 373-378, Fernández-Abedul M.T. Ed., Elsevier (The Netherlands), 2020, ISBN: 9780128159323
doi: 10.1016/B978-0-12-815932-3.00036-X
Determination of ethyl alcohol in beverages using an electrochemical enzymatic sensor. In Laboratory Methods in Dynamic Electroanalysis 1, chapter 18, pp. 183-192, Fernández-Abedul M.T. Ed., Elsevier (The Netherlands), 2020, ISBN: 9780128159323
doi: 10.1016/B978-0-12-815932-3-00018-8
Bienzymatic amperometric glucose biosensor. In Laboratory Methods in Dynamic Electroanalysis 1, chapter 17, pp. 173-181, Fernández-Abedul M.T. Ed., Elsevier (The Netherlands), 2020, ISBN: 9780128159323
doi: 10.1016/B978-0-12-815932-3-00017-6
Determination of ascorbic acid in dietary supplements by cyclic voltammetry. In Laboratory Methods in Dynamic Electroanalysis. 1, chapter 2, pp. 13 -23. ELSEVIER SCIENCE BV, 2020. ISBN 9780128159323
doi:  10.1016/B978-0-12-815932-3-00002-4
Impedimetric aptasensor for determination of antibiotic neomycin B. In Laboratory Methods in Dynamic Electroanalysis. 1, chapter 11, pp. 109-118. ELSEVIER SCIENCE BV, 2020. ISBN 9780128159323
doi: 10.1016/B978-0-12-815932-3-00011-5
Aptamer-based magnetoassay for gluten determinations. In Laboratory Methods in Dynamic Electroanalysis. 1, chapter 22, pp. 223-231. ELSEVIER SCIENCE BV, 2020. ISBN 9780128159323
doi:10.1016/B978-0-12-815932-3-00022-X
Amperometric detection of NADH using carbon-based electrodes. In Laboratory Methods in Dynamic Electroanalysis. 1, chapter 7, pp. 67-74. ELSEVIER SCIENCE    BV, 2020. ISBN 9780128159323
doi: 10.1016/B978-0-12-815932-3-00007-3
New Uses for the Personal Glucose Meter: Detection of Nucleic Acid Biomarkers for Prostate Cancer Screening. Sensors, 20, 2020, 5514 (open Access)
doi: 10.3390/s20195514
Aptamers targeting protein-specific glycosylation in tumor biomarkers: general selection, characterization and structural modeling. Chemical Science, 11, 2020, 9402
doi: 10.1039/D0SC00209G
Truncated aptamers as selective receptors in a gluten sensor supporting direct measurement in a deep eutectic solvent. Biosens. Bioelectron. 165, 2020, 112339
doi: 10.1016/j.bios.2020.112339
Electrochemical aptasensors for cancer diagnosis in biological fluids – A review. Anal. Chim. Acta, 1124, 2020, 1-19
doi: 10.1016/j.aca.2020.04.022
On the Electrochemical Detection of Alpha-Fetoprotein Using Aptamers: DNA Isothermal Amplification Strategies to Improve the Performance of Weak Aptamers. Biosensors 10, 2020, 46 (open access)
doi: 10.3390/bios10050046
The translational potential of electrochemical DNA-based liquid biopsy. Frontiers in Chemistry, 8, 2020, 143
doi: 10.3389/fchem.2020.00143
A convenient renewable surface plasmon resonance chip for relative quantification of genetically modified soybean food and feed. Plos One, 15(2), 2020, e0229659 (open access)
doi: 10.1371/journal.pone.0229659
Fe3O4@Au nanoparticles-based magnetoplatform for the HMGA maize endogenous gene electrochemical genosensing.. Talanta 206, 2020, 120220
doi: 10.1016/j.talanta.2019.120220
Dual electrochemical genosensor for early diagnosis of prostate cancer through lncRNAs detection. Biosens. Bioelectron. 192, 2021, 113520
doi: 10.1016/j.bios.2021.113520 (open access)
Aptamers in biomedicine: Selection strategies and recent advance. Electrochimica Acta, 276, 2021, 137994
doi: 10.1016/j.electacta.2021.137994
