Bioprocess Engineering

4.1. Obtención de productos base

4.1.1.Lactic and lactobionic acids

  • “Residual yoghurt whey for lactic acid production”. S. Alonso, M. Herrero, M. Rendeles, M. Díaz. Biomass and Bioenergy 134 (3), 223-232 (2010).
  • “Efficient lactobionic acid production from whey by Pseudomonas taetrolens under pH-shift conditions”. S. Alonso, M. Rendueles, M. Díaz.Bioresource Technology 102, 9730-9736 (2011).
  • “Selection method of pH conditions to establish Pseudomonas taetrolens physiological states and lactobionic acid production”. S. Alonso, M. Rendueles, M. Díaz. Applied Microbiology and Biotechnology 97, 3843-3854 (2012).
  • “Role of dissolved oxygen availability on lactobionic acid production from whey by Pseudomonas taetrolens”. S. Alonso, M. Rendueles, M. Díaz. Bioresource Technology 109, 140-147 (2012).

4.1.2.Bioalcohols

  • “Fermentación alcohólica del lactosuero por Kluyveromyces marxianus y solvents orgánicos como extractantes”. C. Padín, M. Díaz. Revista de la Sociedad Venezolana de Microbiología 29 (2), 110-116 (2009).

4.1.3.Extractive fermentation

  • «Three-phase extractive fermentation». J.M. Díaz. Trends in Biotechnology 6, 126-130 (1988).

4.2. Specialty products

4.2.1.Enzyme production

  • «Producción de proteasas con melaza en reactor discontínuo por cultivos libres e inmovilizados de Serratia marcescens», C. Quirós, A. Longo, L.A. García, J.M. Díaz. Afinidad 48, 377-380 (1991).
  • «Protease production from whey fermentation», C. Quirós, L.A. García, M. Díaz. AgroFood Industry Hi-Tech, Nov. 30-33, (1994).
  • “Protease production from whey at high concentrations by Serratia marcescens”. F. Romero, L.A. García, M. Díaz. Resources and Environmental Biotechnology 2, 93-115 (1998).
  • “Production, purification and partial characterization of two extracellullar proteases from Serratia marcescens grown in whey”. F. Romero, L.A. García, J.A. Salas, M. Díaz, L.M. Quirós. Process Biochemistry 36, 407-415 (2001).
  • “Fermentation of individual proteins for protease production”. F.J. Ustáriz, A. Laca, L.A. García, M. Díaz. Biochemical Engineering Journal 19, 147-153 (2004).
  • “Mixed cultures of Serratia marcescens and Kluyveromyces fragilis for simultaneous protease production and COD removal of whey”. F. Ustáriz, A. Laca, L.A. García, M. Díaz, Journal of Applied Microbiology 103, 864-870 (2007).
  • “Fermentation conditions increasing protease production by Serratia marcescens in fresh whey”. F.J. Ustáriz, A. Laca, L.A. García, M. Díaz. Revista Técnica de Ingeniería de la Universidad de Zulia 31, 1-11 (2008).
  • “Producción de proteasas por Serratia marcescens a partir de lactosuero en cultivo contínuo”. F. Romero, L. García, M. Díaz. Alimentación, Equipos y Tecnología, Junio, 101-107 (1997).

4.2.2.Monoclonal antibodies production

  • “Kinetic analysis of hybridoma cell culture in a protein-free medium: substrate and agitation effects”. L. Legazpi, J. Díaz, A. Laca, M. Díaz. Biochemical Engineering Journal 26, 122-130 (2005).

4.3. Characterization by PCR

4.3.1.In the food sector

  • “Assesment of microbial populations dynamics in a blue cheese by culturing and denaturing gradient gel electrophoresis (DGGE)”. A. Alegría, R. González, M. Díaz, B. Mayo. Current Microbiology 62 (3), 888-893 (2011).
  • “Prevalent lactic acid bacteria in cider cellars and efficiency of Oenococcus oeni strains”. A. Sánchez, M. Coton, E. Coton, M. Herrero, L. A. García, M. Díaz. Food Microbiology 32, 1-6 (2012).
  • “Cider apple native microbiota characterization by PCR-DGGE”. S. Alonso, A. Laca, M. Rendueles, B. Mayo, M. Díaz. Journal of the Institute of Brewing 121, 287-289 (2015).
  • “Microbial diversity on comercial eggs as affected by the production system. A first approach using PGM”, A. Laca, A. Laca, M. Díaz. Int. J. of Food Microbiology Dec 4;262:3-7 2017.
  • “Impact of anaerobic digestion and centrifugation/ decanting processes in bacterial communities fractions”, A. Diaz, P. Oulego, A. Laca, M. Díaz. J. of Bioscience and Bioeng. Dec 126(6) 742-749 (2018)
  • “Methagenomic analysis of bacteria communities from nitrification-denitrification treatment of landfill leachates by Ion PGM systems”, A.I. Diaz, P. Oulego, A. Laca, M.Díaz. Clean Soil Air Water : 18 October 2019.