Aptamers against viruses: selection strategies and bioanalytical applications. Trends in Analytical Chemistry, 143, 2021, 116349
doi: 10.1016/j.trac.2021.116349
Impedimetric aptamer-based glycan PSA score for discrimination of prostate cancer from other prostate diseases. Biosens. Bioelectron., 175, 2021, 112872
doi: 10.1016/j.bios.2020.112872
Biosensores electroquímicos para nuevos biomarcadores tumorales: aplicación al diagnóstico del cáncer de próstata. Actualidad Analítica 77, 2022, 38-42
A competitive assay for the detection of a 16-mer peptide from α1 chain of human collagen XI. Talanta, 240, 2022, 123196
doi: 10.1016/j.talanta.2021.123196 (open access)
Electrochemical sensors using oligonucleotides as recognition ligands for liquid biopsy in prostate cancer. Biosensors and Bioelectronics X, 2022, 100227
doi: 10.1016/j.biosx.2022.100227 (open access)
Editorial: electrochemical aptasensors are gaining momentum. Electrochimica Acta 401, 2022, 139520 (Editorial)
doi: 10.1016/j.electacta.2021.139520
Aptamers targeting a tumor-associated extracellular matrix component: The human mature collagen XIa1. Analytica Chimica Acta 1189, 2022, 339206
doi: 10.1016/j.aca.2021.339206 (open access)
Bioanalytical methods for circulating extracellular matrix-related proteins: new opportunities in cancer diagnosis. Anal. Bioanal. Chem, 414, 2022, 147-165
doi: 10.1007/s00216-021-03416-2
Biosensores electroquímicos para detectar cambios en los perfiles de expresión de ARNs largos no codificantes asociados a cáncer. Actualidad Analítica 82, 2023, 36-40
Electrochemical biosensors — driving personalized medicine. Anal. Bioanal. Chem. 415 (6), 2023, 1001-1002 (Editorial)
doi: 10.1007/S00216-022-04471-Z
Enzyme-assisted isothermal amplification of nucleic acids on the electrode surface. Current Opinion in Electrochemistry, 40, 2023, 101322 (open access)
doi: https://doi.org/10.1016/j.coelec.2023.101322
Aptamer-based electrochemical approaches to meet some of the challenges in the fight against cancer. Current Opinion in Electrochemistry, 39, 2023, 101286 (open access)
doi: https://doi.org/10.1016/j.coelec.2023.101286
An electrochemical genosensing platform for the relative quantification of the circulating long noncoding RNA CCAT1 to aid in the diagnosis of colorectal cancer. Sensors and Actuators B, 376, 2023, 132940
doi: 10.1016/j.snb.2022.132940
First bioelectronic immunoplatform for quantitative secretomic analysis of total and metastasis-driven glycosylated haptoglobin. Analytical and Bioanalytical Chemistry 45, 2023, 2045-2057
doi: https://link.springer.com/article/10.1007/s00216-022-04397-6
(Nano)bioelectroanalytical tools driven research in personalized medicine and nutrition. Microchim. Acta 191, 2024, 136 (Editorial)
doi: 10.1007/S00604-024-06206-6
Lectin-mimicking aptamer as a generic glycan receptor for sensitive detection of glycoproteins associated with cancer. Anal. Chem. 96,  2024, 2759-2763 (open access)
doi: 10.1021/acs.analchem.3c05891
A review on magnetic beads-based SELEX technologies: Applications from small to large target molecules. Anal. Chim. Acta, 1297, 2024, 342325
doi: 10.1016/j.aca.2024.342325
Capacitive spectroscopy as transduction mechanism for wearable biosensors: opportunities and challenges. Anal. Bioanal. Chem. 2024, 2089–2095 (open access)
doi: 10.1007/s00216-023-05066-y