4.3.2.For leaching waters

  • “Approaches for microbiological characterization of a landfill leachate treatment”. M. Sancha, A. Laca, A.Laca, J.M. González, B. Mayo, M. Díaz. Journal of Residuals Science & Technology 11, 39-44 (2014).

4.4. Phisiological state characterization

4.4.1.Citometry

  • “Taking advantage of the flow cytometry technique for improving malolactic starters production”. C. Quirós, M. Herrero, L.A. García, M. Díaz. European Food Research and Technology 228, 543-552 (2009).
  • “Other considerations-Flow Cytometry: A high-throughput technique for microbial bioprocess characterization”. M. Díaz, M. Herrero, L.A. García, C. Quirós. In: Murray Moo-Young (ed.), Comprehensive Biotechnology, Second Edition, volume 2, pp. 967–981. Elsevier (2011).
  • “Physiological heterogeneity of Pseudomonas taetrolens during lactobionic acid production”. S. Alonso, M. Rendueles, M. Díaz. Applied Microbiology and Biotechnology 96, 1465-1477 (2012).
  • “Physiological heterogeneity in Lactobacillus casei fermentations on residual yoghurt whey”. S. Alonso, M. Herrero, M. Rendueles, M. Díaz. Process Biochemistry 49, 732-739 (2014).

4.5. Systems modelling

4.5.1.Free cells and in consortium

4.5.1.1. Free cells

  • «Application of neural networks for controlling and predicting quality parameters in beer fermentation». L.A. García., F. Argüeso, A.I. García, M. Díaz. Journal of Industrial Microbiology 15, 401-406 (1995).
  • “Feeding strategies for enhanced lactobionic acid production from whey by Pseudomonas taetrolens”. S. Alonso, M. Rendueles, M. Díaz. Bioresource Technology 134, 134-142(2013).
  • “A novel approach to monitor stress-induced physiological responses in immobilized microorganisms”. S. Alonso, M. Rendueles, M. Díaz. Applied Microbiology and Biotechnology 99, 3573-3583 (2015).
  • “Tunable decoupled overproduction of lactobionic acid in Pseudomonas taetrolens through temperature-control strategies”, S. Alonso, M. Rendueles, M. Díaz. Process Biochemistry 58, 9-16 (2017)

4.5.1.2. In consortium

  • “Simultaneous production of lactobionic and gluconic acid in cheese whey/glucose co-fermentation by Pseudomonas taetrolens”, S. Alonso, M. Rendueles, M. Díaz. Bioresource Technology 196, 314-323 (2015).
  • “Understanding the simultaneous biodegradation of thiocyanate and salicylic acid by Paracoccus thiocyanatus and Pseudomonas putida”. R.G. Combarros, S. Collado, A. Laca, M. Díaz. Intenational Journal of Environmental Science and Technology 13, 649-662 (2016).
  • “Synbiotic fermentation for the co-production of lactic and lactobionic acids from residual dairy whey”, C. García, M. Rendueles, M. Díaz, Biotechnology Progress, 27 mayo 2017
  • “A new symbiotic dairy food containing lactobionic acid and Lactobacillus casei”, Cristina García, Manuel Rendueles, Mario Díaz. Int. J. of Dairy Technology, 3 August 2018
  • ”Liquid-phase food fermentations with microbial consortia involving lactic acid bacteria: A review”, Cristina García, Manuel Rendueles, Mario Díaz, Food Research Int. 119, 207-220 (2019).

4.5.2.Immobilized cells and solids

4.5.2.1. Immobilized cells

  • «»Diffusion» of microorganisms in calcium alginate beads». C. Quirós, M. Rendueles, L.A. García, M. Díaz. Biotechnology Techniques 9, 809-814 (1995).
  • «The evolution of the structure of calcium alginate beads and cell leakage during protease production». C. Quirós, L. García, M. Díaz. Process Biochemistry 31, 813-822 (1996).
  • “Inmovilización de Serratia marcescens en diversos soportes”. A. Laca, L.A. García, M. Díaz. Afinidad 486, 109-114 (2000).
  • “Analysis and description of the evolution of alginate immobilised cells systems”. A. Laca, L.A. García, M. Díaz. Journal of Biotechnology 80, 203-215 (2000).
  • “Controlled malolactic fermentation in cider using Leuconostoc oeni in alginate beads and comparison with free cell fermentation”. A. Laca, M. Herrero, L.A. García, M. Díaz. Enzime & Microbial Technology 28, 35-41 (2001).
  • «Modelling protease production by immobilised Serratia marcescens». C. Quirós, L.A. García, M. Díaz. Advances in Bioprocess Engineering p. 227-232. E. Galindo y O.T. Ramirez (eds.) Kluwer Academic Pub, ISBN: 0 7923 3072-2, Dordrecht (1994).
  • «Modelling and experimental validation of cell and substrate evolution in an inmobilized system». C. Quirós, M. Rendueles, L.A. García, M. Díaz. Inmobilized Cells: Basics and Applications, Wijffels et als (Eds), p. 355-362, Elsevier, Amsterdam (1996).
  • “Evolución de las concentraciones de sustrato y biomasa en sistemas inmovilizados”. A. Laca, C. Quirós, L.A. García, M. Díaz. BIOTEC ’96: Actas del Congreso, (1996).
  • “Modelización de la inmovilización celular”. A. Laca, L.A. Laca, M. Díaz. Ingeniería Química, Marzo, 204-212 (2000).

4.5.2.2. Cells in solids

  • “Modelling and description of internal profiles in immobilized cells systems”, A. Laca, C. Quirós, L.A. García, M. Díaz. Biochemical Engineering Journal 1, 225-232 (1998).
  • “Decisive role of structure in food microbial colonization and implications for predictive microbiology”. E. Noriega, A. Laca, M. Díaz. Journal of Food Protection 73 (14), 938-951(2010).

4.5.3.Segregated models

  • “Application of flow cytometry to segregated kinetic modeling based on the physiological status of microorganisms”. C. Quirós, M. Herrero, L.A. García, M. Díaz. Applied and Environmental Microbiology 73 (12), 3993-4000 (2007).
  • “Quantitative approach to determining the contribution of viable-but-nonculturable subpopulations to malolactic fermentation processes”. C. Quirós, M. Herrero, L.A. García, M. Díaz. Applied and Environmental Microbiology 75 (9), 2977-298 (2009).
  • “Application of flow cytometry to industrial microbial bioprocesses”. M. Díaz, M. Herrero, L. A.García, C. Quiros. Biochemical Engineering Journal 48, 385-407 (2010).

4.5.4.Scale up and inoculation

4.5.4.1. Scale up

  • “Taking advantage of temperature changes to know the evolution of a beverage (cider) fermentation”. C. de la Roza, A. Laca, L. García, M. Díaz. Journal of the Institute of Brewing 108, 32-33 (2002).
  • “The effect of SO2 on the production of ethanol, acetaldehyde, organic acids and flavour volatiles during industrial cider fermentation”. M. Herrero, L.A. García, M. Díaz. Journal of Agricultural & Food Chemistry 51, 3455-3459 (2003).
  • “Ethanol and ethyl acetate production during the cider fermentation from laboratory to industrial scale”. C. de la Roza, A. Laca, L.A.García, M. Díaz. Process Biochemistry 38, 1451-1456 (2003).

4.5.4.2. Inoculation

  • «Start-up strategy for SBR treatment of complex & Industrial Wastewater». M. Muñiz, A.G. Lavín, M. Díaz. Water Science and Technology 30, 149-155 (1994).
  • “Simultaneous and sequential fermentations with yeast and lactic acid bacteria in apple juice”. M. Herrero, C. de la Roza, L.A. García, M. Díaz. Journal of Industrial Microbiology & Biotechnology 22, 48-51 (1999).
  • «Análisis de las condiciones de inoculación en la fermentación de cerveza» A.I. García, L.A. García, M. Díaz. Cerveza y Malta 31 (4), 26-37 (1994).

4.6. Microorganisms

4.6.1.Bacteria, yeasts

  • “Requerimientos nutricionales de Serratia marcescens en suero lácteo”. A. Laca, L.A. García, M. Díaz. Alimentaria 308, 83-87 (1999).
  • “Comparison of Bacillus subtilis and Serratia marcescens as protease producers under different operating conditions”. M.A. Longo, I.S. Novella, L.A. García, M. Díaz. Journal of Bioscience and Bioengineering 88, 35-40 (1999).
  • “Changes in organic acids during malolactic fermentation at different temperatures in yeast-fermented apple juice”. M. Herrero, Y. Cuesta, L. García, M. Díaz. Journal of the Institute of Brewing 105, 31-35 (1999).

4.6.2.Fungi

  • “Biodegradation of dissolved humic substances by fungi “ O. Iglesias, S. Collado, P. Oulego, M. Díaz. Applied Microbiology and Biotechnology (2018) Abril vol 102, 8, p. 3497-3511 (2018)
  • “Leachates and natural organic matter. A review of their biotreatment using fungi” Sergio Collado, Paula Oulego, Octavio Suárez-Iglesias, Mario Díaz. Waste Management 96, 108-120 (2019).

4.7. Convection-reaction

4.7.1.Effectiveness drop

  • «Mixing power, external convection, and effectiveness in biorreactors». M. Díaz, A.I. García, L.A. García. Biotechnology and Bioengineering 51, 131-140 (1996).
  • “Malolactic bioconversion using a Oenococcus oeni strain for cider production: effect of yeast extract supplementation”. M. Herrero, L.A. García, M. Díaz. Journal of Industrial Microbiology and Biotechnology 30, 699-704 (2003).